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by Michel BRION

A . — We obtain a criterion for rational smoothness of an algebraic variety
with a torus action, with applications to orbit closures in flag varieties, and to closures of double
classes in regular group completions.

Introduction

For a complex algebraic group acting on a complex flag variety with finitely many

orbits, the geometry of orbit closures is of importance in representation theory; the most

interesting cases are Schubert varieties (in relation with category / ), and orbit closures of
symmetric subgroups (in relation with Harish-Chandra modules), see e.g. [Ka]. In particu-

lar, it would be useful to characterize rationally smooth points of an orbit closure, i.e., those

points where the local cohomology with constant coefficients is the same as for a point of

a smooth variety.

Criteria for rational smoothness of Schubert varieties have been obtained by

Kazhdan-Lusztig [K-L1], [K-L2] and then by Kumar [Ku], Carrell-Peterson [C] and Arabia

[A]. The latter criteria hold, more generally, for varieties where a torus acts with isolated

fixed points, such that all weights of the tangent space at such a fixed point are contained

in an open half-space and have multiplicity one. But that condition can fail for orbit clo-

sures of symmetric subgroups in flag varieties (e.g., for SOn acting on the flag variety of

SLn).

In the present paper, we obtain a criterion for rational smoothness of varieties with

a torus action, which applies to the latter situation. Our main result can be stated as fol-

lows, in a somewhat weakened version.

Mots-clés : rational smoothness, flag varieties.
Classification math. : 14L30, 14M15, 57P10.
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T (1.3). — Let X be a complex algebraic variety with an action of a torus T .

Let x � X be an attractive fixed point of T , that is, all weights of T in the tangent space TxX
are contained in an open half-space. For a subtorus T ��� T , let X T � � X be its fixed point
set. Then we have

dimx

�
X ���
	

T �
dimx

�
X T � �

(sum over all subtori of codimension one), and this sum is finite. Furthermore, X is ratio-

nally smooth at x if and only if the following conditions hold:

(i) A punctured neighborhood of x in X is rationally smooth.

(ii) For any subtorus T ��� T of codimension one, the fixed point subset X T � is ra-
tionally smooth at x.

(iii) We have dimx

�
X ����

T � dimx

�
X T � � (sum over all subtori of codimension one).

Assume moreover that all weights in the tangent space TxX have multiplicity one.

Then the subsets X T � identify with coordinate lines in TxX , and the sum of their di-

mensions is the number n
�
X , x � of irreducible T -stable curves through x. So we obtain

dimx

�
X ��� n

�
X , x � , a result of Carrell and Peterson [C] Theorem D. In this case, the fact

that equality holds for rationally smooth x follows also from work of Arabia [A].

Consider now a connected semisimple group G , its flag variety � � G � , and a sym-
metric subgroup H � G , that is, the fixed point subgroup of an involution θ of G . Let TH
be a maximal torus ofH , with centralizer T in G . Then T is a maximal torus of G , stable by

θ. The TH -fixed points in � � G � are the (finitely many) T -fixed points, and the fixed points
of subtori T ��� TH of codimension one can be described completely in terms of the action
of θ on roots of

�
G, T � (2.5).

Then our main result leads to an inequality for the dimension of anH -orbit closure

X ��� � G � , with equality if X is rationally smooth at a TH -fixed point (2.5); this generalizes
a result of Springer [Sp2] concerning inner involutions. Actually, much of our analysis ex-

tends to any reductive subgroupH � G having only finitely many orbits in � � G � (2.2, 2.3).
However, such orbits need not admit an attractive slice (2.3), whereas orbits of a symmetric

subgroup do admit such a slice, see [M-S] 6.4.

Another application of our criterion is given in Section 3; it concerns double classes

BgB where B is a Borel subgroup of a connected reductive group G , and their closures BgB

in a smooth
�
G � G � -equivariant completion of G which is regular in the sense of [B-D-P].

We show in 3.1 that these closures admit attractive slices at all points, and that they are

rationally smooth in codimension two. This generalizes a classical result for Schubert vari-

eties [K-L1]. However, closures of double classes are not rationally smooth, apart from very

few cases (3.3). The fact that almost all closures of double classes are singular in codimen-
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sion two was proved in [Br1] by more ad hoc arguments.

Although our results are stated for complex algebraic varieties, our arguments adapt

to the case of an algebraically closed field of any characteristic, with rational cohomology

replaced by l-adic cohomology. This makes the exposition rather heavy at several places.

An appendix collects results on rational smoothness and on torus actions, for which we did

not find suitable references.

This work was begun during a staying at the Ohio State University in January 1998.

I thank this university for its hospitality, and G. Barthel, W. Fulton, R. Joshua, L. Kaup and

T. Springer for useful discussions and e-mail exchanges.

1. A criterion for rational smoothness

1.1. Necessary conditions for rational smoothness.

In what follows, we consider complex algebraic varieties, that is, separated reduced

schemes of finite type over C. With this convention, varieties need not be irreducible. For

such a variety X , we denote by H � � X � cohomology of X with rational coefficients. For a
point x � X , we denote by H �x � X � cohomology with support in � x � , and by dimx

�
X � the

dimension of the local ring of X at x.

D. — X is rationally smooth at x if, for all y in a neighborhood of x in the

complex topology, Hm
y

�
X ��� 0 form �� 2 dimx

�
X � , andH 2 dimx � X �

y

�
X � is isomorphic toQ.

If X is rationally smooth at a point x, then it is irreducible at that point (see e.g.

Proposition A1). Any smooth point is rationally smooth; moreover, rational smoothness is

preserved under quotient by a finite group action (see e.g. Proposition A1). Other examples

of rationally smooth varieties are unibranched curves.

Wewill obtain necessary conditions for rational smoothness of a variety X at a fixed

point of an algebraic action of a torus T (that is, T is an algebraic group isomorphic to a

product of copies of themultiplicative group Gm). We will always assume that X is covered

by open affine T -stable subsets. By [Su], this assumption holds for T -stable subvarieties of

normal T -varieties.

T. — Let T be a torus acting on a variety X with a fixed point x. If X is

rationally smooth at x, then, for each subtorus T � � T , the fixed point set X T � is rationally
smooth at x. Moreover, we have

dimx

�
X ��� dimx

�
X T � � 	

T �
�
dimx

�
X T � ��� dimx

�
X T � �

(sum over all subtori T � � T of codimension one).
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Proof. — We use equivariant cohomology (see e.g. [H]) which we briefly review.

Let ET � BT be a universal principal bundle for T . Then T acts diagonally on X � ET with
a quotient denoted by X � T ET . Let

H �T
�
X � : � H � � X � T ET �

be the T -equivariant cohomology ring of X with rational coefficients. The map

X � T ET � ET /T � BT
is a fibration with fiber X , and BT is simply connected. Thus, there is a spectral sequence

Hp
�
BT ��� H q

�
X ��� H

p � q
T

�
X �

and H �T
�
X � is a module over H � � BT � . The latter is the symmetric algebra of the character

group of T , where each character has degree 2. The inclusion iT : X T � X induces a

H � � BT � -linear map
i �T : H �T

�
X � � H �T

�
X T ���� H � � BT ��� H � � X T � .

By the localization theorem (see [H] or Proposition A5), i �T becomes an isomorphism after

inverting all non trivial characters of T .

Let y � X T . Denote by
H �T,y

�
X � : � H �y � T ET � X � T ET �

equivariant cohomology of X with support in
�
y � , and consider the map

i �T,y : H �T,y
�
X � � H �T,y

�
X T � � H � � BT �	� H �y � X T � .

Applying the localization theorem to X and X 
 � y � , we see that i �T,y is an isomorphism
after inverting all non trivial characters. On the other hand, because X is rationally smooth

at x, the spectral sequence

Hp
�
BT ��� H q

y

�
X ��� H

p � q
T,y

�
X �

degenerates for all y in a neighborhood of x. Thus, H �T,y
�
X � is a freeH � � BT � -module gen-

erated by an element of degree 2 dimy

�
X � � 2 dimx

�
X � . It follows that the space H �y � X T �

is one dimensional, and that X T is rationally smooth at x (e.g. by Proposition A1). More-

over, identifying the H � � BT � -modules H �T,x � X � and H �T,x � X T � with H � � BT � , the map i �T,x
becomes multiplication by a homogeneous element f � H � � BT � of degree 2 dimx

�
X � �

2 dimx

�
X T � . By the localization theorem, f is a scalar multiple of a product of characters.
Let χ be a primitive character dividing f , and let T � be the kernel of χ, a subtorus

of T of codimension one. Then iT : X T � X factors as iT,T � : X T � X T � followed by
iT � : X T � � X . By the localization theorem again, the map

i �T � ,x : H �T,x � X � � H �T,x
�
X T � �
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becomes an isomorphism after inverting all characters of T which restrict non trivially to

T � , i.e., which are not multiples of χ. Moreover, X T � is rationally smooth at x by the first
step of the proof. Thus, we can identify H �T,x

�
X T � � with H � � BT � ; then iT � ,x identifies with

multiplication by a product of non multiples of χ.

Choose a subtorusT � � � T of dimension one, such that the productmapT � � T � � �
T is an isomorphism. Then the character group of T � � is generated by restriction of χ.

Moreover, we can take ET � ET � � ET � � , then X T � � T ET �� BT � � � X T � � T � � ET � � � and
X T � T ET �� BT � � � X T � T � � ET � � � . Thus, we have isomorphisms

H �T,x
�
X T � � �� H � � BT � ��� H �T � � ,x � X T � � , H �T,x � X T � �� H � � BT � ��� H �T � � ,x � X T �

compatible with iT,T � ,x . Applying the localization theorem to the T � � -variety X T � , it follows
that

iT,T � ,x : H �T,x � X T � � � H �T,x
�
X T �

is an isomorphism after inverting χ. In other words, i �T,T � ,x identifieswith multiplication by
a power χnχ , and f is divisible by χnχ but not by χnχ � 1. Taking degrees, we obtain 2nχ �
2 dimx

�
X T � � � 2 dimx

�
X T � . Now f is a scalar multiple of �

χ

χnχ (product over all primitive

characters) and our relation on dimensions follows by taking degrees.

1.2. An inequality for dimensions of fixed points.

Let X be a variety with an action of a torus T and a fixed point x. In general, there is

no inequality between dimx

�
X � � dimx

�
X T � and 

T �
�
dimx

�
X T � � � dimx

�
X T � � (sum over

all subtori of codimension one), as shown by the following

Example. — Let X be the hypersurface in A4 with equation

xy � zt � 0.
Let T � Gm � Gm act on A4 by�

u, v ��� � x, y, z, t � � � ux, u � 1y, vz, v � 1t � .
Then X is T -stable and the origin is the unique fixed point. The non trivial subsets X T � are:
xy � z � t � 0 for T � � Gm � � 1 � , and x � y � zt � 0 for T � � �

1 � � Gm . Thus, X and
the X T � are irreducible, and 

T � dim
�
X T � � � 2 whereas dim � X ��� 3.

On the other hand, consider the action of T � Gm � Gm on A4 by�
u, v ��� � x, y, z, t � � � u3x, v3y, u2vz, uv2t � .

Then again X is T -stable and the origin is the unique fixed point; but now the X T � are the
four coordinate lines, whence 

T � dim
�
X T � � � 4.
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However, we will obtain an upper bound for dimx

�
X � � dimx

�
X T � in terms of the

X T � . Observe that T acts on X T � through its quotient T/T � , which we can identify withGm .
Denote by X T �� � x � (resp. X T ��

�
x � ) the set of all y � X T � such that x is the limit of ty as t � 0

(resp. t � 1 � 0) where t � Gm . Then both X T �� � x � and X T ��
�
x � are locally closed T -stable

subsets of X T � , and x is their unique common point.
T. — Notation being as above, there are only finitely many T � such that

X T � �� X T , and we have
dimx

�
X � � dimx

�
X T � � 	

T �
�
dimx X

T �� � x � � dimx X
T �
�
�
x � �

(sum over all subtori of codimension one).

If moreover X T � is smooth at x, then
dimx X

T �� � x � � dimx X
T �
�
�
x � � dimx

�
X T � ��� dimx

�
X T � .

In particular, if each X T � is smooth or attractive at x, then
dimx

�
X � � dimx

�
X T � � 	

T �
�
dimx

�
X T � ��� dimx

�
X T � � .

Proof. — Wemay assume that X is affine and that each irreducible component of

X T contains x. Then each X T �� � x � is closed in X , and contains x as an attractive fixed point
for the action of T/T � . Thus, there exists a T/T � -module V T �� and an equivariant finite

surjective morphism

πT �� : X T �� � x � � V T ��
such that πT �� � x � � 0 (by a version of Noether normalization lemma, see e.g. Proposition

A2). Because X T �� � x � is T -stable and closed in X , we can extend πT �� to an equivariant

morphism

pT �� : X � V T �� .
Similarly, we have pT �

�
: X � V T �

�
.

Observe that there are only finitely many subtori T � � T of codimension one, such
that V T �� is non zero: indeed, such a subtorus is contained in the kernel of a weight of T in

the tangent space TxX . Let V denote the product of all the V
T �� , and let

p : X � V

be the product morphism; then p
�
X T � � �

0 � , because p � x � � 0 and V T � �
0 � by

construction.

We claim that X T is a connected component of the fiber p � 1
�
0 � . Otherwise, there

exists an irreducible T -stable curve C � p � 1 � 0 � such that x is an isolated fixed point of C
6



(see e.g. Proposition A3). Then T acts on C through some non trivial character χ. Thus, C

is contained in X T � where T � � T is the connected kernel of χ. Moreover, because T acts

non trivially on C , this curve must be contained in X T �� � x ��� X T ��
�
x � . But then p � C � has

dimension one, by construction of p.

From the claim, it follows that

dimx

�
X ��� dimx

�
X T � � dim � V �

� 	
T �
�
dim

�
V T �� � � dim � V T �� � �

� 	
T �
�
dimx X

T �� � x � � dimx X
T �
�
�
x � � .

If X T � is smooth at x, then there exists an equivariant morphism
f : X T � � Tx

�
X T � � , x �� 0

which is étale at x. It follows that X T �� � x � , X T ��
�
x � and X T are smooth at x, and that

dimx

�
X T � � � dim Tx � X T � ��� dim Tx � X T � � � � dim Tx � X T � � � � dim Tx

�
X T � � T

� dimx X
T �� � x � � dimx X

T �
�
�
x � � dimx

�
X T � .

This implies our latter statement.

1.3. Rational smoothness at an attractive fixed point.

Consider as above a torus T acting on a variety X with a fixed point x. Call x attrac-

tive if it admits a Zariski open neighborhoodUx such that, for all y � Ux , the orbit closure
Ty contains x. Equivalently, all weights of T acting on the tangent space TxX are contained

in an open half-space. In particular, x is an isolated fixed point.

T. — Let X be a T -variety with an attractive fixed point x. Then we have

dimx

�
X ��� 	

T �
dimx

�
X T � �

(sumover all subtori of codimension one). Moreover,X is rationally smooth at x if and only

if the following conditions hold:

(i) A punctured neighborhood of x in X is rationally smooth.

(ii) X T � is rationally smooth at x for each subtorus T � � T of codimension one.
(iii) dimx

�
X ����

T � dimx

�
X T � � .

Proof. — The first assertion follows from Theorem 1.2. If X is rationally smooth

at x, then (i) certainly holds, and (ii), (iii) follow from Theorem 1.1. Another proof of this
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result, and of the converse as well, is sketched in [Br2], using methods from the appendix

in [K-L1]. We reproduce this proof with some changes, so that it adapts to arbitrary char-

acteristic.

We may assume that X is affine; then any T -orbit closure contains x. Assume that

(i) holds, and set Ẋ : � X 
 x. Then Ẋ is rationally smooth, because x is an attractive fixed
point. Moreover, we can find an injective one parameter subgroup λ : Gm � T such that

all weights of the Gm-action in the tangent space TxX are positive. Then the quotient

Ẋ /Gm : � P � X �
exists and is a projective variety. Indeed, because x is attractive, we can find a closed

equivariant embedding of X into TxX , and this defines a closed embedding of P
�
X � into�

TxX 
 � 0 � � /Gm, a weighted projective space.
We claim that P

�
X � is rationally smooth. Indeed, Gm acts in Ẋ with finite isotropy

groups. Using e.g. Proposition A4, it follows that Ẋ is covered by G-invariant open subsets

of the form �
Gm � Y � /Γ

where Γ � Gm is a finite subgroup, and Y � X is a locally closed Γ-stable subvariety; here

Γ acts diagonally on Gm � Y . Then P � X � is covered by the quotients Y /Γ. Because X is

rationally smooth and the map Gm � Y � X :
�
t , y � �� ty is étale, Gm � Y is rationally

smooth, too (see e.g. Proposition A1). Thus, Y is rationally smooth, and so is the quotient

Y /Γ by Proposition A1 again.

The action of T on X induces an action on P
�
X � , with fixed point set the disjoint

union of the P
�
X T � � (where T � � T is a subtorus of codimension one). Indeed, T -fixed

points in P
�
X � correspond to T -orbits of dimension one in Ẋ .

Observe that X is rationally smooth at x if and only if

Hm
�
Ẋ � � �

Q ifm � 0 orm � 2d � 1
0 otherwise.

where d � dimx

�
X � . Indeed, the action of Gm on X extends to a map A1 � X � X

sending 0 � X to x, and restricting to the identity 1 � X � X . Thus, Hm
�
X � � 0 for all

m > 0. Now our observation follows from the long exact sequence

� � � � Hm
�
X � � Hm

�
Ẋ � � Hm � 1

x

�
X � � Hm � 1 � X � � � �

Observe finally that X is rationally smooth at x if and only if P
�
X � is a rational co-

homology complex projective space of dimension d � 1. Indeed, let
π : Ẋ � P

�
X �
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be the quotient map and let QẊ be the constant sheaf on Ẋ associated with Q. Let us com-

pute the higher direct images Riπ � QẊ . For this, consider the commutative square

Gm � Y � Y� ��
Gm � Y � /Γ � Y /Γ

where Y and Γ are as above, and the downwards maps p, q are quotients by Γ. Then we

have

Riπ �
�
pΓ

� Q � Gm � Y � /Γ � � qΓ

�
�
RiprY � QGm � Y �

where pΓ

� , q
Γ

� denote invariant direct image. But prY � QGm � Y and R
1prY � QGm � Y are iso-

morphic to QY , and R
iprY � QGm � Y vanishes for i � 2. Moreover, qΓ

� QY is isomorphic to
QY /Γ via q � , and a similar statement holds for pΓ

� . It follows that π � QẊ and R1π � QẊ are
isomorphic to QP � X � , and that Riπ � QẊ � 0 for i � 2. Thus, the Leray spectral sequence
for π reduces to a Gysin long exact sequence

� � � Hm � 1
�
Ẋ � � Hm

�
P
�
X � � � Hm � 2

�
P
�
X � � � Hm

�
Ẋ � � � � �

which implies immediately our assertion.

Assume now that (ii) and (iii) hold. Then we claim that the rational cohomology

of P
�
X � vanishes in odd degrees, and that the topological Euler characteristic χ

�
P
�
X � � is

equal to d. To check this, we use equivariant cohomology again. Notation being as in the

proof of Theorem 1.1, the map

P
�
X � � T ET � ET /T � BT

is a fibration with fiber P
�
X � . Because the latter is projective and rationally smooth, the

associated spectral sequence degenerates (by the criterion of Deligne, see e.g. [J] Proposi-

tion 13). Thus, theH � � BT � -moduleH �T � P � X � � is free, andH � � P � X � � is the quotient of this
module by the submodule generated by all characters of T .

From the localization theorem in equivariant cohomology (see e.g. [H] Chapter III,

or Proposition A5), it follows that theH � � BT � -moduleH �T � P � X � � becomes isomorphic to
H �T
�
P
�
X � T � � H � � BT ��� H � � P � X � T � ���

T �
H � � BT ��� H � � P � X T � � �

after inverting all non trivial characters of T . Moreover, by the preceding discussion and ra-

tional smoothness of the X T � , eachH � � P � X T � � � is a rational cohomology projective space;
in particular, its cohomology vanishes in odd degrees. Because H � � BT � vanishes in odd
degrees, too, it follows that the same holds forH �T

�
P
�
X � � , and forH � � P � X � � as well. More-

over, we have for the Euler characteristic of P
�
X � :

χ
�
P
�
X � � � rkH � � BT � H �T � P � X � ��� rkH � � BT � H �T � P � X � T �

� 	
T �

χ
�
P
�
X T � � � � 	

T �
dim

�
X T � ��� d
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which proves our claim.

Because P
�
X � is projective of dimension d � 1, it has non trivial rational cohomol-

ogy in degrees 0, 1, . . . , d � 1. Thus, the claim implies that P
�
X � is a rational cohomology

complex projective space of dimension d � 1, so that X is rationally smooth at x.
Conversely, assume that X is rationally smooth at x. Then, reversing the previous

arguments, we see that rational cohomology of each P
�
X T � � vanishes in odd degree, and

that

d � 	
T �

χ
�
P
�
X T � � � .

Because each P
�
X T � � is a projective algebraic variety of dimension dimx

�
X T � � � 1, it fol-

lows that χ
�
P
�
X T � � � � dimx

�
X T � � . Thus, we have d � 

T � dimx

�
X T � � . But the reverse

inequality holds by Theorem 1.2: so wemust have

d � 	
T �
dimx

�
X T � � , χ

�
P
�
X T � � ��� dimx

�
X T � � .

for all T � . It follows that each P � X T � � is a rational cohomology projective space, and that
X T � is rationally smooth at x.

The methods of the proof above lead to the following

C 1. — Let T be a torus acting on an irreducible variety X of dimension

two; let x � X be an attractive fixed point, contained in only finitely many irreducible

T -stable curves. Then X is rationally smooth at x.

Proof. — Wemay assume that X is affine and that T acts faithfully. Then dim
�
T ���

2 (otherwise there are infinitely many irreducible T -invariant curves through x, namely,

the T -orbit closures). Thus, X contains a dense T -orbit; in other words, the normalization

of X is an affine toric surface. It follows that X contains exactly four T -orbits: the fixed

point x, two orbits of dimension one, and the open orbit.

Let P
�
X � be as in the proof above, then P � X � is a projective irreducible curve with a

dense T -orbit. Thus, P
�
X � is homeomorphic to projective line. Moreover, Ẋ is covered by

two affine open subsets of the formGm � ΓC where Γ is a finite group, andC is an irreducible

affine curve admitting a non trivial action of Gm (this follows e.g. from Proposition A4).

Thus, C is unibranched, and Ẋ is rationally smoth.

As another consequence of (the proof of) Theorem 1.3, let us derive the following

refinement of a result due to Carrell and Peterson [C] TheoremD.
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C 2. — Let T be a torus acting on a variety X with an isolated fixed point

x, such that the number of irreducible T -stable curves through x is finite; denote this num-

ber by n
�
X , x � . Then

dimx

�
X ��� n � X , x � .

If moreover X is rationally smooth at x, then

dimx

�
X ��� n � X , x �

and each irreducible T -stable curve through x is exactly the fixed point set of a subtorus of

codimension one in T .

Conversely, if x is attractive and admits a rationally smooth punctured neighbor-

hood, and if dimx

�
X ��� n � X , x � , then X is rationally smooth at x.

Proof. — Wemay assume that X is affine and that X T � �
x � . Observe that each

irreducible T -stable curve in X is fixed pointwise by a unique subtorus T � � T of codi-

mension one. Further, X T � contains only finitely irreducible T -stable curves through x,
and all such curves must be contained in X T �� � x � � X T ��

�
x � . Thus, the dimension of both

X T �� � x � and X T ��
�
x � is at most one, and dim X T �� � x � � dim X T �

�
�
x � is at most the number

of irreducible T -stable curves through x in X T � . Now the inequality dimx

�
X � � n

�
X , x �

follows from Theorem 1.2.

If X is rationally smooth at x, then each X T � is rationally smooth at x as well by
Theorem 1.1. Thus, X T � is irreducible. It follows that the connected component of x in
X T � is either � x � or an irreducible T -stable curve through x. Now the equality dimx

�
X ���

n
�
X , x � follows from Theorem 1.1.

For the converse, we argue as in the proof of Theorem 1.3: the T -fixed points in

P
�
X � correspond to T -orbits of dimension one in X , that is, to irreducible T -invariant

curves through x. Thus, the number of T -fixed points in P
�
X � is dimx

�
X � � dim P

�
X � �

1. It follows that P
�
X � is a rational cohomology complex projective space of dimension

dimx

�
X � � 1.

Remark. — The assumption that x admits a rationally smooth punctured neigh-

borhood cannot be omitted, as shown by the following example. Let X be the hypersurface

in A5 with equation

x2 � yz � xtw � 0.
Let T � Gm � Gm act on A5 by

�
u, v ��� � x, y, z, t , w ��� � u2v2x, u3vy, uv3z, u2t , v2w � .

11



Then the origin of A5 is an attractive fixed point, X is T -stable of dimension four, and X

contains four irreducible T -stable curves: the coordinate lines, except for the x-axis. But X

is not rationally smooth at the origin. Indeed, consider the action of Gm on A
5 by

u �
�
x, y, z, t , w � � � x, uy, u � 1z, t , w � .

Then X is Gm-stable and X
Gm is defined by y � z � x2 � xtw � 0. Thus, XGm is reducible

at the origin, and we conclude by Theorem 1.1.

2. Rational smoothness of orbit closures in flag varieties

2.1. Attractive slices.

Wewill apply our criterion of rational smoothness to certain orbit closures. For this,

we need the following

D. — Let X be a variety with an action of a linear algebraic group H and

let x � X . A slice to the orbit Hx at x is a locally closed affine subvariety S � X which

satisfies the following conditions.

(a) x is an isolated point of S
�
Hx.

(b) S is stable under a maximal torus T of the isotropy groupHx .

(c) The map
α : H � S � X�

h, s � �� hs

is smooth at
�
1, x � .

The slice S is attractive if

(d) x is an attractive fixed point for the T -action on S.

It is easy to see that there always exists a slice S. If moreover S is attractive, then

S
�
Hx � �

x � and the map α is smooth everywhere.

P. — Let X be a variety with an action of a linear algebraic groupH , let

x � X and let S be a slice to Hx at x. If X is rationally smooth at all points of Hx, then the
T -variety S satisfies conditions (i), (ii) and (iii) of Theorem 1.3. The converse holds if S is

attractive.

Proof. — The map α isH -equivariant; thus, it is smooth at all points
�
h, x � where

h � H , and the image of α is a neighborhood of Hx in X . Using Proposition A1, we see

that X is rationally smooth alongHx if and only if S is rationally smooth at x.

12



As a first application, we give a direct proof of a criterion for rational smoothness of

Schubert varieties, obtained by Carrell and Peterson using Kazhdan-Lusztig theory (see [C]

Theorem E).

Let G be a connected semisimple group, B � G a Borel subgroup, and T � B a

maximal torus with Weyl groupW . The T -fixed points in the flag variety G/B are indexed

by W . For w � W we still denote by w the corresponding fixed point, and by X
�
w � �

BwB/B the corresponding Schubert variety; then the dimension of X
�
w � is the length of

w, denoted by `
�
w � . Let x � W , then x � X

�
w � if and only if x � w for the Bruhat

ordering onW .

We now recall the construction of slices to Schubert varieties, and the description

of their T -stable curves. By the Bruhat decomposition, the map�
U

�
xU � x � 1 � � � U � �

xU � x � 1 � � � � G ��
g , h � �� ghx

is an open immersion, and its restriction

U
�
xU � x � 1 � Bx : g �� gx

is an isomorphism. Set

S : � X � w � � �
U � �

xU � x � 1 � x,
then S is a T -stable attractive slice to Bx at x in X

�
w � .

Let R � W be the set of reflections. For r � R, let T r be its fixed point set in T , and
let GT

r

be the centralizer of T r in G , a reductive group of semisimple rank one. Set

C
�
x, r � : � GT r x.

Then, by [C] Theorem F, the C
�
x, r � (r � R) are the irreducible T -stable curves through x

in G/B. Furthermore, r � R � x, w � if and only if C � x, r � is contained in X . More precisely,
we have x < rx � w (resp. rx < x) if and only if C

�
x, r ��� S (resp. C � x, r ��� Bx).

Now, combining the proposition above with Corollary 1.2 and 1.3.2, we obtain the

following

C. — Let x, w inW such that x � w, and let n
�
x, w � be the number of

r � R such that rx � w. Then l � w � � n � x, w � . Moreover, X � w � is rationally smooth at x
if and only if l

�
w � � n � y, w � for all y � W such that x � y < w.

2.2. Orbits of spherical subgroups in flag varieties.

We still consider a connected semisimple group G and denote by � � G � its flag vari-
ety. LetH � G be a spherical subgroup, that is, � � G � contains only finitely manyH -orbits.
LetH 0 be the connected component of 1 inH , thenH 0 is spherical in G , too.
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Easy but useful properties ofH -orbits in � � G � are given by the following

P.

(i) Each closed orbit is isomorphic to a finite union of copies of the flag variety

� � H 0 � .
(ii) Let X � � � G � be an orbit closure and X0 � X1 � � � � � X` � X a maximal

chain of orbit closures. Then ` � dim � X ��� dim � � H 0 � .
(iii) Let H̃ � H be a subgroup of G which normalizes H and such that H̃/H is con-

nected. ThenH and H̃ have the same orbits in � � G � .

Proof.

(i) Let x � � � G � be such that Hx is closed. Then the varietyHx is complete; thus,
the same holds for its component H 0x. Moroever, the isotropy group Hx � H

�
Gx is

solvable. Thus, H 0
x is a Borel subgroup ofH .

(ii) Choose a Borel subgroup B of G , then the partially ordered sets of H -orbit clo-

sures in � � G � and of B-orbit closures in G/H are isomorphic. Let Y0 � Y1 � � � � � Y` �
Y be a maximal chain of B-orbit closures in G/H . Then Y` � 1 is an irreducible compo-
nent of the complement of the open B-orbit in Y`. Because that orbit is affine, we have

dim
�
Y` � 1 � � dim

�
Y` � � 1. It follows that dim

�
Y0 � � dim

�
Y � � `. Back to H -orbits

in � � G � , we thus have dim � X0 � � dim
�
X � � `. Moreover, X0 is a closed orbit, whence

dim
�
X0 � � dim � � H 0 � .
(iii) Let / � � � G � be an H -orbit and let c be its codimension in � � G � . We show

that / is H̃ -stable, by induction on c.

If c � 0 then / is open in � � G � . Choose x �-/ , then Hx is an open subset of H̃x,
whence the product HH̃x is open in H̃ . But HH̃x is a closed subgroup of H̃ containing H ,

because H̃ normalizes H . Thus, HH̃x is a union of components of H̃ , andHx is a union of

components of H̃ x. But H̃/H is connected, whenceHx � H̃x.
For arbitrary c, observe that the closure / is a union of components of the set of

x �
� � G � such that the codimension of Hx in � � G � is at least c. The latter set is closed
and H̃ -stable, because H̃ normalizesH . As H̃/H is connected, it follows that / is H̃ -stable.
Now the argument above shows that / is H̃ -stable.

D. — The rank `
�
X � of anH -orbit closure X � � � G � is the codimension

in X of any closed orbit, or equivalently, the common length of all maximal chains X0 �
X1 � � � � � X` � X of orbit closures.
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In the case whereH � B as in 2.1, the closed orbits are fixed points, and the rank of
X � X � w � is the length ofw.

For a reductive spherical subgroup H � G and an H -orbit closure X in � � G � , we
will show that `

�
X � satisfies an inequality similar to Corollary 2.1, with equality if X is ra-

tionally smooth. For this, wewill analyze the fixed points in X of amaximal torus ofH , and

of its codimension one subtori.

2.3. Fixed points in flag varieties.

LetH � G be a reductive spherical subgroup, and let TH � H be a maximal torus.

For a subtorus T � � TH , we denote by GT � (resp. HT � ) its centralizer in G (resp. H ) and by
� � G � T � its fixed point in � � G � . It is well known that GT � is connected and reductive, and
that � � G � T � contains only finitely many orbits of GT � , each of them being isomorphic to

the flag variety � � GT � � . The torus T � is regular in G if � � G � T � is finite, or equivalently, GT �
is a maximal torus of G .

L. — Notation being as above, TH is regular in G . Moreover, each HT � is a
reductive spherical subgroup of GT � .

Proof. — BecauseH 0 acts on � � G � with only finitely many orbits, � H 0 � T � acts on
� � G � T � with only finitelymany orbits, too; see [R]. It follows that � H 0 � T � is spherical inGT � .
In particular,

�
H 0 � TH � TH is spherical and central in GTH . Thus, GTH is a torus, and TH is

regular in G .

Now assume that the codimension of T � in TH is one, and that T � is singular in G .
Then T ��� HT � � GT � and the quotient HT � /T � has rank one. Let G � be the quotient of
GT � by its center, and letH � be the image ofHT � in G � . Then GT � andG � have the same flag
variety, which we denote by ��� . Moreover,H � is a reductive spherical subgroup, of rank at
most one, of the non trivial connected adjoint semisimple group G � . Thus, H � 0 is either
the multiplicative group or

�
P � SL2. Because H � has finitely many orbits in � � , we have

dim
� ��� ��� 1 in the former case, and dim � � � � � 3 in the latter case. Thus, G � is isomorphic

to
�
PSL2 � n with n � 3, or to PSL3. A closer look leads to the following classification.

�
1 � H � � G � � PSL2. Then ��� is projective line P1 with transitive action ofH � .
�
2 � H � 0 is a one dimensional torus of G � � PSL2. Then ��� � P1, and the H � 0-orbits in ���
are two fixed points and their complement. IfH � is not connected, then it is the normalizer
ofH � 0, and it exchanges both fixed points in � � .
�
3 � H � � PSL2, the diagonal inG � � PSL2 � PSL2. Then ��� � P1 � P1 with diagonal action
ofH � . TheH � -orbits in ��� are the diagonal and its complement.
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�
4 � H � � PSL2 � SO3 embedded into PSL3 � G � . We can consider � � as the variety of
flags in projective plane P2, and H � as the stabilizer in PSL3 of a smooth conic C0. Then
the H � -orbits in ��� are given by the position of a flag � p, d � (where p is a point of P2 and
d a line containing p) with respect to C0. So there is a unique closed orbit: the set of flags�
p, d � such that d is tangent to C0 at p0. This orbit is isomorphic to P1. And there are two
orbit closures of dimension two, defined by: p is in C0, resp. d is tangent to C0. It is easy to

see that the maps
�
p, d � �� p, resp.

�
p, d � �� d identify these orbit closures to the rational

ruled surface of index two, denoted by F2.

�
5 � H � 0 � SL2 and G � � PSL3, where H � 0 is embedded as the image of matrices of the
form

�
1 0 0
0 a c

0 b d � with ad � bc � 1. Denote by H̃ � the normalizer of H � 0 in G � , then H̃ �
is the image of matrices of the form

�
t 0 0
0 a c

0 b d � with t
�
ad � bc ��� 1. Observe that H̃ �

normalizes H � , and that the quotient H̃ � /H � is the multiplicative group. Thus, H � and H̃ �
have the same orbits in ��� , by Proposition 2.2. Observe that H̃ � is the stabilizer in G � of a
point p0 in P

2, represented by the first basis vector of C3, and of a line l0 in P
2, represented

by the first dual basis vector. Thus, H̃ � has three closed orbits in � � : the set of flags � p, d �
such that p � p0 (resp. d � d0; p � d0 and d � p0). These orbits are isomorphic to P1.
Moreover, there are two H̃ � -orbit closures of dimension two, consisting of flags � p, d � such
that p0 � d (resp. p � d0). The maps � p, d � �� p (resp.

�
p, d � �� d) identify theses orbit

closures to the blow-up of P2 at the point p0 (resp. the blow-up of the dual projective plane

at the point d0). Thus, both orbit closures are isomorphic to the rational ruled surface F1

of index 1.

�
6 � H � � PSL2, the small diagonal in G � � PSL2 � PSL2 � PSL2. Then � � � P1 � P1 � P1
with diagonal action of H � . The H � -orbit closures in ��� are the small diagonal P1, three
partial diagonals isomorphic to P1 � P1, and ��� .

Remarks.

(i) For a symmetric subgroupH of G , we will see in 2.5 that only types (1) to (4) can

occur. It can be checked that the same holds if G is simple and H 0 � G is a maximal con-
nected reductive spherical subgroup; for this, one uses Krämer’s classification of reductive

spherical subgroups of simple groups [Kr]. But types (5) and (6) do occur in general, e.g.

type (5) for

H � Sp2n � SL2n � 1 � G,
and type (6) for

H � SO2n � 1 � SO2n � 1 � SO2n � 2 � G
16



whereH is embedded in G by h ��
�
h,
�
h, 1 � � , or forH � G2 � SO8 � G embedded by its

defining representation.

(ii) By [M-S] 6.4, orbits of symmetric subgroups in flag varieties admit attractive

slices at all points. But this fails for arbitrary reductive subgroups: consider for example

G � PSL3 and H � SL2 as in type (5). Then we can take for TH the image of diagonal

matrices with eigenvalues
�
1, t , t � 1 � where t � Gm . Let x � � � G � be the standard flag

in C3, then the weights of the TH -action on the normal space Tx � � G � /TxHx are 1 and -1.
Thus, Hx admits no attractive slice at x. Moreover, both H -orbits of dimension two have

unipotent isotropy groups, so that they admit no attractive slice either.

2.4. A criterion for rational smoothness.

Notation being as in 2.3, we will describe fixed point subsets in an H -orbit closure

X ��� � G � , and deduce a necessary condition for rational smoothness of X .
Let T be the centralizer of TH in G ; it is a maximal torus of G . Let W be the Weyl

group of
�
G, T � , and R � W the subset of reflections. For r � R, denote by T r its fixed

point subgroup in TG , and set

T rH : � � TH �
T r � 0.

Then the T rH are exactly the subtori of codimension one of TH which are singular in G . For

1 � t � 6, call r of type � t � if T rH has type � t � in the classification above.
Finally, forT � � T rH as above, let`T � � X , x � be the sumof the ranks of the irreducible

components of the HT � -varieties X T � which contain x. Observe that the maximal value of
`T � � X , x � is 0 in type (1), 1 in types (2) and (3), 2 in types (4) and (5), and 3 in type (6).

P. — Let X � � � G � be the closure of anH -orbit.
(i) For any r � R, each irreducible component of X T

r
H is smooth, and is either a

point (this may occur in type (1)), or P1 (this may occur in all types), or P1 � P1 (in types
(3) and (6)), or F1 (in case (5)), or F2 (in type (4)), or � � PSL3 � (in types (4) and (5)), or
P1 � P1 � P1 (in type (6)).

(ii) We have

`
�
X ��� 	

T �
`T � � X , x �

with equality if X is rationally smooth at x.

Proof.

(i) is checked by inspection.

For (ii), by Theorems 1.1 and 1.2, we have

dim � � H 0 � � 	
T �
dim � � HT � ,0 � , dim � X ��� 	

T �
�
dimx X

T �� � x � � dimx X
T �
�
�
x � � .
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Moreover, we claim that

dimx X
T �� � x � � dimx X

T �
�
�
x � � dim � � HT � ,0 � � 	

Y

`
�
Y �

(sum over all irreducible components Y of X T � which contain x). Indeed, if X T � is irre-
ducible at x, then it is smooth there by (i). Thus, we have

dimx X
T �� � x � � dimx X

T �
�
�
x � � dimx

�
X T � � � dim � � HT � ,0 � � `

�
X T � �

where the first equality follows from Theorem 1.2, and the second one is the definition of

the rank. If X T � is reducible at x, then we are in case (4), (5) or (6), and moreover H � x is
closed in ��� . In cases (4) and (6), x is attractive in � � and the claim is clear; in case (5), it is

checked by inspection. Our inequality follows.

If moreover X is rationally smooth at x, then each X T � is irreducible at x, and we
conclude by Theorem 1.1.

2.5. The symmetric case.

Consider now a connected semisimple group G with an involutive automorphism

θ. Then the fixed point setH � Gθ is called a symmetric subgroup; it is a reductive spher-

ical subgroup of G . We refer to [Sp1] for this and for other results on symmetric spaces, to

be used below.

Wewill obtain a precise version of Proposition 2.3 (ii), in terms of the combinatorics

ofH -orbits in � � G � . We begin by relating the approach of 2.3 to the structure of symmetric
spaces.

Let TH � H be a maximal torus, then its centralizer T is a θ-stable maximal torus

of G . Thus, θ acts on the Weyl groupW and on the subset R of reflections. For r � R, let
Gr be the derived subgroup of G

T r . Then Gr is a semisimple group of rank one, containing

a representative of r .

L.

(i) There exists a θ-stable Borel subgroup B of G containing T ; then Bθ,0 is a Borel

subgoup ofH . Any two such Borel subgroups of G are conjugated byW θ.

(ii) Let r � R. Then
r has type (1) if and only if: θ

�
r ��� r , and Gr is contained inH .

r has type (2) if and only if: θ
�
r ��� r , and Gr is not contained inH .

r has type (3) if and only if: θ
�
r � commutes with r , and θ

�
r � �� r .

r has type (4) if and only if: θ
�
r � does not commute with r .

There are no reflections of type (5) or (6).
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Proof.

(i) There exists a pair
�
B0, T0 � where B0 is a θ-stable Borel subgroup of G , and T0 is

a θ-stable maximal torus of B0. Let U0 be the unipotent radical of B0, and let B �0 be the

opposite Borel subgroup, with unipotent radical B �0 . Then the product map U �0 � T0 �
U0 � G is an open immersion. Thus, the same holds for the product map

�
U �0 � θ,0 �

T θ,0
0 � Uθ,0

0 � H . It follows that Bθ,0
0 and

�
B �0 � θ,0 are opposite Borel subgroups of H .

In particular, T θ,0
0 is a maximal torus of H . Thus, we can write TH � hT θ,0

0 h � 1 for some
h � H . Taking centralizers in G , we obtain T � hT0h � 1; then we can take B � hB0h � 1.
If B � is another Borel subgroup containing T , there exists a unique w � W such that B � �
wBw � 1 ; now B � is θ-stable if and only if θ

�
w � � w.

(ii) Let T � � T rH , then θ acts on the group GT � and on its quotient G � by its center.
Let H � be the image of H in G � ; then H � is a subgroup of finite index in G � . It follows that�
G � , H � � is not of type (5) or (6), because SL2 is not a subgroup of finite index of a symmetric
subgroup of PSL3 or of SL2 � SL2 � SL2. The description of types (1) to (4) follows from
[Sp1] � 2.

Reflections of type (1) (resp. (2)) are called compact imaginary (resp. non-compact

imaginary), whereas reflections of type (3) or (4) are called complex; for B as in the lemma

above, the pair
�
T, B � is called standard. We then identify � � G � with G/B; the point x ��

G/B � T is identified with an element ofW , still denoted by x.

We now recall the parametrization of H -orbits in G/B; our notation differs from

that in [Sp1] by an inverse, because B-orbits in G/H are considered there. Let N be the

normalizer of T in G , thenN is θ-stable. Set
�
: � �

g � G � g � 1θ � g � � N � .
Then

�
is stable by theH � T -action: � h, t � g � hgt � 1, and each � H � B � -orbit inG meets�

in a unique
�
H � T � -orbit. As a consequence, H -orbits in G/B are parametrized by the

set of double classes

V : � H 
 �
/T.

There is a base point v0 � V , the image of 1 � N ; the corresponding H -orbit is closed, by
the lemma above. Observe that

�
is stable under right multiplication byN ; this defines an

action ofW on V , denoted by
�
w, v � �� w � v.

For v � V , we denote by X � v � � G/B the corresponding H -orbit closure, and by

`
�
v � its rank. We write v � � v if X � v � � � X � v � . This defines a partial order on V , which is

studied in [R-S].

Finally, we will need the following result, see [Sp2] 2.5: For any r � R of type (2),
there exists g

�
r � � Gr such that g � r � � 1θ � g � r � � is a representative of r in N . In particular,

g
�
r � � �

. Let v
�
r � be its image in V .
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T.. — Let v � V and let x � W such that x � v0 � v. Let n2
�
v, x � be the

number of reflections r of type (2) such that x � v
�
r � � v. For t � 3, 4, let nt

�
v, x � be the

number of reflections r of type
�
t � such that rx � v0 � v. Then we have:

`
�
v ��� n2 � v, x � � 1

2
n3
�
v, x � � n4 � v, x � ,

with equality if X
�
v � is rationally smooth at x.

Proof. — We wish to apply Proposition 2.4 (ii) combined with the lemma above.

For this, given a subtorus T � � TH of codimension one, we analyze the contribution of

T � to the formula in that Proposition. We denote by `T � � v, x � the sum of the ranks of the

irreducible components of X
�
v � T � which contain x, and by X � v � T �x the union of these com-

ponents, i.e., the connected component of x in X
�
v � T � .

If T � � T rH for r of type (2), the component of x in
�
G/B � T � is the curve C � x, r �

considered in 2.1. By [Sp2] 3.1, this curve is contained in X
�
v � if and only if x � v � r ��� v. In

other words, we have `T � � v, x ��� 1 if x � v � r ��� v, and `T � � v, x ��� 0 otherwise.
If T � � T rH for r of type (3) or (4), observe that X

�
v � �

GT � x is connected by the
explicit description in 2.3. Thus, we have X

�
v � �

GT � x � X
�
v � T �x . Now rx � v0 � v iff

rx � X � v � iff rx � X � v � T �x (because rx � GT � x anyway). For T � of type (3), one checks that
`T � � v, x � is the half of the number of r � R such that T rH � T � and that rx � X � v � T �x .

If r has type (4), then one checks that `T � � v, x � is at most the number of r as above,
with equality if X

�
v � T �x is irreducible.

In the case where TH is a maximal torus of G (that is, θ is inner), only types (1) and

(2) occur, and we recover the following result of Springer [Sp2]: the rank of X
�
v � is at most

the number of non compact imaginary reflections r such that rx � v0 � v, with equality if
X
�
v � is rationally smooth at x.

Remark. — More generally, consider a point x � X nonnecessarily fixed by amax-
imal torus of H . Then the orbit Hx admits an attractive slice at x, by [M-S] 6.4. Thus, a

criterion for rational smoothness of X along Hx can be derived from Proposition 2.1. This

leads to the following question: For a subtorus T � of codimension one in a maximal torus
ofHx , is X

T � rationally smooth at x ?

3. Closures of double classes in regular group completions

3.1. Construction of slices.

Let G be a connected reductive group. The action of G � G by � g1, g2 � γ � g1γg � 12
identifies G with the homogeneous space

�
G � G � / diag G where diag G denotes the di-

agonal inG � G . Let T � G be a maximal torus,W its Weyl group, and B, B � two opposite
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Borel subgroups containing T . Then B � B � acts onG as above, the orbits being the double
classes BwB � wherew � W . In particular, the open orbit is BB � .

Let X be a
�
G � G � -equivariant completion of G which is regular in the sense of

[B-D-P]. Then B � B � acts on X with finitely many orbits, whose study was initiated in
[Br1]. We will construct attractive slices to these orbits. For this, we need more notation

and results, adapted from [Br1] 2.1.

Each
�
G � G � -orbit / � X contains a unique point y such that: � B � B � � y is open

in / , and y is the limit of a one parameter subgroup of T . We refer to y as the base point
of / .

Moreover, / determines two opposite parabolic subgroups P � B and Q � B � ,
with unipotent radicals Ru

�
P � , Ru � Q � and common Levi subgroup L � P

�
Q, by requir-

ing that the isotropy group
�
G � G � y is the semidirect product of Ru � Q � � Ru � P � with�

diag L � � T � 1 � y . In particular, � T � T � y � �
diag T � � T � 1 � y is a maximal torus in�

G � G � y . In fact, � T � 1 � y � � Z � 1 � y where Z denotes the connected center of L.
Let Φ be the root system of

�
G, T � , then we have the subsets Φ � (resp. ΦL) of roots

of
�
B, T � (resp. � L, T � ). LetW L be the set of all w � W such that w

�
Φ �L � is contained in

Φ � . Then each � B � B � � -orbit in / � � G � G � y can be written uniquely as
�
B � B � � � w, τ � y

for w � W and τ � W L .

Choose representatives w̃ , τ̃ in the normalizer of T , and set x : � � w̃, τ̃ � y . Then
�
T � T � x � � w, τ � � T � T � y � w � 1, τ � 1 �

is a maximal torus in
�
G � G � x and thus in � B � B � � x . The codimension of � B � B � � x in�

G � G � x is `
�
w � � `

�
τ � .

For simplicity, set

Zy : � � Z � 1 � y ,
then Zy is the isotropy group of y for the left action of T on T . Let Σ

�
y � be the set of all

z � T such that y belongs to Zy z. Then Σ
�
y � is a Zy -stable slice to Ty at y in T , and also a

slice to / in X . Moreover,Σ
�
y � is isomorphic to affine space Ad where d � codimT

�
Ty � �

codimX

�
/ � , and Zy acts linearly on Ad by d independent characters. Thus, Σ � y � contains

exactly d irreducible Zy -stable curves through y : the coordinate lines C1
�
y � , . . . , Cd � y � .

For anyα � Φ, letUα � G be the corresponding unipotent subgroup. Ifw � 1 � α � �
Φ � � ΦL , thenUα � 1 does not fix x. Thus,

C
�
x,α � : � � Uα � 1 � x
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is an irreducible locally closed curve through x, stable by
�
T � T � x . We define similarly

C
�
x,α � � : � � 1 � Uα � x

for α � Φ such that τ � 1
�
α � � Φ � � ΦL . Finally, we set

Ci
�
x � : � � w̃, τ̃ � Ci � y �

for 1 � i � d.
T. — Notation being as above, the map�

U �
�
wUw � 1 ��� � U �

τU � τ � 1 ��� Σ
�
y � � X�

g , h, z � ��
�
gw̃, hτ̃ � z

is an embedding, and its image S is an attractive
�
T � T � x-stable slice to � B � B � � x at

x. Moreover, the irreducible
�
T � T � x-stable curves through x in S are the C � x,α � (α �

Φ �
�
w
�
Φ � � ), the C � x,α � � (α � Φ � �

τ
�
Φ � � ), and the Ci � x � (1 � i � d).

Proof. — After multiplication by
�
w̃, τ̃ � � 1, we reduce to the somewhat simpler

study of X along the orbit
�
w � 1Bw, τ � 1B � τ � y . For this, set

S̃ : � � U �
w � 1U � w � � � U � �

τ � 1Uτ ��� Σ
�
y � , ỹ : � � 1, 1, y � .

Consider the map
π : S̃ � X�

g , h, z � ��
�
g , h � z

and denote by S
�
y � its image.

The group
�
T � T � y acts on S̃ by�

u, v � � � g , h, z � � � ugu � 1, vhv � 1, uv � 1z �
with fixed point ỹ , and π is equivariant. Identifying S̃ with affine space of dimension

`
�
w � � `

�
τ � � d, the action of � T � T � y is linear, with weights: � α, 0 � (α � Φ � �

w � 1
�
Φ � � ),�

0,α � (α � Φ �
�

τ � 1
�
Φ � � ), and the weights of C1 � y � , . . . , Cd � y � . Moreover, the multiplic-

ity of each weight is one, and
�
T � T � y � � diag T � Zy where Zy acts on C1 � y � , . . . , Cd � y �

through d linearly independentweights. It follows that ỹ is attractive, and that the
�
T � T � y -

invariant curves in S̃ are the
�
Uα � 1 � y (α � Φ � �

w � 1
�
Φ � � ), the � 1 � Uα � y (α �

Φ �
�

τ � 1
�
Φ � � ), and C1 � y � , . . . , Cd � y � .

Moreover, from the description of
�
G � G � y and the fact that Σ � y � is transversal to�

G � G � y at y , it follows that π is étale at ỹ , and that π � 1
�
π
�
ỹ � � � �

ỹ � . Because ỹ is
attractive, π is an isomorphism onto S

�
y � , a locally closed subvariety of X .

Finally, we check that the action map

w � 1Bw � τ � 1B � τ � S � y � � X
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is smooth at
�
1, 1, y � : this follows from the decompositions of tangent spaces

TyX � Ty � G � G � y � TyΣ � y ��� Ty � B � B � � y � TyΣ � y �
� Ty � w � 1Bw � τ � 1B � τ � y � Ty � � U �

w � 1U � w � � � U � �
τ � 1Uτ � y ��� TyΣ � y �

� Ty � w � 1Bw � τ � 1B � τ � y � TyS � y �
which follow in turn from the structure of

�
G � G � y described above.

Applying Corollary 1.3.1, we obtain immediately the following

C. — Any
�
B � B � � -orbit closure in a regular completion of G is ratio-

nally smooth in codimension two.

In contrast,
�
B � B � � -orbit closures in regular completions are singular in codi-

mension two, apart from very few exceptions [Br1] Corollary 2.2.

3.2. More on slices and closures of double classes.

We just saw that closures of double classes in regular group completions admit at-

tractive slices at all points; further, these slices contain only finitely many invariant curves.

Therefore, we can obtain a criterion for rational smoothness of these closures, similar to

that for Schubert varieties (Corollary 2.1). To make this explicit, we need to know more

about invariant curves, and to describe the inclusion relation between closures of double

classes as well.

Notation being as in 3.1, we begin by analyzing the irreducible
�
T � T � x-stable

curves through x in the slice S. Because X is regular, the
�
G � G � -orbit / of codimension d

is contained in the closure of d orbits / 1, . . . , / d of codimension d � 1. Furthermore, we
can index these orbits so that the base point yi of each / i belongs to the curveCi

�
y � . Thus,

we have Ci
�
y ��� Zyyi � Zyyi � � y � , and Ci � x ��
 � x � is contained in � B � B � � � w, τ � yi .

The behaviour of the other curves is given by the following

P. — Notation being as above, C
�
x,α � 
 � x � is contained in � B �

B � � � sαw, τ � y for any α � Φ �
�
w
�
Φ � � . Similarly, C

�
x,α � � 
 � x � is contained in�

B � B � � � w, sβτ � y for any α � Φ � �
τ
�
Φ � � .

Proof. — Set U̇α : � Uα 
 � 1 � , then C � x,α � 
 � x � � U̇αx. Let sα � R be the

reflection associated with α, then

U̇α � U � αsαTU � α � U � αTsαwU � w � 1 � α � w �
1 � BsαwU � w � 1 � α � w � 1.

Set β : � w � 1
�
α � , then β � Φ � . If β /� Φ �L thenU � β � 1 fixes y and the assertion follows.

Otherwise,
�
U � β � 1 � y � � 1 � U � β � y because β � Φ �L . Thus, we have�

U̇α � 1 � x � � BsαwU � β, τ � y � � Bsαw, τU � β � y � � B � B � � � sαw, τ � y
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becauseτU � β � U � τ � β � τ is contained inB � τ. The proof of the second assertion is similar.

We now describe the inclusion order between closures of
�
B � B � � -orbits in X .

This is given by the lemma below, wherew0,L denotes the longest element inWL . A closely

related statement is obtained in [P-P-R] for reductive algebraic monoids; the latter can be

considered as affine embeddings of connected reductive groups.

L. — Notation being as above, the closure of
�
B � B � � � w, τ � y in / � � G �

G � y is the union of the � B � B � � � w � , τ � � y wherew � , τ � � W satisfyw � � w and τ � w0,L �
τw0,L .

If moreover / � � / is a
�
G � G � -orbit with base point y � and associated Levi

subgroup L � , then
�
B � B � � � w, τ � y � / � � � �

B � B � � � wv, τv � y �
(decomposition into irreducible components), where the union is over all v � WL such

that τv � W L � and `
�
w � � `

�
wv ��� `

�
v � .

Proof. — Consider the
�
B � � B � -orbits in / . We claim that the orbit

�
B � �

B � � 1, w0,L � y is closed. Indeed, we have B � � B �L Ru � Q � and B � BLRu � P � , whence
�
B � � B � � 1, w0,L � y � � B �L � BL � � 1, w0,L � y � � 1, w0,L � � B �L � B �L � y � � 1, w0,L � � 1 � B �L � y
and

�
1 � B �L � y identifies with the image of B �L in L/Zy , which is closed there.

Now we have B � τ � B � τB �L (because τB �L τ � 1 � B � ), whence
�
B � B � � � w, τ � y � � B � B � � � w, τw0,L � � 1, w0,L � B �L y.

Equivalently, �
B � B � � � w, τ � y � � B � B � � � w, τw0,L � � B � � B � y.

So the canonical map

�
B � B � � � w, τw0,L � � B � � B ��� B � � B � B � � B � � 1, w0,L � y � �

B � B � � � w, τ � y
is dominant and proper, hence surjective. By the Bruhat decomposition, the closure inG of�
B � B � � � w, τw0,L � � B � � B � is the union of the double classes � B � B � � � w � , τ � w0,L � � B � �
B � with w � � w and τ � w0,L � τw0,L . This implies the first assertion, whereas the second

assertion follows from [Br1] Theorem 2.1.
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3.3. Singularities of closures of double classes.

Using the combinatorics of 3.2, we show that the closure of a double class BwB � at
a fixed point ofB � B � contains in general all irreducible � T � T � -stable curves through that
point (this improves on [Br1] Theorem 2.2, with a more natural proof). Thus, this closure

is not rationally smooth, as a rule.

An exception to that rule is the case where G � PGL
�
2 � . Indeed, that group has a

unique regular completion X , the projectivization of the space of 2 � 2matrices. Moreover,
the closure in X of the standard Borel subgroup B is isomorphic to P2 and hence smooth;

it contains only two irreducible
�
T � T � -stable curves through the � B � B � -fixed point.

Similarly, the group SL2 has a unique regular completion X , a quadric in the projec-

tive completion of the space of 2 � 2 matrices. Moreover, the closure in X of the standard
Borel subgroup B is a non-degenerate quadratic cone of dimension two. Thus, B is sin-

gular, but rationally smooth; again, it contains only two irreducible
�
T � T � -stable curves

through the
�
B � B � -fixed point.

We will see that all exceptions arise from both examples above. To state our result

in a precise way, we need the following

D. — A simple root α is called isolated if α is not connected to any sim-

ple root in the Dynkin diagram of G . In particular, G has no isolated simple root if and only

if the quotient of G by its center contains no direct factor isomorphic to PGL
�
2 � .

T. — Let X be a regular completion of G , let w � W and let x � X be a
fixed point of B � B � . IfG has no isolated simple root, then BwB � contains all irreducible�
T � T � -invariant curves through x. In particular, the tangent space to BwB � at x is the
whole tangent space to X at x, and BwB � is not rationally smooth there unlessw � 1, that
is, BwB � � X .

Proof. — Because BwB � contains Bw0B � , we may assume that w � w0. Then

the slice S at x is a
�
T � T � -stable open neighborhood of x, and the irreducible � T � T � -

stable curves through x in S are: the C
�
x,α � � �

Uα � 1 � x (α � Φ � ), the C
�
x,α � � ��

1 � Uα � x (α � Φ � ), andC1
�
x � , . . . , Cl � x � where l is the rank ofG . Moreover,C � x,α � 
 � x �

is contained in
�
B � B � � � sα, 1 � x by Proposition 3.2, and similarly for C � x,α � � .

Let z be the base point of the closed orbit Z : � � G � G � x, then x � � w0, w0 � z where
w0 � W is the longest element. We have�

B � B � � � sα, 1 � x � � B � B � � � sαw0, w0 � z � Bw0B �
where the inclusion follows from Lemma 3.2. Thus, C

�
x,α � is contained in Bw0B � . The

argument for C
�
x,α � � is similar.
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Consider now a curve Ci
�
x � where 1 � i � l. By Proposition 3.2, there exists a�

G � G � -orbit / i with base point zi such that dim � / i ��� dim � Z � � 1 and that Ci � x � 
 � x �
is contained in

�
T � T � � w0, w0 � zi . Let P , Q, L, Z be associated to / i as in 3.1. Then

dim
�
Z � � dim

�
Zyi � � dim

�
T � � 1. Thus, either P � B, or P is a minimal parabolic

subgroup containing B.

In the former case,
�
G � G � yi is the kernel of a character of B � � B. Arguing as

above, we obtain that Ci
�
x � is contained in BwB � .

In the latter case, letα be the simple root corresponding to P , and set

W α : � �
w � W � w � α � � R � � .

Then we have by Lemma 3.2:

Bw0B �
� / i � �

v � W α

�
B � B � � � w0v, v � zi .

Choose a simple root β which is connected to α in the Dynkin diagram. Then sαsβ and

w0sαsβsα are inW
α. Thus,

Bw0B � �
�
B � B � � � sαsβsα, w0sαsβsα � zi �

�
B � B � � � w0, w0 � zi

where the first inclusion follows from Lemma 3.2, and the second one from that Lemma

applied to w � sαsβsα, τ � w0sαsβsα, w � � τ � � w0. Indeed, w � � w is clear, and

τ � sα � w0sα � w0sαsβ � τsα because sα � sαsβ.
So we conclude that Ci

�
x � is contained in Bw0B � . The remaining assertions follow

now from Corollary 1.3.2.
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Appendix

P A1. — Let X be an algebraic variety of dimension d and let x � X .
(i) The dimension of the spaceH 2d

x

�
X � is the number of d-dimensional irreducible

components of X through x.

(ii) If X is rationally smooth at x, then it is irreducible at x.

(iii) Letπ : X � Y be the quotient by the action of a finite group G . If X is rationally

smooth at x, then Y is rationally smooth atπ
�
x � .

(iv) Let π : X � Y be a smooth morphism. Then X is rationally smooth at x if and

only if Y is rationally smooth atπ
�
x � .

Proof.

(i) Let
�
X ,Q be the dualizing complex of X for sheaves of Q-vector spaces [V].

For each integer m, the homology sheaf � m

� �
X ,Q � is associated with the presheaf U ��

Hm
c

�
U � � (the dual of cohomology with compact supports). This presheaf vanishes for

m > 2d, and is a sheaf form � 2d. Moreover, by [V] Corollaire 2.6.5, the stalk of
�
X ,Q at

x is the dual of RΓx
�
QX � where QX denotes the constant sheaf on X associated with Q. It

follows that U �� H 2d
c

�
U � is a sheaf, and that its stalk at x is H 2d

x

�
X � . This implies our

assertion.

(ii) It follows from (i) that X has a unique irrreducible component Y of dimension

d which contains x. If X has another irreducible component Z of dimension e < d which

contains x, then we can choose a smooth point z � Z 
 Y arbitrarily close to x. Now

H 2e
z

�
X � � H 2e

z

�
Z � is non zero, a contradiction.

(iii) Denote by QX the constant sheaf on X associated with Q. Then G acts on the

direct image π � QX and the subsheaf of invariants πG

� QX is isomorphic to QY via the map
QY � π � QX (indeed, this map induces an isomorphism on stalks). Moreover, R iπ � QX �
0 for i � 1. It follows that π � : H �

�
X � � H � � Y � restricts to an isomorphism
H � � X � G �� H � � Y � .

Considering the isomorphisms above for X and X 
 π � 1π
�
x � � X 
 Gx, we obtain an

isomorphism

H �Gx
�
X � G �� H �π � x � � Y � .
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Further, the left hand side is isomorphic to� �
g � G/Gx

H �gx
�
X ��� G �� H �x � X � Gx .

Because X is rationally smooth at x, the vector space H �x
�
X � is one-dimensional, concen-

trated in degree 2 dimx

�
X � , andGx acts trivially there. Thus, Y is rationally smooth atπ � x � .

(iv) Shrinking X and Y , we can factor π as an étale morphism f : X � Y � An
followed by projection g : Y � An � Y . By excision, we have H �x

�
X � �� H �

f � x �
�
Y � An � .

Moreover, by the Thom isomorphism, we haveH �� y,z �
�
Y � An � �� H � � 2ny

�
Y � . It follows that

H �x
�
X � �� H � � 2n

π � x �
�
Y � .

P A2.. — Let X be an affine variety with a Gm-action and an attractive

fixed point x. Then there exists a Gm-module V and a finite equivariant surjective mor-

phism π : X � V such that π � 1
�
0 � � �

x � (as a set).

Proof. — Let A be the algebra of regular functions over X , then A � ��
n � 0 An is

positively graded by the Gm-action. For any positive integer r , set A � r � � ��
n � 0 Anr . Then A

is a finitemodule over A � r � , and there exists r such that A � r � is generated by its elements of
minimal degree. So we can assume that A is generated by its elements of degree 1.

For any irreducible component Y of X , the set of f � A1 such that f � Y � � 0 is a

proper linear subspace of A1. So there exists f � A1 such that f � Y � �� 0 for all such Y . Let
X � � X be the zero set of f , then x � X � and dim � X � � � d � 1 where d � dim

�
X � . So

we construct inductively f � f1, f2, . . . , fd � A1 such that x is their unique common zero.
Consider the morphism

π � � f1, f2, . . . , fd � : X � Ad .

Then π is equivariant for the Gm-action on A
d by multiplication, and π � 1

�
0 � � �

x � :
the quotient of A by its ideal generated by f1, . . . , fd is finite dimensional. By the graded

Nakayama lemma, it follows thatπ is finite. Because dim
�
X ��� d, themap π is dominant,

and hence surjective.

P A3. — Let X be a variety with a non trivial action of a torus T and a

fixed point x belonging to all irreducible components of X . Then there exists an irreducible

T -stable curve C � X which contains x as an isolated fixed point.

Proof. — By induction on the dimension of X , the case of dimension one being

trivial. Wemay assume that X is affine and irreducible. Letπ : X � X//T be the quotient
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in the sense of geometric invariant theory. Then π is surjective, and its fibers are infinite

(because T acts non trivially on X ). In particular, the set

π � 1π
�
x � � �

y � X � x � Ty �
is infinite. Thus, we may assume that X � Ty . If dim

�
X � � 1, we can take C � X ;

otherwise, we can choose z � X 
 Ty such that z �� x. Then x � Tz with dim
�
Tz � <

dim
�
Ty � . We conclude by induction.
P A4. — Let T be a torus acting on a variety X and let / � X be an

orbit. Then / admits an open affine T -stable neighborhood U in X , with an equivariant

retraction π : U � / .

Proof. — Wemay assume that X is affine. Let f be a regular function on X which

vanishes identically on / 
 / , and is an eigenvector of T . Then f has no zero in the orbit
/ , and therefore / is closed in the open affine T -invariant subset X � �

f �� 0 � . Thus, we
may assume that / is closed in X .

The orbit / is isomorphic to a torus. Choose an isomorphism f : / � Gnm , then

the coordinate functions f1, . . . , fn are eigenvectors of T . Because / is closed in X , we can
extend f1, . . . , fn to regular functions on X , eigenvectors of T . They define an equivariant

morphism F : X � An which maps / isomorphically to Gnm . Then we can take U �
F � 1

�
Gnm � .
P A5. — Let X be a T -variety, T � � T a subtorus, and iT � : X T � � X

the inclusion of the fixed point set. Then the map

i �T � : H �T � X � � H �T
�
X T � �

becomes an isomorphism after inverting finitely many characters of T which restrict non

trivially to T � .
Proof. — Observe that the kernel and cokernel of i �T � aremodules overH �T � X 
 X T � � .

Thus, it is enough to prove thatH �T
�
X 
 X T � � is killed by a product of characterswhich restrict

non trivially to T � . In other words, wemay assume that T � fixes no point of X .
Let U � X and / be as in Proposition 4 above. Then H �T

�
U � is a module over

H �T
�
/ � and the latter is killed by all characters which restrict trivially to the isotropy group

Γ of / . Because T � fixes no point of / , we can find a character χwhich restricts trivially to

Γ but not to T � . Now the kernel and cokernel of the map H �T � X � � H �T
�
U � are modules

overH �T
�
X 
 U � , and we conclude by Noetherian induction.
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