ON SERRE DUALITY WITH SUPPORT
CONDITIONS AND SEPARATION THEOREMS

C. LAURENT-THIEBAUT AND J. LEITERER

0. INTRODUCTION AND STATEMENT OF THE RESULTS

If X is an n-dimensional complex manifold and E a holomorphic vector bundle
over X, then we denote by CS,T(X , E) the Fréchet space of continuous E-valued
(s,r)-forms on X, by Z2 (X, E) the subspace of O-closed forms, and by E? (X,E)
the subspace of d-exact forms (E (X, E) := {0}). As usual, the factor space

H*"(X,E): = Z;{T(X, E) /E;’,T(X, E).

will be considered as topological vector space endowed with the factor topology.
Recall that this topology is separated if and only if EE’T(X , E) is closed with respect
to the topology of C?,.(X,E). If E is the trivial line bundle, then we write also
C? .(X) instead of CY (X, E) etc.

0.1. Definition. Let X be an n-dimensional complex manifold X and let ¢, ¢* be
integers with 1 < ¢g < n—1and 0 < ¢* < n. X will be called g-concave-g*-
conver if X is connected and there exists a real C? function p on X such that,
if inf p := infeex p(¢) and sup p := sup.cx p(¢), then infp < p(¢) for all ¢ € X,
the sets {a < p < 8}, inf p < a < § < sup p, are compact, and the following two
conditions are fulfilled:

(i) There exists a €]inf p, sup p[ such that the Levi form of p has at least n—q+1
positive eigenvalues everywhere on {p < a}.

(ii) If ¢* = 0, then, for all @ €]inf p,sup p[, the set {p > a} is compact (and
hence sup p = maxp), i.e. X is g-concave in the sense of Andreotti-Grauert. If
1 < ¢* < n, then there exists 8 €]inf p,sup p[ such that the Levi form of p has at
least n —g* + 1 positive eigenvalues everywhere on {p > 3} (and hence sup p > p(¢)
for all ¢ € X).

The following separation theorem is well known:
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0.2. Theorem. Let X be an n-dimensional complex manifold which is q-concave-
q*-convez, where 1 < qg<n-—1and0 < qg* <n-—q—1. Then, for any holomorphic
vector bundle E over X, HO"~4(X, E) is separated.

For ¢* = 0 this theorem was proved by Andreotti and Vesentini [A-V]. The
general case is contained in Theorem 2 of [R] of J.P.Ramis, where the more gen-
eral situation of sheaves over complex spaces is studied. A simple direct proof of
Theorem 0.2 is given in [La-L 1].

Consider the case
¢=n-¢q¢, 1<g<n-—1

First note that then it may happen that H®"~4(X, E) is not separated. This follows
from an example of Rossi [Ros] and Theorem 23.3 in [H-L] (for the details cp. the
introduction of [La-L 1]). The example of Rossi is a 2-dimensional 1-concave-1-
convex manifold such that H%!(X) is not separated.!

However, in [H-L] it was proved that if ¢ the g-convex hole can be repaired’,
then nevertheless HO"~9(X, E) is separated. More precisely, the following theorem
holds:

0.3. Theorem. (cp. Theorem 19.1’ in [H-L]) Let X be an n-dimensional complex
manifold which is q-concave-(n — q)-conver, 1 < ¢ < n—1, such that additional the
following condition is fulfilled:

(A) There exists a complexr manifold Y with a relatively compact open subset H
such that: X is an open subset of Y, Y = X U H and if p is as in Definition 0.1,
then, for certain v with inf p <y <supp, X NH = {p < v}.

Then, for any holomorphic vector bundle E over Y, H"~4(X, E) is separated.

The proof of Theorem 0.3 given in [H-L] is rather long and difficult and uses
many estimates for integral operators of the Grauert-Henkin-Lieb type (not only
the well known Hoélder estimates). In Sect. 4 of the present paper we give a simple
proof of Theorem 0.3 using only Andreotti-Grauert finiteness theorems and Serre
duality.

In Sect. 5 we prove a finiteness and separation theorem for certain special families
of supports (compact with respect to a part of the boundary and arbitrary with
respect to the other part).

Then in Sect. 6, using this result from Sect.5 and the arguments of Sect. 4, we
prove that the conclusion of Theorem 0.3 remains valid also without condition (A)
if ¢ < n/2,i.e. we prove the following

0.4. Theorem. Let X be an n-dimensional complex manifold, n > 3, which is
g-concave-(n — q)-conver, 1 <g<n-—1. If

<n
q 2’

INote that there is a misprint in the formulation of Theorem 2 in [R] - by this formulation
HO%1(X) should be separated also for the Rossi example.



SERRE DUALITY 3
then, for any holomorphic vector bundle E over X, H*"9(X,E) is separated.

Note that for ¢ = 1 the assertion of this theorem follows already from Theorem
0.3, because then, by a theorem of Rossi [Ros], the 1-concave ‘hole’ can be repaired.

In Sect.7 we show that the arguments of Sect.4 can be applied also to the
situation considered in [Mi]. We prove the following theorem (see Theorem 7.5):

0.5. Theorem. LetY be a compact complex space of dimension n whose singular
part S consists of a finite number of points. Set X =Y \ S, let some subset Sy of
S be fized and denote by ® the family of all closed subsets C' of X such thatY \ C
is a neighborhood of Sy.

Then, for any holomorphic vector bundle E over X, Hg’"_l(X, E) is separated.

In [Mi] this result was proved under the additional hypothesis that the bundle
Ki' ® E is extendable to Sy as a holomorphic vector bundle. Note also that in
the present paper the more general situation is admitted when the manifold X has
arbitrary 1-convex ‘holes’ which, possibly, cannot be filled in by complex spaces.

The basic tool of the present paper is Serre duality on non-compact complex
manifolds, where we are interested not only in the standard situation - the relation
between the usual cohomology and the cohomology with compact supports, but also
in the case of more general support conditions. Although many seems to be known
in this direction [S,A-K,C-S], we could not find in the literature correct proofs for
everything what we need.

Therefore we begin this paper (Sects. 1-3) with a study of Serre duality for certain
special families of supports (which we call nice), repeating also well known things,
for the sake of completeness.

Finally, we have to confess that in our preprint [La-L 3] (a first version of the
present paper), there is a mistake in the general part on Serre duality (the proof of
Lemma 2.8 is false). Note however that the results of Sects. 3 - 7 of this preprint
are correct. They are proved in the present paper (for Sects. 3 - 6) and [La-L 2]
(for Sect. 7).

1. FAMILIES OF SUPPORTS AND ALGEBRAIC RELATIONS
BETWEEN CORRESPONDING DOLBEAULT GROUPS

In this section X is an n-dimensional complex manifold countable at infinity and
E is a holomorphic vector bundle over X.

1.1. Notations. Throughout this paper we use the following notations:

If Y C X, then we denote by C7 . (Y; X, E) the subspace of all f € C} (X, E)
with supp f C Y, and we set Z0 .(Y; X, E) = Z7 (X,E)nC? . (Y; X, E).

If ® is a family of subsets of X, then:

- C?,.(®; X, E) is the space of all f € C? (X, E) with supp f € @,

- 20,(%; X, B) = Z°,(X, B) N C2,(%; X, ),
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- Eg,r(@;X, E):= ZE’T(Q;X, E) 05037,,_1(@;)(, E) ifr>1,
- EE,T(CD;X, E):={0} ifr=0,
- Hy"(X,E) = Z] (®; X, E) | E] (®; X, E).
Note that Hy" (X, E) = H*" (X, E) if ® consists of all closed subsets of X. As
usual, we write
H)"(X,E):=H}"(X,E)
if ® consists of the compact subsets of X.

IfY CY C X and & C & are families of subsets of X then we use the
abbreviations

B, (Y 2 Y X,B) =7, (Y';X,E)n9C;, ,(Y; X, B),
E] .(® - ®;X,E):= 27 (¥;X,E)ndC;,_,(®; X,E),
E. (2> Y;X,E) =2 (Y;X,E)n0CY,_,(®; X, E).

s,r—1

1.2. Families of supports. By a family of supports in X we mean a collection &
of closed subsets of X such that the following conditions are fulfilled (cf. [S]):

(S1) if C € @, then each closed subset of C belongs to ®;

(SQ) if Cl,CQ € P, then C1 UCy € d;

(S3) for each C' € X there exists an open neighborhood U of C with U € ®.

Note that, for each family of supports ® in X, the union |J @ is open (possibly
# X), and ® contains all compact subsets of |J ®.

1.3. The family ®*®’. If @ is a family of supports in X and &' C & is a subfamily
which is also a family of supports in X, then we denote by ® x®’ the family of open
sets U C X such that C\U € ®' for all C € &.

It is easy to see that every finite intersection of sets of ® * @' is in ® x &', and,
unless ® = @', the empty set never belongs to ® * ®'. Furthermore, it is clear that
X\C' € &«%'if C' € ®'. However it is not true in general that X \ U € &' if
U € PP (cf. Example IT in Sect. 1.4 below).

1.4. Complete subfamilies. Let ® C ® be two families of supports in X. Then
the follwing conditions are equivalent:

(i) There exists Co € ® with C'\ Cp € &' for all C € @.

(ii) There exists U € ® x & with U € ®.

(iii) For each U € & x ®' there exists V € ® * &' such that V C U and V € ®.
If these equivalent conditions are fulfilled, then ®' will be called complete in ®.

Proof of the equivalence. (i) = (i): Assume U is as in (ii). Set Cop = U and
consider C' € ®. Then, by definition of ® x ®', C'\ U € ¥’, and hence

C\Co=C\UCC\UEed.
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(i) = (ii): Let Cp be as in (i). By condition (S3) in the definition of a family
of supports, there is an open neighborhood U of Cy with U € ®. Then C'\ U C
C\Coe® forall C€®. Hence U € & xP'.

(ii) = (iii): Let U € ® % &' be given. By (ii), we have Uy € ® x &' with
Upe® Set W=UnNUy. Then W € &« ® and W € &. Hence the boundary
OW = W \ W belongs to ®'. Take an open neighborhood W' of OW with W’ € ®'.
Then X \ W' € ® * & and hence

V=W\W=WnX\W)edxd.

Moreover it is clear that V C W C U. Since W € ® and V C W, we have also that
Veod.

(ifi) = (ii) is trivial. O

It is easy to see that in each of the following examples, ® C ® are families of
supports in X, where &' is complete in ®.

Example I: Let ® be the family of all closed subsets of X, and @' the family of
the compact subsets of X. Then ® x®' consists of all complements of compact sets.

Ezxample II: Let K be a fixed compact subset of X, ® the family of the compact
subsets of X, and @' the family of all C' € ® with K N C = (. Then ® * &' is the
family of neighborhoods of K.

Ezample ITI (cf. [M]): Let X = X\ S where X is a compact complex space whose
singular points are isolated and S is the set of all singular points of X. Assume
that S is divided into two non-empty subsets S; and Sy. Let ® be the family of
all closed subsets of X, and &' the family of all C' € ® such that C' N U = () for
some neighborhood U of S; in X. Then ® % ®' is the family of open subsets U of
X which are of the form U = U \ S1 where Uisa neighborhood of S; in X.

Example IV: Let X be an open subset of C*, K a closed subset of the boundary
of X in C", & the family of all subsets of X which are closed in X, and &' the
family of all C' € ® such that C' N U = § for some C"-open neighborhood U of K.
Then ® x &' consits of all sets of the form U N X where U ranges over the C*-open
neighborhoods of K.

Now let ® C ® be two families of supports in X. Then we use the following
notations:

Two forms f € C? (U, E), g € C?,(V,E) where U,V € & x ', will be called
equivalent if there is an open W C U NV with f|W = g|W. The corresponding
space of equivalence classes of the disjoint union of all CY (U, E), U € ® * &', will
be denoted by C?,.(®x®', E). Z (%', E) denotes the subspace of C3 . (®%®’, E)
defined by d-closed forms, and E? ,.(®x®', E) denotes the subspace of Z2 ,.(®x®’, E)
defined by d-exact forms.

We set
H*"(®x® E) = ZS,T(<I> * <I>’,E)/E2,T(<I> *®' E).

Furthermore, we denote by ZE’T(Q;X, E)|<I> * ®' the image of ZS’T(Q;X, E) in
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ZJ,.(® x @', E) under the restriction map, and set

O (®+9',E) = 20 (8 +9',E)/[2°,(®; X, E)|® * &'].

1.5. Lemma. If ® C & are two families of supports in X such that ®' is complete
in ®, then:

(i) For all s,7 with 0 < s,r < n, we have the relation
(1.1) E] . (2x®',E)C Z,.(®X,E)|® @'
and therefore the inequality
(1.2) dim H*>"(® « &', E) < dim H*"(® = &', E).
(i) For all s,7 with 0 < s <n and 1 <1 < n, we have a natural isomorphism
(1.3) 5:E2,.(® - ®;X,E)/E (¥;X,E) — H*" 133, E),
and hence the equality

(1.4) dim [EQ (® —» ®'; X, E)/EQ (¥'; X,E)] = dim H*" (& + &', E).

(i43) For all s,r with 0 < s < m and 1 < r < n, we have a natural linear
epimorphism

(1.5) §:E) (- ®;X,E)/E], (?;X,E) — H*" (& %9, E),
and hence the inequality

(1.6) dim [Ej .(® — ®'; X,E)/E? (®';X,E)] <dim H>" '(® x &, E).

Proof. (i): Let f € E?,.(® x ®',E) be given. If r = 0, then f = 0 and hence
f€Z2.(9;X,E)|®x®". If r > 1, then there exists U € ®x®' and p € C?, (U, E)
with continuous Oy such that f is defined by dp. By condition (iii) in 1.4, after
shrinking U, we may assume that U € ®, and, by the same argument, we can find
V € & % ® with V C U. Take a real C*-function x on X with supp x C U and
x=1onV. Let ¢ € Z? (X, E) be the form defined by

Y =0(xp) =X A p+ x0p

on U and ¢ = 0 outside U. Since U € ®, then 1 € ZJ.(®; X, E). Since ¢ = dyp on
V and therefore the germ f is defined by ¢|V, this implies that f € Zg,,(@; X,E) | Bx
P’

(ii): Let f € B2, (® — &'; X, E). Take u € C*"~'(&; X, E) with u = f. Then
u|(x\supp f) € ZE’T(X\supp [, E). Therefore, since X \ supp f € ® *®’, u|(x\supp #)
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defines an element in H*"~1(® % ', E). Denote this element by 5f. This element
does not depend on the choice of u, for if & € C*"~'(®; X, F) is another form with
Ot = f, then u — @ € Z2,_,(®; X, E). Hence a linear map

0:E2 (B~ ®;X,E) — H*" 13+ ¥, E)
is well defined. It remains to show that 4 is surjective and

(1.7) ker§ = E?,(9'; X, E).

Proof of the surjectivity: Let F € ﬁ“_l(é * &' E) be given. Take U € ® x &’
and f € Z° (U, E) such that F is defined by f. By condition (iii) in 1.4, we

s,r—1
can find open sets V,IW € ® x ® such that V C W, W C U and W € &. Take
a real C*-function x on X with suppx C W and x = 1 on V and let g be the
form on X defined by g = 3(xf) on W and by zero outside W. Since W € @, then
g € EQ (®; X, E). Since g = 0 outside W\Vand W\V € &, we see that even
g€ ESyT(<I> = & X E). As (xf)|v = f|v defines F', we see that Sg =F.

Proof of (1.7): First let f € EJ (®';X,E) be given. Then there exists u €
Zg’r_l(X, E) with Ou = f and suppu € ®'. Since (X \ suppu) € ® * &', then, by
definition of 4, & [ is defined by the form u|(x\suppw) Which is zero.

Now let f € ker  be given, i.e. f = Ou where u is a form from CE’T_I(@;X, E)

such that, for certain v € Z°,_ ,(®; X, E) and some U € & x ®', u = v on U. Then

s,r—1

supp (u —v) € ® and 9(u —v) = f, ie. f € E} (®;X,E).
(iii) follows from (i) and (ii). O

1.6. Corollary. If ®' C ® are two families of supports in X such that ®' is com-
plete in @, then

(1.8) dim H2' (X, B) < dim H"(X, E) + dim H*"~(® x &', E)
for all s,r with0<s<mandl1l<r<n.
Proof. From
E;,(3;X,E) CE; (% = ®;X,E) C Z) (%X, E)
it follows that

dim H? .(3'; X, E) = dim [E?,( — &'; X, E)/E° (&; X, E)]
+dim [22,(%'; X, E)/E2,(® — ¥'; X, E)].

In view of Lemma 1.5 (iii) and the obvious inequality
dim 29 .(®'; X, E)/E{ (% — ®; X, E) < dim Hy" (X, E),

this implies (1.8). O
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2. TOPOLOGICAL PREPARATIONS

In this section X is an n-dimensional complex manifold countable at infinity.

2.1. The LF-topology of C? .(®; X, E) and Hy"(X, E). Let E be aholomorphic
vector bundle over X, and ® a family of supports in X.

As usual, we consider Cg,T(X ,E) as Fréchet space with the topology of uni-
form convergence on compact subsets of X. If C' is a closed subset of X, then
Cg,,(C;X ,E) will be also consider as Fréchet space, with the topology induced
from C? (X, E).

The space CY,.(®; X, E) will be provided with the inductive limit topology of
the Fréchet spaces C‘?’T(C’; X,E), C € ®, i.e. the finest locally convex topology
such that, for each C' € ®, the natural injection of CS,T(C’;X, E) in CS,T(Q;X, E)
is continuous.

A family of supports ® in X will be called cofinal (cf. [C-S]) if there exists a
sequence (C;) en of sets C; € ® such that each C' € @ is contained in certain C;. In
view of condition (S3) in the definition of a family of supports, then this sequence
always can be chosen so that each Cj is contained in the interior of Cjy;.

If ¢ is a cofinal family of supports in X, then Cgr(@; X, E) is an LF-space, i.e.
a countable strict inductive limit of Fréchet spaces (cf., e.g., Chapter 13 in [T]) - if
(Cj)jen is a sequence as in the definition of cofinality such that each C; is contained
in the interior of C'j 1, then the sequence of Fréchet spaces CS’T(CJ- ; X, E) may serve
as defining sequence.

It is easy to see that all families of supports considered in Examples I - IV of
Sect. 1 are cofinal.

We provide Z2,.(®; X, E) and EJ (®; X, E) with the topology of C} .(®; X, E),
and Hy" (X, E) with the corresponding factor toppology. The space of continuous
linear forms on H"(X,E) will be denoted by (HZ"(X,E))". Recall that the
topology of Hy" (X, E) is separated if and only if E?, (®;X,E) is topologically
closed in C? .(®; X, E).

2.2. The dual family ®*. If ® is a family of supports in X, then we denote by ®*
the family of all closed subsets C* of X such that, for all C' € ®, the intersection
C* N C is compact. ®* will be called the dual family of ®.

A family of supports ® in X will be called reflexive if ** = &.

If ® is a family of supports in X, then, obviously, conditions (S1) and (S3) in
the definition of a family of supports are also fulfilled for ®*. However, condition
(Ss) is not fulfilled in general for ®*. We thank LEE STOUT for submitting us by
e-mail the following counterexample:

Let R, be the nonnegative part of the real axis in C. Denote by ® the family
of all closed subsets C' of C for which C N R} is compact. Then & is a family for
supports in C, but the dual family ®* does not satisfy condition (S3). (Ry € ®*,
but there is no neighborhood U of R} with U € ®*.)
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It is easy to see that the family @ in the example of STOUT is not cofinal. This
is consistent with the following lemma.

2.3.Lemma. If ® is a cofinal family of supports in X, then ®* is a family of
supports in X.

Proof. Let C* € ®* be given. We have to find a neighborhood V' of C* such that
V € ®*. Since ® is cofinal we have a sequence C; € ®, j = 1,2,... such that each
C € @ is contained in some C; and if U; is the interior of C;, then C; C Uj;q. Set
Ct =C*NCyand CF = C*N(Cj\Uj-1) if j > 2. Then all C; are compact and

C;inCj—s = (0 if j > 3. Take for each j > 1 a relatively compact open set V; with
C;CV; and V;NCj =0 if j>3
Then
o0
V.= U V.
j=1
has the required properties. O

It is not true in general that the dual family of a cofinal family of supports
is again cofinal. For example, the dual family of the family &' in Example IV,
Sect. 1.4, is not cofinal.

2.4.Lemma. For any holomorphic vector bundle E over X and all integers s,r
with 0 < s, < n, the following two assertions hold:

(i) Let C be a closed subset of X, and f a continuous linear functional on
C?,(C; X, E). Then there exists a compact set K C C such that f =0 on C?,.(C'\
K. X,E).

(ii) Let ® be a family of supports in X with |J® = X, and let f be a continuous
linear functional on CE’T(Q;X, E). Denote by fx the current which is then defined
by f on all of X (for |J® = X ). Then

supp fx € ®*.

Proof. (i) Take a sequence (K;);en of compact subsets of X such that each K is
contained in the interior of K11 and [J;cy K; = X. We have to prove that f =0
on C?,(C\ Kj; X, E) if j is sufficiently large.

Assume the contrary. Then we can find a sequence (¢;)jen of forms ¢; €
C?,.(C\ Kj; X, E) such that f(p;) =1 for all j. This contradicts the continuity
of f, since, by definition of the topology of CgiT(C;X ,E), the sequence (¢;),jen
converges to zero in C? .(C; X, E).

(ii) Let C be any element of ®, by condition (Ss) in the definition of a family of
supports, we can find a neighborhood U of C' with U € ®. Then, by part (i) of the
lemma, there is a compact set K C U such that f = 0 on CS,T(U \K;X,E). In
particular, then fx = 0 over U\ K, i.e. (supp fx)N (U \ K) = (. Hence the set
(supp fx) N C is contained in K and therefore compact. O



10 C. LAURENT-THIEBAUT AND J. LEITERER

2.5.Lemma. Let ® be a family of supports in X such that J® = X and ®* is
also a family of supports. Further, let E be a holomorphic vector bundle over X
and E* the dual of E. Then, for all integers s,r with 0 < s,r < n, there is a
naturel linear epimorphism

by, Hp *" (X, E*) — (HY' (X, E))',

which is an isomophism if and only if

(2.1) E° (®*; X, E*) =

n—s,n—r

{fezzs,m(@*;x,E*) ‘/ng=0 for all geZS,T(@;Xﬂ)}-
X

Proof. Since, for C € ® and C* € ®*, the intersection C N C* is compact, for each
fEe ngs,nfr(é*;X, E*), setting

~ [ tng  for gez (®X.E),
X

we can define a continuous linear functional f' on Z7 (®; X, E), where, by Stokes’
theorem, f'(g) = 0if f € E)_, . (9% X,E*) or g € E] (®; X, E). Hence in this
way we get a linear map from Hy. """ (X, E*) to (H3" (X, E))" which we denote
by h;’r

Obviously, the injectivity of this map is equivalent to (2.1). Therefore it remains
to prove that hj ,. is surjective if condition (2.1) is fulfilled.

Assume (2.1) holds, consider an arbitrary functional F € (H3"(X, E))’, and let
b: Zg,r(q)7X7 E) — H;’T(X7 E)

be the canonical projection. Then we have to find f € Z) , , .(®*; X, E*) with

(2.2) /X fAg=(Fop)g) forall ge ZS,T(Q);X, E).

First, by the Hahn-Banach theorem, we can find a continuous linear functional F
on CY.(®;X,E) with F = Fop on Z],(®;X,E). Since |J® = X, all compact
subsets of X belong to ®. Therefore, the continuity of F on C?,(9;X,E) in

particular means that F is an E*-valued current of bidegree (n — s,n —r) on X.
Since F' vanishes on EO, (®; X, E), F is d-closed, and it follows from Lemma 2.4

(i) that supp F' € ®*.
If r = n, by regularity of J, there exists f € Z0_
holomorphic) such that

o(®*; X, E*) (f is even

8,

/ng— = (Fop)(g) forall ge 2, (%;X,E),
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i.e. (2.2) is fulfilled.

Now let » < n — 1. Since ®* is a family of supports, by condition (S3) in the
definition of a family of supports and by regularity of O (see, e.g., Corollary 2.15
in [H-L]), we can find a current S on X with supp S € ®* such that the current

F — 38 is defined by a continuous form with support in ®*, i.e., we have a form
fezy . (8 X,E*) such that

(2.3) /X fAp=(F—B5)(p)

for all E-valued Cg%-forms ¢ with compact support on X. It remains to prove
(2.2).

First consider a form go, € ZJ .(®; X, E) which is of class C*. Since

(supp S U supp f U supp F') N supp goo

is compact, then it follows from (2.3) that
(24) [ £ Ao = (F=85)(9) = Flao).

Now let g € Z7 .(®; X, E) be arbitrary. If r = 0, then g is holomorphic and (2.2)
follows from (2.4). Therefore we may assume that r > 1. Then, as above, since ®
is a family of supports, by condition (S3) in the definition of a family of supports
and by regularity of 0, we can find a C®-form g, € Z27,,(<I>;X ,E) and a form
¢ € C?,_1(®; X, E) such that

9 =9 +5¢

It follows from Stokes’ theorem and (2.4) that

/Xng=/Xngoo+/XfA5¢=/Xngw=F(goo).

Since g — goo = OY € E? . (®;X,E) and therefore F(g9so) = F(g), this implies
(2.2). O

2.6.Lemma. Let ® be a cofinal family of supports in X. Further, let E be a
holomorphic vector bundle over X, C € ®, 0 < s <n and 1 <r < n. Suppose
there ezists a finite dimensional linear subspace F of CgvT(C; X, E) such that the
linear space

F+E . (® - C;X,E)

is topologically closed in C?,.(C; X, E). Then also EY .(® — C; X, E) is topologi-
cally closed in Cgr (C; X, E) and, moreover, there exists Cy € ® with

(2.5) E° (@ - C;X,E) = E? (Co = C; X, E).
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Proof. Since @ is cofinal, we can find a sequence C; € ® such that each C' € @ is
contained in some C;. Then

E2,.(® - C;X,E) C | JaCY, +(Cj; X, E).
j=1

Since F' + Eg,T(CD — C; X, E) is a Fréchet space, this implies that for certain jo, the
space

(2.6) F+E,.(® - C;X,E)NdCY,_,(Cjp; X, E)

is of second Baire categorie in F' 4+ EJ (® — C;X,E). Let Doy be the linear
subspace of all ¢ € C?,_,(Cj,; X, E) with 8¢ € C? (C; X, E), and let 15 & 9o be
the linear operator with domain of definition F' & D between the Fréchet spaces
FaC?,_,(Cjy; X, E) and F+E? . (® - C; X, E) defined by (1p®00)(f, ¢) = f+p
for (f,p) € F @ Dy. Since this operator is closed, and its image (which is equal to
(2.6)) is of second Baire categorie in F + E? .(® — C; X, E), it follows by the open
mapping theorem that this operator is onto. Hence

(2.7) (1p ® 0o)(F @ Dy) = F + ES,T(CD - C; X, E)

and _ _
0(Do) = (1F ® 00)({0} @ Do)

is finite codimensional in F + E?,(® — C;X,E). Since d (with Dy as domain
of definition) is closed, it follows from the open mapping theorem that &(Dg) is
moreover topologically closed in F+EY (& — C; X, E). This implies that E? . (® —
C; X, E) is topologically closed in F + E? (® — C; X, E), for (Do) C EgT((I) —
C;X,E) C F+EQ . (® — C; X, E). (2.5) follows from (2.7) repeating the first part
of the proof with F = {0}. O

3. SERRE DUALITY FOR NICE FAMILIES OF SUPPORTS

In this section X is always a complex manifold of dimension n countable at
infinity.

3.1. Compact boundaries and nice families of supports. T" will be called a
compact boundary in X if ' is a smooth compact oriented real hypersurface in X
which is the boundary (in the sense of oriented manifolds?) of certain open subset
of X. This open subset then will be denoted by Z, (T', X). Further then we set

Z_(I'X) =X\ Z4(I', X), and we denote by —I' the oriented manifold which is
equal to I' as a manifold, but carries the opposite orientation. Note that

Z4(-T, X) = Z=(T, X).

2We always assume that complex manifolds are oriented by dzi A dy1 A ... A dzn A dyn if
T1,Y1,--- ,Zn,Yn are real coordinates such that x1+iy1,... ,xn+1yn are holomorphic coordinates.
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If T is a compact boundary in X, then we denote by ®(I', X)) the family of all
closed subsets C' of X such that C N Z (T, X) is compact. Then ®(T, X) is a
reflexive cofinal family of supports in X, where ®(T', X)* = &(-T, X).

A family of supports ® in X will be called nice if there exists a compact boundary
Tin X with ® = ®(T, X).

3.2. The families #° and $*° and the restrictions ®|y, U € ®° U ®*0. Let &
be a nice family of supports in X. Then we denote by ®° the family of all open
sets U C X such that U € ® and Z (T, X) C U for certain compact boundary
[in X with ® = (T, X). ®*° (= (®*)°) then consists of all open sets U* C X
such that U™ € ®* and Z, (T, X) C U* for certain compact boundary T in X with
® =9(T, X).

If U € ® U &*0, then we set
®ly={C|C€® and CCU} if Ued®

and
®ly={C|C=ConNU forsome Cpe®} if Ued
ie.
3|y = &(T, V).

if T' is a compact boundary in X with Z (I, X) C U (if U € ®°) resp. Z, (T, X) C
U* (if U € *°). Note that

(®lv)" = ®*v-
By definition, ®|y is a family of supports in U (and not in X). However, if U € ®°,
then ®|y may be considered also as a family of supports in X.

3.3. The conditions Cl; .(®; X, E) and SCl;,(®; X,E). Let ® be a nice family
of supports in X, F a holomorphic vector bundle over X and 0 < s <n,1<r <n.

We say condition Cls ,(®; X, E) is fulfilled if, for all C' € ®, the space E? .(® —
C; X, E) is topologically closed in C? (X, E) (with respect to uniform convergence
on compact subsets, cf. Sect.2.1).

A pair (U, V) will be called a Cls (®; X, E)-pair if U,V € ®°, U C V and, for
certain C € ® with C C V,

E9,(¢ — T: X, E) = B3, (C » T: X, B).

It follows from Lemma 2.6 that if condition Cl, ,(®;X) is fulfilled, then, for all
U € ®°, there exists V € ®° such that (U, V) is a Cl, ,.(®; X)-pair.

We denote by ®3.(E) the family of all sets U* € ®*° such that condition
Cls r(®|y~; U*, E) is fulfilled and, moreover, the following holds:

3.1) { IfoeZy ;. 1 (UX,E*)such that [;;, o Ag =0 for all
' g€ Z%, (% X,E), then [,.oNg=0foralge 2, ,(2|p-;U*,E).

s,r—1 s,7r—1
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We say condition SCl; . (®; X, E) (resp. the strong condition Cl, . (®; X, E)) is
fulfilled if condition Cl, (®; X, E) is fulfilled and, moreover, for each C € ®*, there
exists Cp € ®* and a sequence (U;-k)jeN C @:?T(E) such that ¢ C U} C Cp and
UF C U3y, forall j €N

Note that if ® is the family of all compact subsets of X, then in this definition

we can always take the whole manifold X for both Cp and all U;. Hence in this
case conditions SCl; . (®; X, E) and Cl, .(®; X, E) are equivalent.

3.4.Lemma. Let & be a nice family of supports in X, E a holomorphic vector
bundle over X and 0 < s <n, 1 <r <n. Further, let U € ®° and U* € @:?T(E).
Then, for each ¢ € Z)_, . .1 (U*; X, E*) with

(3.2) / eAg=0  forall g€ Z], ,(®;X,E),
there exists 1 € C)_, ,,_.(UNU*;U, E*) which solves the equation
0 = over U.

Proof. Let ¢ € Z3 ., ,.1(U* X, E*) with (3.2) be given. Since U* € &:%.(E)
and therefore condition Cl; ,(®|y+; U*, E) is fulfilled and since UNU* € ®|y-, the
space E (®|y» = UNU*;U*, E) is topologically closed in C?,(U*, E) and, by
Lemma 2.6, we can find Uy € ®° with

(3.3) ES’T(<I>|U* - UNU*U*E)C ECO’T_I(UO NU*U* E).

8

Furthermore, since U* € ®39.(E), it follows from (3.1) and (3.2) that
(3.4) / pANg=0 for all gEZg’T,l(UoﬂU*;U*,E).

By (3.3) and (3.4), a linear functional ¢y on E? (®|y- — U NU*;U*, E) can
be defined as follows: For each f € E27T(<I>|U* — UNU*U* E) we take u €
CY,_1([UoNU*;U*, E) with u = f and set

(3.5) W (f) = / phu

Since E? (®|y» = UNU* U, E) is a Fréchet space with respect to the topol-
ogy of C?,(U*, E), and, by (3.3), 9 is surjective as operator between C?,._,(Uq N
U*;U*, E) and E? . (®|y- — UNU*;U*, E), it follows from the open mapping the-
orem (for closed linear surjections between Fréchet spaces) that ¢, is continuous
with respect to the topology of CS’T(U * E). Let 12 be a Hahn-Banach extension of
¢y to all of C9 (U*,E). Then ¢, is a current over U* with supp ¢» CcC U*
(cf. Lemma 2.4 (i) with C = X = U*) such that, by (3.5), 02 = +¢ on
UNU*. Let K be a compact subset of U* which is a neighborhood of supp 5.
Since ¢ is continuous, then it follows by regularity of @ that there exists a form
Y eCy ., (KNU;UNU* E*) with O = ¢ on UNU*. After extending by
zero we may assume that ¢ € C3_, (K NU;U, E*). Since both ¢ and ¢ vanish
outside U*, this implies that the equation 0 = ¢ holds on all of U. [
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3.5.Lemma. Let & be a nice family of supports in X, E a holomorphic vector
bundle over X, and 0 < s < n, 1 < r < n. Further, let U,Uy, Uy € ®° and
U*,Uj € @:?T(E) with U C Uy, Ug C Ugg and U* C Uy such that (UNU*,Up N
U*) is a Cls . (®|y+; U*, E)-pair, and let f € ZS)T(U NU§; U, E) which extends
continuously to a neighborhood ofU_a‘ such that

@O [ FAv=0 foral beZd (Uil EY).
UooﬁUS‘

Then there exists u € CJ,._(Ug NU*;U*, E) which solves the equation
Ou=f over U™.

Proof. Denote by H the space of all ¢ € Z2 (Ug; X, E*) such that

—s,n—r+1
/ ¢Ag=0 forall geZ0 _,(®X,E).
Ug

Then, by Lemma 3.4,
(3.7 H|y,, C gcgfsyn,T(Uoo N U5 Ugo, E™).

Now let F; be the Fréchet space of all ¢ € H with supp ¢ C U" endowed with the
topology of C9_, _,11(X,E*), and let F := CO_, ,,_.(Uoo N Up; Uoo, E*) which

is also a Fréchet space. Then it follows from (3.7) that
(3.8) Filu,, C OF.

By (3.8) and (3.6) a linear functional u; on Fi can be defined as follows: For each
p € F1 we take ¢ € Fy with 0y = ¢ on Uy and set

w@)= [ faw

Since, by (3.8), d is surjective as operator between F; and F, and f extends con-
tinuously to a neighborhood of U;, it follows from the open mapping theorem (for
closed linear surjections between Fréchet spaces) that u; is continuous with respect
to the topology of C_, .., (X,E*). Let uy be a Hahn-Banach extension of u,
toallof C)_, .1 (X, E*). Then uy is a current with compact support on X. Let
a be a smooth (n — s,n — r)-form with compact support in U* and values in E*.
Since suppf C UNUg and U C Uy and as da € Fy and aly,, € F», we have

us(Pa) = u (Fa) = / fha,

UooﬂUg

which means that Qus = +f on U*. Take a compact subset K of X which is a
neighborhood of supp us. Since f is continuous, then by regularity of 8 we can find
a form ug € CY, (K NU*;U*, E) with dus = f on U*. Since K NU* € ®|y-,
this implies that f € E? (®|y- — UNU*U* E). Since (UNU*,Ug NU*) is a
Cls,+(®|y+; U*, E)-pair, it follows that the equation u = f can be solved on U*
even with some v € C7, ,(UoNU*;U*, E). O
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3.6.Lemma. Let & be a nice family of supports in X, E a holomorphic vector
bundle over X, and 0 < s < n, 1 <r < n. Further, let U,Uy,Upo € 9°, U*,U¢, €
@10 (E), and Ugy € ®*° with U C Uy, Ug C Upo, U C Ug, Uy C Ugy such that
UnNU*UsnNU*) is a Clsr(®|lu~; U*, E)-pair. Then the closure (with respect to
the topology of C3_, . .(U, E*)) of the image of the restriction map

Z9° (Uoo NUgy; Uno, E*) — C° (U, E*)

n—s,n—r n—s,n—r
contains the image of the restriction map

A (Ug NU*; Uy, E*) — C° (U, E").

n—s,n—r n—s,n—r

Proof. Let F be a continuous linear functional on C9 (U, E*) such that

—s,n—r

(3.10) F(@p)=0 forall ¢ ez, .. (UwNUs;Uop, E).

By the Hahn-Banach theorem we have to prove that then

(3.11) F()=0 forall ¢eZ, .. (UnU*Uo, E*).
Since F is continuous on Cy_, . (U, E*), it follows from Lemma 2.4 (i) (with

C = X =U) that F is a current with compact support on U. Extending by zero
we may assume that F' is defined on X. By (3.10) this current is 0-closed on Ug,.
Hence, by regularity of 9, we can find a form f € CgiT(UO*O,E) whose support is
contained in K N Ug,, where K is some compact subset of U such that

612 [ FAG=FO) it $ ez, (o N Uil B,
U
From (3.12) and (3.10) it follows that

(3.13) / FAY=F@)=0 forall 9eZ° . (Usnn Ul E).
U

Since the support of f is contained in K N Ug,, where K is a compact subset of U,
it is moreover clear that the restriction of f to Ug belongs to Z{ (U N Ug; U, E)
and extends continuously to a neighborhood of Ug. Therefore we can apply Lemma
3.5 and get a form u € C?,_,(Up N U*;U*, E) which solves the equation Ou=f
over U*. Together with (3.12) and Stokes’ formula this implies (3.11). O

3.7. Theorem. Let ® be a nice family of supports in X, E a holomorphic vector
bundle over X, and 0 < s < n, 1 < r < n such that condition SCl, ,(®; X, E)
is fulfilled. Then E)_, . . (®*; X, E*) consists of all p € Z3_,, ,.1(®*X,E")
such that

(3.14) / ¢Ag=0  forall geZ] ,(®;X,E).
X
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In particular, then HEZ 5" "tY(X, E*) is separated.

Proof. That condition (3.14) is necessary, follows from Stokes’ formula. Now let
g€ 70 (®*; X, E*) with (3.14) be given.

n—s,n—r+1

Since supp ¢ € ®* and condition SCI, .(®; X, E) is fulfilled, we can find Cy € ®*
and a sequence (UF)jen C ®39.(E) such that suppp C Uj and U;- C U, C
Cy for all j. Since then, for each j, condition Cls,r(<1>|Uj*;Uj,E) is fulfilled, by
means of Lemma 2.6, we can inductively construct a sequence (U;)jen C ®° such
that U;enU; = X, and, for all j, U; C Ujy1 and (U; NU3;,Ujpa NUS) is a
Cls,r(<I>|U2*j;U§"j,E)—pair. Further we fix some sequence (Kj);jen of compact sets
K; CUj such that oy K;j = X and each Kj is contained in the interior of Kj1.

Now it is sufficient to construct a sequence (1);) en of forms ¢; € Cg,s,n,r(Uj N
Us;;Uj, E*) such that, for all j € N,
(315) giﬁ] =@ Oon Uj
and moreover

1 e -
(3.16) sup [l 9j-1(2) =92 I< o7 if j>1.
z€EK;1

(Here || - || denotes some Riemannian norm.) In fact, then the limit ¢ := lim);

solves the equation v = ¢ on all of X and, since supp ¥; C Cy for all j, this limit
belongs to C? d*; X, E*).

To construct this sequence we first observe that, since Ug € 3%, and (U;) en C

7.5‘,77,77'(

310 (E), from Lemma 3.4 we get a sequence (1;)jen of forms 1; € Co_sm_r(U; N
Us; Uj, E*) with

(3.17) i =¢ on U, forall jeN
Proceeding inductively,now we set 99 = 1o and assume that for certain m € N,

forms 1; € Cg_s,n_r(U,- N UQ*]-;U]-,E*), 0 < j < m, are already constructed such
that (3.15) and (3.16) hold for 0 < j < m. Then

'&m+1 —Ym € Zg—s,n—r(Um N U;m; Um, E)

and from Lemma 3.6 we get a form w € Z)__ . (Upny1 NU; Upms1, E) such

that

(m+1)>
1

sup 1 Pms1(2) = Ym(2) = w(2) I< 57

It remains to set Y41 = @Zmﬂ —w. O
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3.8. Theorem. Let ®. be the family of all compact subsets of X, E a holomorphic
vector bundle over X, and 0 < s < n, 1 <r < n. Then the following conditions
are equivalent:

(i) condition Cls . (®.; X, E);
(i) H3" (X, E) is separated;
(iii) EY . (®c; X, E) consists of all f € Z2,.(®.; X, E) with

/X fAG=0  foral peZ0,, .\ (X,E).

(iv) H*=5"—"+1 (X, E*) is separated;
(v) BY s n_ri1(X, E*) consists of all p € Z9_ ,, . 1(X, E*) with

/ pAg=0 for all QEZS,T_l(‘I’c;X;E)-
X

Proof. Conclusion (iv) = (i) is the theorem of Serre [S], the conclusions (4i7) =
(#3) = (¢) and (v) = (iv) are trivial, and conclusion (i) = (v) follows from Theorem
3.7, since, as observed in Sect. 3.3, conditions Cl, ,(®.; X, E) and SCl; (®.; X, E)
are equivalent. [

4. A SIMPLE PROOF OF THEOREM 0.3
By Serre duality (Theorem 3.8), Theorem 0.3 is equivalent to the following

4.1. Theorem. Let the hypotheses of Theorem 0.3 be fulfilled. Then, for any holo-
morphic vector bundle E over Y, H>9+1 (X E) is separated.

Proof of Theorem 4.1. Let ®y and ®x be the families of compact subsets of Y,
resp. X. By Theorem 3.8 it is sufficient to prove that for each K € ®x, the space
E§ .+1(®x — K; X, E) is topologically closed in C ., (K; X, E). By LemmaZ2.6
this is equivalent to the following statement:

For each K € ®x, there exists a finite dimensional subspace Fg
(4.1) of C9 .41 (K; X, E) such that Frx + EQ ., ,(®x — K; X, E)
is topologically closed in C§ ,,,(K; X, E).

To prove (4.1), we first note that ®x is complete in ®y and therefore, by Lemma
1.5,
(4.2) dim [E]

(®y = ¢x;Y,E)/EJ 11 (®x;Y,E)] < dim H*(®y x ®x, E).

,q+1 ,q+1

Let p be as in Definition 0.1 and let oo €]inf p,sup p[ such that the Levi form of
p has at least n — ¢ + 1 positive eigenvalues on {p < ap}. Then the manifolds
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Uy =Y \X)U{p < a},infp < a < ag, are g-convex in the sense of Andreotti-
Grauert and hence, by the Andreotti-Grauert finiteness theorem [A-G],

dim H>Y(U,, E) < oo, if infp<a<ag.

Since U, € @y * ®x for all « €]inf p, ag] and, conversely, for each U € ®y * ®x,
we can find a €]inf p, ag] with U, C U, it follows that

dim H*(®y * ®x; E) < oo.
In view of (4.3) this implies that
dim [EQ .41 (®y = ®x;Y,E)/E ,41(®x;Y, E)] < oo,
i.e.
(4.3) dim [E§ 11 (®y = ®x; X, E)/EQ ,11(®x; X, E)] < 00

where EJ ., (®y — ®x; X, E) denotes the image of Ef ., (®y — ®x;Y, E) under
the restriction map Y — X. Since Y is (n—q)-convex, it follows from the Andreotti-
Grauert finiteness theorem that

dim H™" (Y, E) < oo.

Hence, by Serre’s duality theorem [S], Eg’q +1(®y;Y, E) is topologically closed in
C3,4+1(®y; Y, E). Since the extending-by-zero map

Cg,q+1 (¢X7 X7 E) — Cg,q+1 (@Y, Y, E)

is continuous and Ej ., (®y — ®x; X, E) is the preimage of E§ ., (®y;Y, E) with
respect to this map, it follows that Eg’q +1(®y = ®x; X, E) is topologically closed
in C9 ,,1(®x; X, E). By (4.3) this means in particular that (4.1) holds. O

5. A FINITENESS AND SEPARATION THEOREM WITH
SUPPORT CONDITION ON ¢-CONCAVE-q*-CONVEX MANIFOLDS

In this section X is an n-dimensional complex manifold which is g-concave-g*-
convex where 1 < g <mn—1and 1 < ¢* < n. Further we assume that p, inf p and
sup p are as in Definition 0.1, and we denote by ® the family of all closed subsets C'
of X such that the sets CN{p < a}, inf p < a < sup p, are compact. Then the dual
family ®* of ® consists of all closed subsets C of X such that the sets CN{p > a},
inf p < a < sup p, are compact.

It is the aim of the present section to prove the following
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5.1. Theorem. For each holomorphic vector bundle E over X and all s, 0 < s < n,
the following three statements hold:

(i) If max (¢ + 1,¢*) <r <n, then dim Hy"(X,E) < co.

(i) If 0 < r < min(n —q,n —q¢* + 1), then
(5.0) E,(2%X,E") =

{fEZS,T(‘I’*;X,E*) ‘/f/\g=0 for all gEZ?z—s,n—r(cI);XrE)}'
X

In particular, then Hy! (X, E*) is separated.
(ii3) If even 0 <r < min(n — ¢ —1,n — ¢*), then dim H3 (X, E*) < co.

Note that in the case ¢ = n — 1 and ¢* = n, (i) is already proven in [La-L 2].
It is the main step in the proof of the Malgrange vanishing theorem with support
conditions, which says that under these assumptions Hy" (X, E) = 0.

The proof of Theorem 5.1 is given at the end of this section. First we need some
preparations.

In the remainder of this section, we assume, as possible by the Morse pertubation
argument (see, e.g., the theorem on page 43 in [G-P]), that all critical points of p
are non-degenerate, and we shall use the following notations:

If inf p < @ < B < sup p, then ng({p > a};{p < B}, E) is the Banach space of
all continuous E-valued forms f on {p < 8} with supp f C {p > a} endowed with
the topology of uniform convergence, and by Z7 ,.({p > a};{p < 8}, E) we denote
its subspace of 0-closed forms endowed with the same topology.

Further we fix some numbers «q, 8y with infp < a9 < By < supp such that

{p = Bo} is smooth, and the Levi form of p has at least n —g+1 positive eigenvalues
on {p < ap}, and at least n — ¢* + 1 positive eigenvalues on {p > Go}.

Note that ® is a nice family of supports in X (cp. Sect. 3.1). In fact, if T is the
boundary of {p < (o}, then & = &(T, X).

5.2.Lemma. Ifmax(q¢+1,¢*) <r < n, then, for each holomorphic vector bundle
E over X, for all s, 0 < s <n, and any € > 0, the space

(52) Zg,r({p Z aO}; {P S /BO}JE) N 5Cv.?,rfl({p 2 Qo — E}; {P S ﬁO}aE)
is of finite codimension and topologically closed in ZE’T({p >ao};{p < 6o}, E).

Proof. If infp < v < B, then we denote by C’sl’/f_l({p > v}{p < Bo}, E) the

Banach space of forms in C? ., ({p > 7}; {p < o}, E) which are Holder continuous
with exponent 1/2 on {y < p < fo}. We shall prove that even the space

Cg,r({p 2 Oé(]}; {p < 50}7E) n 5Cf;,/rzfl({p > Qo — E}; {p < ﬂO},E)

is of finite codimension and topologically closed in Z&T({p >ao};{p < Bo}, E). By
Ascoli’s theorem and Fredholm theory, for this it is sufficient to construct continuous
linear operator

A: Zg’r({p >ao};{p<Bo}, E) — 05,42_1({13 >ag—eh{p< B}, E)
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and
K :Z].({p > ao}i{p < fo}, E) — C1/2({p = ao}; {p < fo}, E)
such that _
OAf=f+Kf on {p<fo}
for all f € Z2,.({p> ao};{p < B}, E).
Take 6 > 0 so small that ag+ 6§ < [y and the Levi form of p has at least n —qg+1

positive eigenvalues on {p < ag + d}. Since r > ¢+ 1, then by Lemma 1.2 in [La-L
1], there exists a continuous linear operator

A0:Z8.({p> a0} {p < Bo}, B) — Cu2 ({p > ao —€};{p < Bo}, E)

such that dAof = f on {p < ag + 6} for all f € Z3.({p > ao};{p < fo}, E).
Since r > ¢* and the boundary {p = o} is smooth, we can use the local integral
operators of Fischer and Lieb [F-Li] (see also Sects. 7 and 9 in [H-L]) and obtain
open sets Uy,... , Uy CC X with

{ag+0<p<pBo} CULU...UUN C{p>ag}

as well as continuous linear operators
A 20, ({p > ao}i{p < Bo} B) — CUL7 (({p > ao}; {p < o}, B)

such that 94, = f on U; N {p < fo} for all f € 2%, ({p > ao}i {p < fio}, ), j =
1,...,N. Take real C*°-functions xo, ... , Xy on X with supp xo CC {p < ap+4},
suppx; CCU;if 1<j<N,and xo+...+xnv =1on {ag—e < p < Bo}. Then
the operators

N N
A= ZXj and K ::ngj/\Aj
j=0 7=0
have the required property. O

Lemma 5.3. Let max(q + 1,¢*) < r < n. Then for each holomorphic vector
bundle E over X and all s, 0 < s < n, the following two assertions hold:

(i) If B € [Bo,supp| and {p = B} is smooth, then the space Zg,r—1({P >

ao}; X, E) is dense in Z2, ({p > ao}; {p < B}, E) (with respect to uniform con-
vergence).

(ii) For each € > 0, the space ES ({p > oo — e} = {p > ao}; X, E) is the
preimage of the space (5.2) with respect to the restriction map

Zg,r({p 2 Oéo};X, E) — Zg,r({p Z aO};{p S 60}7E)

Proof. Since by Lemma 5.2, the space (5.2) is topologically closed in Zg,r({P >
ao};{p < Bo}, E), this can be proved in the same way as Theorems 12.11 and 12.13
(i) in [H-L]. (The domain D in Theorems 12.11 and 12.13 in [H-L] is assumed to be
relatively compact, but in the proof of these theorems only the consequence is used
that then Z§ (D, E)NaCy, (D, E) is topologically closed in Z§ (D, E).) O
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5.4. Proof of Theorem 5.1 (i). By definition of ®, for each C' € ®, there exists
v €]inf p,sup p[ with C C {p > ~}. Therefore it follows from Lemma 1.2 (i) in
[La-L 1] that

(5.3) Z9,(®;X,E) = E] (% X,E) + Z),.({p > ac}; X, E).

By Lemma 5.2, the space (5.2) is of finite codimension in Z,.({p > ao};{p <
Bo}, E). Therefore it follows from Lemma 5.3 (i) that the space EY .({p > ao—e} =
{p > ao}; X, E) is of finite codimension in Z2,({p > ao}; X, E). Since (5.2) is a
subspace of E? .(®; X, E), it follows that Z2,({p > ao}; X, E) N EQ (®; X, E) is
of finite codimension in Z2,.({p > ao}; X, E). In view of (5.3), this implies that
EQ.(®;X,E) is of finite codimension in Z] (®; X, E), i.e. dimH*"(®;X,E) <
oco. 0O

5.5.Lemma. If max(q+1,q*) <r < n, then for each holomorphic vector bundle
E over X and for all s, 0 < s <n, condition SCl;s ,(®; X, E) is fulfilled.

Proof. Consider some C € ®. Then it follows from part (i) of Theorem 5.1 (which
is already proved) that E} (® — C; X, E) is of finite codimension in Z2 (C; X, E).
Since EE’T(<I> — C;X,E) is the image of 0 as operator between the LF-space
C?, 1(®;X,E) and the Fréchet space Z{,(C; X, E), this implies, by the open
mapping theorem, that EY (® — C; X, E) is topologically closed in Z? (C; X, E)
and consequently in C?,(C; X, E). This proves that condition Cl, ,.(®; X, E) is
fulfilled. ’

Let ¥ be the set of all 8 € [Bo,sup p[ such that {p = B} is smooth. Then the
manifolds Uj = {p < B}, B € X, are also g-concave-g*-convex, Uj € ®*0 and,
applying the above arguments to each Uj, we see that, for each 8 € X, condition
Cls,r(®luy; Ug, E) is fulfilled. Moreover, it follows from Lemma 5.3 (i) that each U,
B € I, satisfies condition (3.1) in the definition of ®;5.(E). Hence Uj € ®35.(E) for
all 8 € 3. Since all critical points of p are non-degenerate and therefore [5y, sup p[\Z
is discrete, this yields that condition SCI; (®; X, E) is fulfilled. O

5.6. Proof of Theorem 5.1 (ii) and (iii). The case r = 0 is trivial. In fact,
since ¢* > 1 and therefore X \ C* # ) for all C* € ®* it follows from uniqueness of
holomorphic functions (X is connected) that Z7,.(®*; X, E) = {0} if r = 0.

Now let 1 < r < min(n —g,n — ¢* +1). Then max(¢+ 1,¢*) <n—r+1<
n. Therefore, by Lemma 5.5, condition SCl,_s »—r+1(®; X, E) is fulfilled, and it
follows from Theorem 3.7 that (5.1) holds, i.e. (ii) is proved.

From (5.1) and Lemma 2.5 it follows that
dim H3' (X, E*) = dim H} """ (X, E).
Therefore (iii) follows from (i). O
6. PrRoOF OF THEOREM 0.4

By Serre duality (Theorem 3.8), Theorem 0.4 is equivalent to the following
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6.1. Theorem. Let X be an n-dimensional complex manifold, n > 3, which is
g-concave-(n — q)-conver, 1 < g<mn-—1. If

n
q<§7

then, for any holomorphic vector bundle E over X and all s with 0 < s < n,
H9% (X, E) is separated.

Proof. Let p, inf p and sup p be as in Definition 0.1 and let ®* be the family of
all closed subsets C' of X such that the sets C N {p > a}, infp < a < supp, are
compact. Denote by ®. the family of all compact subsets of X. Then ®, is complete
in ®* and it follows from Lemma 1.3 that

(6.1) dim[EQ ,,(®* = ®;X,E)/EQ 1(®; X, E)] <dim H*(®* « &, E).

Take g €]inf p,sup p[ such that the Levi form of p has at least n — g + 1 positive
eigenvalues on {p < ag}. Then, by the Andreotti-Grauert finiteness theorem,

dim H*"({p < a}, E) < 00 if ¢g<r<n—¢g—1 and infp<a<ag.
Since ¢ < n/2 and hence ¢ < n — ¢ — 1, it follows that
dim H*>9({p < o}, E) < o0 if infp<a<ap.

Since, for each U € ®* * &, there exists a €]inf p, ap] with {p < a} C U, this
implies that
dim H*(®* x ®., F) < 0.

Hence, by (6.1),
(6.2) dim [EQ,QH (®* — @.; X, E)/Eg’q+1(<I>C;X, E)] < .

Furthermore, the hypothesis ¢ < n/2 implies that ¢ + 1 < min(n — g,n — ¢* + 1)
with ¢* :=n — ¢. Therefore it follows from Theorem 5.1 (i) that Ef ., (®*; X, E)
is topologically closed in Cqu 4+1(®*; X, E). Since the embedding map

Cg,q+1 ((I)Ca X7 E) — Cg,q+1 ((D*) X7 E)

is continuous and EJ  ,,(®* = ®.; X, E) is the preimage of EY ,,(®*; X, E) with
respect to this map, it follows that qu 4+1(®* = &, X, E) is topologically closed
in C? . 1(®; X, E). Hence, by (6.2), there is a finite dimensional linear subspace
F of C?,,1(®c; X, E) such that F + EJ ., (®;X,E) is topologically closed in
C? 1+1(®c; X, E). By Lemma 2.6 this yields that condition Cls441(®.; X, E) is

e
fulfilled. Now the assertion follows from Theorem 3.8. O
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7. PROOF OF THEOREM 0.5 (AND SOME GENERALIZATION)

In this section we assume that X is a connected n-dimensional complex manifold
which is g-concave in the sense of Andreotti-Grauert, 1 < g < n, i.e. we have a real
C? function p on X such that

(i) for all a > inf p, the set {p > a} is compact;

) OutSIde some COIIlpa‘Ct Set? tlle Le‘l fOII1l Of p lla‘s a‘t lea‘St n q 1 pOSItl'e
elgEIl a‘lues'

Moreover, as possible by the Morse pertubation argument (see, e.g., the theorem
on page 43 in [G-P]), we assume that all critical points of p are non-degenerate and
hence isolated.

We fix some ag > inf p as well as two open subsets Z and Z* of X such that
dp(Q) # 0 for p(¢) = a,

Z*NZ=0 and Z*UZ={p<ag}

Denote by @ the family of all closed subsets C of X such that C' N 7" is compact.
® is a nice family of supports in X. In fact, with the notation from Sect. 3.1, we
have ® = ®(0Z*, X) = ®(—0Z,X). The dual family ®* of & consists of all closed
sets C' C X such that C'N Z is compact.

7.1.Lemma. If

n
q<§ and g+1<r<n-—q,

then, for each holomorphic vector bundle E over X and all s, 0 < s < n, condition
Clsr(®; X, E) is fulfilled.

Proof. Set Z* = Z* N {p < a} and take oy with inf p < a1 < ag such that the
Levi form of p has at least n — ¢ + 1 positive eigenvalues on Zj . Then, by the
Andreotti-Grauert finiteness theorem [A-G],

(7.1) dmH*"(Z},E) <o ifinfp<a<ao andg<r<n-g-1L1
Let ¥ be the family of all closed subsets of X. Then ¥ % ® consists of all open sets
U C X such that Z" \ U is compact, and ® is complete in ¥. Therefore, by Lemma
1.5 (iii),

dim [E? (¥ — ®; X, E)/EY (®; X, E)] < dim H>" (¥ * &; E)
for all r > 1. Together with (7.1) this implies that
(72)  dim [EJ (¥ - & X,E)/E) (®;X,E)] <oo if g+1<r<n-—q.

By the classical Andreotti-Vesentini theorem, EE,T(X , E) is topologically closed in
C?(X,E) if 0 <r < n—g. Since the topology of C? (®; X, E) is stronger than
the topology of CY (X, E) and E (¥ — ®; X, E) = E) (X,E)NC, .(®; X, E), it
follows that EY (¥ — &; X, E) is topologically closed in Cf .(®; X, E) if 0 < r <
n — ¢q. In view of (7.2) and Lemma 2.6, this completes the proof. O
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7.2.Lemma. Letinfp < a < ag such that the Levi form of p has at least n —q+1
positive eigenvalues on {p < a}, and let

n
q<§ and g+1<r<n-—q.

Then, for each holomorphic vector bundle E over X and all s, 0 < s < n, the set
Uy=Z*"U{p>a}
belongs to ®35.(E).

Proof. First note that in Lemma 7.1 instead of the manifold X we may take U}
if we replace Z by Z NU}. Therefore it follows from Lemma 7.1 that condition
Cls r(®|y»; Ug, E) is fulfilled.

Further, since r —1 < n—¢—1, by Andreotti-Grauert theory (see, e.g., Theorem
15.9 in [H-L]) we have the following statement: For each g € Z9 . (U, E) and all
€ > 0, there exists § € Z° _,(X, E) such that

s,r—1

g=g on Z*U{p>a+e}.

This implies that also condition (3.1) in the defintion of ®3%(E) is fulfilled for
Ur. O

7.3.Corollary to Lemma 7.2. If
n
1<y and g+1<r<n-gq,

then, for each holomorphic vector bundle E over X and all s, 0 < s < n, condition
SCls . (®; X, E) is fulfilled.

7.4. Theorem. (i) If
n
1<y and g+1<r<n-gq,

then, for each holomorphic vector bundle E over X and all s, 0 < s < n, the space
E .(®; X, E) consists of all p € Z0,(®; X, E) such that

[ona=0 foral gezl . . (@5X.E),

In particular, then Hy" (X, E) is separated.
(i) If

n—1
2

then moreover, for each holomorphic vector bundle E over X and all s, 0 < s <m,

qg< and g+1<r<n-—q-1,

dim Hy" (X, E) < .
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Proof of (i). The relation ¢+1 < r < n—gqis equivalent with ¢g+1 < n—r+1 <n-—gq.
Further, interchanging the roles of Z and Z*, we see that the statement of Corollary
7.3 holds also with &* instead of ®. Therefore condition SCl,,_s p—ry1(®*; X, E*)
is fulfilled and assertion follows from Theorem 3.7. [

Proof of (ii). By the Andreotti-Grauert finiteness theorem [A-G], dim H*" (X, E) <
00. In particular, if ¥ denotes the family of all closed subsets of X, then

dim [ZS’T(Q;X, E)/Egr('l' - &; X, E)] < Q.
Together with (7.2) (in the proof of Lemma 7.1) this completes the proof. O

7.5. Theorem. If q = 1, then, for each holomorphic vector bundle E over X and
all 5, 0 < s < n, the space Eg,n—1(‘I’QXa E) consists of all ¢ € Zg,n_1(<I>;X, E) such
that

/ pwANg=0 for all g€Z275’1(<I>*;X,E*).
X
In particular, then HZ™ (X, E) is separated.

Proof. This follows from Theorem 7.4 if n > 3, and from Theorem 4.2 in [La-L 2]
ifn=2. O
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