Existence of Green Function and Bounded Harmonic Functions on Galois Covers of Riemann Surfaces*

A. Muhammed ULUDAĞ

Abstract

This article consists of two parts. In the first one we prove that a rank ≥ 3 abelian covering of a Riemann surface has Green function, a result which in the case of a compact base is due to S. Mori. In the second one we show that any surface which has Green function admits a finite cover carrying bounded non-constant harmonic functions.

I. Existence of Green function on abelian covers.- A Galois covering with an abelian Galois group is called an abelian cover, the rank of the covering is defined to be the rank of this abelian group. In 1953, Mori [Mo] showed that a rank ≥ 3 abelian covering of a compact Riemann surface is of class P_G , that is, it carries Green function. We prove the following generalization:

THEOREM 1. — A rank ≥ 3 abelian covering of a Riemann surface is of class P_G .

In what follows, the notation $X \in O_G$ means that the surface X is not of class P_G .

Proof of Theorem 1. The proof is based on the following special case of a theorem of Kusunoki-Mori, which can be viewed as a generalization of the maximum principle. For a detailed exposition of this theorem, we also refer to [SaNa], III.1.2G.

THEOREM 2. — (Kusunoki-Mori, [KuMo]) Let X be a surface of class O_G , and let Y be a subsurface of X with an analytic boundary ∂Y . Then the double **dbl**Y of Y along ∂Y is also of class O_G .

^{*}Mathematics Subject Classifications (1991): Primary 30F15; Secondary 30F20. Keywords: Covers of Riemann surfaces, Bounded harmonic functions, Green function.

One has an immediate

COROLLARY 1. — Let Y be a subsurface of X with an analytic boundary. If the double **dbl**Y of Y is of class P_G , then X is also of class P_G .

Let now R be a Riemann surface and $p': Z \to R$ be a rank ≥ 3 abelian covering. Then there exists an intermediate abelian covering $p: X \to R$ of pure rank 3 (i.e. a \mathbb{Z}^3 -covering), such that Z is a covering of X. Since the property of being a P_G -surface passes to coverings, it suffices to prove the theorem for the case of pure rank 3.

Set $G := p^*\pi_1(X) \subset \pi_1(R)$. Then $\pi_1(R)/G = \mathbb{Z}^3$. Let $\gamma_1, \gamma_2, \gamma_3$ be three loops in R such that $[\gamma_1], [\gamma_2], [\gamma_3] \in \pi_1(R)$ generate \mathbb{Z}^3 in the quotient. Let R_0 be a compact subsurface of R with analytic boundary ∂R which contains $\gamma_1, \gamma_2, \gamma_3$. Then the surface $Y := p^{-1}(R_0)$ above R_0 is connected. Thus, the double **dbl**Y of the subsurface Y of X is a \mathbb{Z}^3 -covering of the double **dbl** R_0 of R_0 . The surface **dbl** R_0 being compact, Mori's theorem implies that **dbl**Y is of class P_G , and the Corollary 1 above implies that X is of class P_G . This completes the proof.

Some Corollaries of Theorem 1.

1. On commutator subgroups of Fuchsian groups. It has been shown in [McKSu], [LyMcK] that the maximal abelian covering of $\mathbb{C}\setminus\{0,1\}$ is of class P_G . Together with Theorem 1, this supplies the list of surfaces which do not have an abelian cover of class P_G : Namely, the sphere $S^2 = \mathbb{P}^1_{\mathbb{C}}$, the complex plane \mathbb{C} , the punctured plane $\mathbb{C}\setminus\{0\}$, the tori \mathbb{T} , and the punctured tori $\mathbb{T}\setminus\{q\}$. The only non-trivial case is that of a punctured torus, so we describe its maximal abelian cover. If $p:\mathbb{C}\to\mathbb{T}$ is the universal covering of \mathbb{T} , then $\mathbb{C}\setminus p^{-1}(q)$ is the maximal abelian cover of $\mathbb{T}\setminus\{q\}$, which is easily seen to be not of class P_G . Also, note that $\mathbb{T}\setminus\{q\}$ is the only surface in the above list which is covered by the unit disc Δ .

According to a theorem of Myrberg [My], if a Riemann surface X is covered by the unit disc Δ , and G is the corresponding Fuchsian group acting on Δ , then $X \in P_G$ if and only if G is of convergence type; that is,

$$\sum_{g \in G} (1 - |g(z)|) < \infty$$

for one, and hence for all $z \in \Delta$ (see also [Ts], X.13). The following is an immediate corollary of Theorem 1 and the remarks above:

COROLLARY 2. — Let a Riemann surface X be covered by the unit disc Δ , and let $G \subset \mathbf{Aut}(\Delta)$ be its covering group. Then

- (i) If $X \neq \mathbb{T}\backslash\{q\}$, then the commutator subgroup [G,G] is of convergence type.
- (ii) If H is a subgroup of G such that $[G, G] \subset H \subset G$, and the rank of the abelian group G/H is ≥ 3 , then H is of convergence type.
- 2. Carathéodory hyperbolicity of metabelian covers. A Riemann surface X is called Carathéodory hyperbolic if bounded holomorphic functions separate the points of X. It is interesting to know when Carathéodory hyperbolic surfaces appear as "small" covers of Riemann surfaces. In [LiZa] it is shown that if a Riemann surface R has an abelian cover Y of class P_G , then Y has a Carathéodory hyperbolic, abelian cover X, such that X is a metabelian (i.e. two-step solvable) Galois covering of R. Hence, Theorem 1 implies the following corollary.

COROLLARY 3. — If R is not one of the surfaces S^2 , \mathbb{C} , $\mathbb{C}\setminus\{0\}$, \mathbb{T} , $\mathbb{T}\setminus\{q\}$, then it admits a metabelian, Carathéodory hyperbolic Galois covering $X\to R$.

The converse of this corollary is also true, for it is obvious that the surfaces S^2 , \mathbb{C} , $\mathbb{C}\setminus\{0\}$, \mathbb{T} do not possess any cover carrying bounded analytic functions. For the surface $\mathbb{T}\setminus\{q\}$, recall that its maximal abelian cover is of class O_G . One of the results in [LySu] asserts that an abelian cover of an O_G -surface is of class O_{HB} , that is it has no bounded non-constant harmonic functions. This shows that a metabelian cover of $\mathbb{T}\setminus\{q\}$ is of the class O_{HB} , so in particular it has no bounded analytic functions, and it cannot be Carathéodory hyperbolic.

On the other hand, applying Corollary 3 to the maximal abelian cover X of $\mathbb{T}\setminus\{q\}$, we see that X has a metabelian Carathéodory hyperbolic Galois cover Y, which is a 3-step solvable cover of $\mathbb{T}\setminus\{q\}$. This shows that the case of punctured tori is not very exceptional; any surface covered by the unit disc admits a solvable Carathéodory hyperbolic cover.

II. Existence of bounded harmonic functions on finite covers of P_G -surfaces.- Let R be a Riemann surface of class O_G , and let X be a rank ≥ 3 abelian cover of R. Then, as we have noticed above, $X \in O_{HB}$ by a result in [LySu]. On the other hand, Theorem 1 implies that $X \in P_G$. So there are many Riemann surfaces $X \in P_G \cap O_{HB}$. Let us denote by Z the maximal abelian (hence, \mathbb{Z}^{∞} -)

cover of X. It has been observed in [LySu] that Z is of class P_{HB} , that is, it does carry a non-constant bounded harmonic function. The theorem below states that X has a *finite* Galois cover Y which is of class P_{HB} . However, by an argument due to V. Lin, Y does not carry any non-constant bounded analytic function (see Remark 2).

THEOREM 3. — Any Riemann surface X of class P_G has a finite cover Y which is of class P_{HB} and, moreover, Y even carries a Diriclet finite bounded harmonic function.

Proof of Theorem 3. A P_G -surface of genus g=0 already carries a Dirichlet finite non-constant bounded harmonic function (see [SaNa], III.5G). Hence, setting X=Y we are done. If $g\neq 0$ then there exists a closed analytic curve γ on X which does not divide the surface in two parts. We denote two sides of γ by γ^+ , γ^- , and we cut X along γ . Let \tilde{X} be a second copy of X, $\tilde{\gamma}$ be the copy of γ in \tilde{X} with corresponding sides $\tilde{\gamma}^+$, $\tilde{\gamma}^-$. Gluing X to \tilde{X} via identifications $\gamma^+ \leftrightarrow \tilde{\gamma}^-$, $\gamma^- \leftrightarrow \tilde{\gamma}^+$, we obtain a \mathbb{Z}_2 -covering Y of X.

Claim. The surface Y is of class P_{HB} .

An immediate way to see this is to observe that the harmonic part of the Royden's boundary of Y consists of two points, which implies the existence of a Diriclet finite non-constant bounded harmonic function on Y (see [Ro], also [SaNa], III.3F). However, we shall give a more elementary proof based on the following theorem:

THEOREM 4. — (Bader-Parreau [BaPa], Nevanlinna [Nev]) Let Y_1, Y_2 be two disjoint subsurfaces of Y with analytic boundaries ∂Y_1 , ∂Y_2 . Assume that there exists two non-constant bounded harmonic functions u_1 on Y_1 and u_2 on Y_2 such that $u_1 \equiv 0$ on ∂Y_1 and $u_2 \equiv 0$ on ∂Y_2 . Then Y carries a non-constant bounded harmonic function. Moreover, if u_1, u_2 have finite Dirichlet integrals, then Y carries a non-constant bounded harmonic function with finite Dirichlet integral.

Proof of the claim. The surface X being of class P_G , the harmonic measure ω of the ideal boundary of X with respect to γ is non-vanishing, that is, ω is a bounded non-constant harmonic function with finite Dirichlet integral on $X \setminus \gamma$ which vanishes on γ (See [Ts] X.1). Let $\tilde{\omega}$ be the same function on $\tilde{X} \setminus \tilde{\gamma}$. Setting $Y_1 := X \setminus \gamma$, $Y_2 := \tilde{X} \setminus \tilde{\gamma}$, $u_1 := \omega$, $u_2 := \tilde{\omega}$, the hypotheses of Theorem 2 are satisfied, hence Y carries a bounded non-constant harmonic function with finite Dirichlet integral.

Remarks.

1. A sufficient condition for a Galois cover Y of a P_G -surface X to be of class P_{HB} is the compactness of the boundary of a fundamental region of the corresponding group action on Y; this can be proved in the same way as in the proof above.

It should be noted that a finite (even infinite) cover of a P_G -surface can be of class O_{HB} . For example, if X is a rank-3 abelian cover of a compact surface K of genus g=2, and Y is the maximal abelian (i.e. rank-4) cover of K, then as we have already remarked, X, Y are of class $P_G \cap O_{HB}$, but Y is a \mathbb{Z} -cover of X.

2. In contrast with the possible existence of bounded non-constant harmonic functions, a finite cover Y of an O_{HB} surface X cannot carry non-constant bounded analytic functions. The proof goes as follows: Let n be the degree of a finite covering $p:Y\to X$, and let f be a bounded analytic function on Y. Let $x\in X$ and $p^{-1}(x)=\{y_1,...,y_n\}$. For j=1,...,n define $a_j(x):=\sigma_j(f(y_1),...,f(y_n))$, where σ_j is the elementary symmetric polynomial of degree j in n variables. Then each a_j is a bounded analytic function on X. The real parts of the a_j 's, being bounded harmonic functions, are constant, hence $a_j=const$, which implies that f=const.

Acknowledgments.- I express my gratitude to Prof. M. Zaidenberg for his encouragement and to Prof V. Lin for communicating the argument presented in the Remark 2. Theorem 3 answers to a question posed by Prof. V. Lin.

References

- [Ro] H.L. Royden, On the ideal boundary of a Riemann surface, Contributions to the theory of Riemann surfaces, pp. 107-109, Princeton Univ. Press., Princeton, N.J., 1953.
- [LySu] R. Lyons, D. Sullivan, Function theory, random paths and covering spaces, J. Different. Geom. 19 (1984), 299-323.
- [Nev] R. Nevanlinna, Zur theorie der meromorphen functionen, Acta Math. 46 (1925).
- [BaPa] R. Bader, M. Parreau, Domaines non-compacts et classification des surfaces de Riemann, C.R. Paris, 232 (1951).
- [McKSu] H.P. McKean, D. Sullivan, Brownian motion and harmonic analysis on the class surface of the thrice punctured sphere, J. Different. Geom. 51 (1984), 203-211.
- [KuMo] Y. Kusunoki, S. Mori, On the harmonic boundary of an open Riemann surface, I. Japan J. Math. 29 (1959), 52-56.

- [Ts] M. Tsuji, Potential theory in the modern function theory, 2nd ed., Chelsea Publishing Co., New York, 1975.
- [LyMcK] T.J. Lyons, H.P. McKean, Winding of the plane Brownian motion, J. Different. Geom. 51 (1984), 212-223.
- [Mo] A. Mori, A note on unramified abelian covering surfaces of a closed Riemann surface, Journ. Math. Soc. Japan, 6 (1954).
- [My] P.J. Myrberg, Über die existenz der Greenschen funktionen auf einer gegebenen Riemannschen fläsche, Acta Math. 61 (1933).
- [SaNa] L. Sario, M. Nakai, Classification theory of Riemann surfaces, Springer Verlag, Berlin e.a., 1970.
- [LiZa] V.Y. Lin, M. Zaidenberg, Liouville and Carathéodory coverings in Riemannian and complex geometry, Voronezh Winter Mathematical Schools. To the 80th birthday of Selim Krein, AMS, Providence, RI, 1998 (to appear); E-print alg-geom/9611020.

Institut Fourier, B.P. 74, 38402 Saint Martin-d'Heres Cedex, France

E-mail address: uludag@ujf-grenoble.fr