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ABSTRACT. We generalize the Sakai theorem that says that every complex alge-
braic manifold of general type is measure hyperbolic. We introduce the notion of
k-measure hyperbolicity for every Eisenman k-measure and, following Sakai, we con-
sider an analogue & of the Kodaira logarithmic dimension which construction uses

logarithmic k-forms. We show that a complex algebraic manifold is k-measure hyper-
bolic if & (X) = dim X.

1. Introduction

In 1969 Eisenman introduced on each complex manifold X of dimension n intrinsic
measures E;X (k = 1,...,n) which are biholomorphic invariants [E70], [Ko70]. The
most important Eisenman measures are the first one EYX (the Kobayashi-Royden
pseudometric) and the top one EX (the Kobayashi-Eisenman pseudovolume) which
have various applications in complex analysis [Ko70, Ko76, GW85|. The intermediate
Eisenman measures turned out also to be useful in the analytic cancellation problem
[Ka94, Z90].

In 1977 litaka [I77] introduced the Kodaira logarithmic dimension of algebraic
varieties which is one of the main algebraic invariants now. In the same year, devel-
oping ideas from [CGT72], Sakai found a remarkable connection between this algebraic
invariant and the Kobayashi-Eisenman pseudovolume [Sa77|. His theorem says that

if the Kodaira logarithmic dimension of a complex algebraic manifold X coincides
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with its standard dimension n then X is measure hyperbolic, that is, the Kobayashi-
Eisenman pseudovolume EX is volume everywhere except for, possibly, a subset of X
of Hausdorff 2n-measure zero.

Our aim is to generalize this theorem for all Eisenman measures. We use the
notion of k-measure hyperbolicity (see section 2.3) which is compatible with the
standard measure hyperbolicity. We consider the following algebraic invariants which
were introduced by Sakai in another paper [Sa78] (see also [Ma95]). Let L be a
holomorphic vector bundle on a compact algebraic manifold X of rank r. Let S™L
be the symmetric m-th power of L. If no symmetric power of L has a non-trivial
global section put A(L) = —oo. Otherwise put

A(L) = lim sup logdim I'(X, 5"L) _ r+ 1.
m—+00 logm

Let D be an SNC-divisor in X and X = X \ D. Following Titaka [[77] we consider the
sheaf Q% (X, D) of germs of logarithmic k-forms on X along D. We call A\(Q*(X, D))
the Kodaira-Iitaka-Sakai logarithmic k-dimension &i(X) of X (this definition does
not depend on an SNC-completion of X). Sakai used these dimensions in a special
case when X is compact and, judging by his remarks, he kept the logarithmic case
in mind as well. The Kodaira-litaka-Sakai n-dimension is, of course, the standard

Kodaira logarithmic dimension. The main result of this paper is

Theorem Let X be an algebraic complex manifold such that ri(X) coincides
with dim X. Then X is k-measure hyperbolic.

The proof of the Theorem follows the ideas from [CG72], [Sa74], [Sa77]. Each step
of the proof is a generalization of a well-known fact and we try to reflect the names

of these facts in the titles of sections.
2. Terminology and Notation

2.1 In this paper X is always a complex manifold of dimension n, T'X is the holo-
morphic tangent bundle of X; T,X is the holomorphic tangent space at r € X;
AFT,X (resp. A*TX) is the k-th exterior power of T, X (resp. TX); DEX (resp.
D*X) is the set of decomposable elements in A¥T, X (resp. A¥T'X). That is, the ele-
ments of D¥X (decomposable k-vectors) are of form v; A - - - A vy where v; € T, X for
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each 7. Note that A"T'X = D™X is a holomorphic line bundle and each infinitesimal
volume form generates a metric on this bundle. Suppose that B is the unit ball in
C* with center at the origin o. Let || ¢ || be the metric on A*T'B generated by the
Euclidean volume.

Definition For every z € X and every v € DX (1 < k < n) the intrinsic Eisenman
k-measure of v is

E; (z,v) = inf{]| ¢ |I*}

where infimum is taken over all ¢ € D¥B for which there exists a holomorphic mapping
f:B — X with

£(0) =z and £,(¢) = v.

2.2 These measures can be also defined in the following way. Fix the standard
Euclidean coordinate system in B and a k-dimensional subspace W in T, X. One
may suppose that there is a local coordinate system wy, ..., w, in a neighborhood of x
for which W is generated by vectors 8/0w, ..., 0/0wy. Let ® = (%)’c [1E, dw; Aduw;.
Consider v € DFX such that v generates W. Choose a mapping f as in Definition
2.1, then wy, ..., w, can be treated as a local coordinate system on the germ of N =
f((B,0)) at z. The mapping f : B — N is locally invertible at z, i.e. its Jacobian
J f(o) is different from 0. Put

1
O (z,W) = inf ————— &,
W) =T P
where f runs over all holomorphic mappings f: B — X such that f(o) = z and
£.(T,B) = W. Then

EX(z,v) = 67 (2, W) (v A D)

for every decomposable k-vector v € D*X which generates W.

2.3 Definition We say that X is k-measure hyperbolic if E (z,v) # 0 for every
D*X \ A where A C D¥X has Hausdorff 2¢-measure zero with ¢ = dim D¥X.

Remark This definition is different form the one in [GW85] but it has an ad-
vantage: the m-measure hyperbolicity of X is equivalent to the standard measure
hyperbolicity.



2.4 Let L be a holomorphic vector bundle over X. Then L, is the fiber of this bundle
over a point z € X, and I'(X, L) is the space of holomorphic sections of L.

Denote by L the antiholomorphic vector bundle that corresponds to L. That
is, the elements of the transition matrices of L are the complex conjugates of the
corresponding elements of the transition matrices of L. The space of antiholomorphic
section of L will be denoted by I'(X, L). Put |[L|? =L ® L.

If K is a holomorphic line bundle then the transition functions of |K|* are positive
and we can speak about smooth positive sections of | K'|? which are also called metrics
on K for the following reason.

Let {U,} be a coordinate covering of X. Recall that a section h = {h,} of
|K|? is smooth positive if each trivialization function h, on U, is smooth positive.
Let § = {0,} be a section of K. Note that ||§(x)||* := |0a(z)|?/hal(z), z € X is
independent from « which gives a function ||6||? on the whole X. Tts value ||6(z)||?

can be treated as the square of the length of § at x.

2.5 Let v = {7} be a nonnegative continuous section of |K[?. That is, for each «

the function 7, on U, is nonnegative and

Yo = |gaﬂ|2’Yﬁ in U, NUg

where g, is the transition function of K. Let A be the set of zeros of 7. Suppose
that  is smooth on X \ A. Recall that the exterior derivative can be written as
d=0+0, d° = %(6 — 0), and, therefore, dd® = %88_. One can see that
dd®log~y, = dd°logys. Hence we obtain a (1,1)-form on X \ A which will be denoted
by dd°log~y. (In the case when 7y is a metric this form represents the first Chern class
of K in the De Rham cohomology.)

Remark. We cannot consider v as a metric on K when A is not empty. But in
any case we can consider 7y as a pseudometric on the dual bundle K*. More precisely:
if v € K} and 7 is its conjugate in K then v(v ® ©7) is the square of the pseudolength
of v.

2.6 For every vector bundle L we shall denote by S™L the symmetric m-th power
of this bundle. Let Q%(X) be the sheaf of germs of holomorphic k-forms on X
and let Q*(X) be the sheaf of germs of antiholomorphic k-forms on X. For every




o € T(X,8™QF(X)) its conjugate in T'(X,S™Qk(X)) will be denoted by @. Con-
sider the fibration of antiholomorphic decomposable k-vectors DFX over X. For a
decomposable k-vector v € DX its conjugate in DX will be denoted by .

Suppose that [H] is a holomorphic line bundle on X. Let v be a pseudometric on
[—H], that is 7 is a nonnegative continuous section of the smooth real bundle |[H]|?.
If ¢ € T(X, S™QF(X))®[—H] then p® @ can be viewed as a continuous section of the
smooth vector bundle |S™Q*(X)|?® |[—H]|?. Hence Y® ¢ ® @ is a continuous section
of |S™QF(X)|2. The last bundle can be embedded into |(QF(X))®™|2 since there exists
a natural embedding of S™QF(X) into into (2%(X))®™. The dual bundle of QF(X)
is A*TX. Therefore for every v € D¥X the expression (7(z) ® ¢ ® ¢)(¥®™ @ v®™)
makes sense and defines a nonnegative number.

If n = k then Q%(X) is a line bundle. Hence S™Q*(X) is isomorphic to the
line bundle (QF(X))®*™ and v ® ¢ ® @ is a nonnegative continuous section of the
smooth real line bundle |(€2#(X))®™|2. This implies that ¢ = (y ® ¢ ® %)™ can be
viewed as a pseudovolume form on X (recall that a pseudometric on A*T'X is called

a pseudovolume).

2.7 Beginning from section 4 X will be the complement to an effective divisor D =
D +. ..+ D, of simple normal crossing (SNC) type in a projective algebraic manifold
X. In particular, for every point of X there exists a local coordinate system (z,w) =

(21, -+, 21, W1, - -, wp_;) such that
Zl ---Zl P 0

defines the germ of D around this point (0 <! < m and when m = 0 this point does
not belong to D). In this case {2*(X) contains the subsheaf QF(X, D) of logarithmic
k-forms along D (see [177]). The germs of these forms can be written as

S ez w) 0 B0 ) D Wit
r+q=k 2i(1) Zi(r) wj(1) Wi(q)

Y

where ¢ 7(z, w) is the germ of a holomorphic function, and the indices of summation
are I = (i(1),...,i(r)) and J = (§(1),...,5(q))-

2.8 Suppose that X is compact and the rank of a vector bundle L on X is r. If no
symmetric power of L has a non-trivial global section put A\(L) = —oo. Otherwise
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put

ML) = lim SuplogdlmF(X,S L)

m—+00 logm
Definition We shall call A(L) the Sakai dimension of L.

+ 1.

It is known [Sa78, Ma95] that
A(L) < n.
This inequality will be crucial in section 5.

3. The Ahlfors-Griffiths-Kobayashi Lemma.

3.1 The result we are going to discuss in this section is well-known in the case of k = n
(e.g., see [GW85, Ko76, Sa74]). We shall follow to a great extend the argument in
the top-dimensional case [Sa74], but it is a pleasure to repeat this proof.

Let {U,} be a coordinate covering of X and let w be a pseudovolume form on
X. That is, locally w is the product of the Euclidean volume form (in the coordinate
system of U,) and a nonnegative function £,. The Ricci form of w is the (1,1)-form
Ricw = dd¢log&, which is defined at those points where &, is smooth and positive.
Let (21,...,2) be a coordinate system in C* and let B[r] be the open ball of radius
r in C*. Let ® be the volume form on C* defined by ® = (%)’C 1%, dz; Adz;. Then
the Poincaré volume V, on Bl[r] is given by V. = p,(z) - ® where

wr(2) = (k+1) k'rQ/ Z|zz\ )EHL

(Up to a constant factor, this volume is also called the Bergman volume or the
Kobayashi-Eisenman volume.) It is known that RicV, = dd°logu, > 0 (i.e., this
(1,1)-form is positive definite) and (RicV,)* =V, [Sa74].

3.2 Theorem Let A be a proper closed analytic subset of X, let H be an effective
divisor on X generating a line bundle [H]|, and let v be a nonnegative section of |[H|[?
which vanish on A only and which is smooth on X \ A. Let ¢ € T'(X,S™0*(X) ®
[—H]). Suppose that the following conditions hold

(1) dd¢logy is a positive definite (1,1)-form on X \ A;
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(2) for every z € X \ A and for every v € DEX we have

k(k—1)

[(=1)77 (dd°log M) (v A D)™ > (7(2) ® ¢ ® §)(V*™ ® 7°™).

Let f : B[r] — X be a holomorphic mapping. Then 1 := [f*(7 ® ¢ ® ¢)]/™ is a
pseudovolume form on Br] such that i < V.

Proof. It was shown in section 2.6 that v is a pseudovolume. We can suppose that
©|sBr) # 0 since otherwise v = 0. Let ® and p, be as in 3.1. Then 1 (z) = £(2)®
where ¢ is a nonnegative continuous function which is C* on B[r]\ f~*(A). For every
positive t such that 0 < t < r put

£(2)
l2) = pe(2)
Then 7(2) is continuous on B[t|U0B[t]. Let 2y € B[t]UJB]t] be a point where 7;(z)
attains its maximum. Note that zy ¢ f~'(A) since &|;-1(4) and, therefore, 7|14
are identically zero. Thus 7(z) is C™ near z.
In order to follow the proof in [Sa74] we need to show that

dd®1og &(2)| 1=z = dd®log ' (2)] =2,

where 7' = yo f (that is, dd®log&(z)|,=, coincides with f*(dd®log~)(z)|.=,). Note
that zyp cannot be a point where each k£ x k-minor of the Jacobi matrix of f (in a
suitable local coordinate system on X) is zero. In particular, by the implicit function
theorem the corresponding irreducible branch N of the germ of f(B[r]) at f(zo) is
smooth and k-dimensional. Consider Hy = H N N. The restriction ¢y of ¢ to A¥N
is a holomorphic section of the trivial line bundle S™QF(N) ® [—Hy] (i-e., it can be
treated as a holomorphic function on N) and locally 1 = [(Ya, - ¢~ - @) © f]Y/™ where
2o € Uy,- Since 2y is a point of maximum (2y) # 0 and thus ¢x(f(20)) # 0. Hence
£(2) = Vg, - |(2)[* where h(2) is a germ of a holomorphic function at 2 such that
h(z) # 0, and 7;0 = Yqo © f. This implies that dd‘logé = dd‘log~'.

Now we can follow [Sa74] again. By the maximality, we have
dd®1og 1(2) o=z = [dd® log&(2) — dd*log py(2)]o=z < 0.

Note that if A and B are nonnegative definite Hermitian matrices such that A < B
then det A < det B. Using the facts that

dd®10g £(2)|z=zo = f*(dd*10g7)(2)[z=z 2 0
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and
dd®log iy = RicV; > 0,

we obtain

f*((dd°log 7)) < (RicVi)* at z.

Since V; = (RicV;)* it follows from condition (2) that ¢ < V; at z = 2z;. Hence
€(20) < pe(z0) and m(2) < my(20) < 1. Taking limit as ¢ — r we have

/e =me(z) <1

which implies that ¢ = £(2)® < p,® = V.
QED.

3.3 Corollary Under the assumption of Theorem 3.2 the manifold X is k-measure
hyperbolic if ¢ is not identically zero.

Proof. One can consider ¢ as an element of I'(X, S™Q*(X)) which vanishes on H.
Hence it makes sense to speak about the value of ¢ on v®™ where v € D*X. Consider
the subset A of D¥X such that ¢(3%™) = 0 for every 3 € A. Since ¢ is a holomorphic
nonzero section A is a proper closed analytic subset of D¥X. Consider a point z € X
and a k-vector v € D*X which is not in A. Choose a local coordinate system
Wi, ..., Wy in a neighborhood of z such that the vectors 9/0wy, ..., /0wy, generate the
same k-space W in T, X as v. Put

a=0/0w A ...\ 0JOwg.

Since « is proportional to v we have b := @(a®™) # 0. Let f : B — X be a
holomorphic mapping from the unit ball B in C* into X such that f(o) = z and
f+(T,B) = W where o is the origin. Consider the image N of the germ (C¥, 0) of C*
under f. Since f is not degenerate at o one can see that N is smooth, k-dimensional,
and (wy, ..., wy) is a local coordinate system on N. Hence ) = [f*(y® oy ® @n)]V/™
where @ is the restriction of ¢ to N. Let £ be the same as in the proof of Theorem
3.2. Then the above formula for ¢ implies that £(0) = |J;|?|b|*™ where J; is the
Jacobian of the mapping f : (C¥,0) — N. By Theorem 3.2 £(0) < u,(0) = (k+1)kkL

That is
1 |b|2/m

TP = o+ 1

>0
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It follows from section 2.2 that the Eisenman k-measure E (z,v) > 0.
QED.

Remark This Corollary and Theorem 3.2 remain true if A from Theorem 3.2
is not necessarily an analytic subset of X, but only a closed subset of Hausdorff

2n-measure zero.
4. The Kodaira-Iitaka-Sakai dimensions of algebraic varieties

4.1 From now on we suppose that X, X, D, and Q¥(X, D) are the same as in section
2.7. Put L = QF(X, D). Consider the Sakai dimension A\(L) of L (see section 2.8 for
the definition).

Definition We shall call A(L) the Kodaira-Iitaka-Sakai logarithmic k-dimension
Kk (X) of X.

We need to show that this definition is correct which is a simple repetition of

litaka’s argument.

4.2 Proposition Let X; and X, be complex complete algebraic manifolds, and D,
and D, are divisor of SNC-type in X, and X, respectively. Suppose that f : X1 — X,
is a morphism and that f is the extension of a dominant morphism f : X; — X,

where X; = X; — D;. Then f generates a natural homomorphsim
f* : Ska(XQ, DQ) — Ska(Xl,Dl).

Moreover, if f : X1 — X, is birational and proper then f* is an isomorphism.
Proof. One way to show this fact is to repeat Proposition 1 from [I77] almost
word for word. A shorter way is another reference to [I77]. Iitaka mentions that

Proposition 1 holds for forms in T, .., (X) where

Ty (X) = T(X, (Q(X, D))*™) @ - -- @ T(X, (2"(X, D))*™).

Lyeess

If my = m and m; = 0 for every ¢ # k then

Tm1,...,mn (X) = F(Xa (Qk(Xa D))®m)



Hence Proposition 1 from [I77] yields a natural homomorphsim
f* i D(X, (@ (X2, D2))®™) — (X, (Q(X1, D1))®™)

which is an isomorphism when f is birational and proper. Since f* is natural (it
is generated by the induced mapping of m-tuple k-forms) it commutes with the ac-
tion of the symmetric group S(m) on the corresponding vector bundles. Note that
(X, S™QF(X, D)) can be treated as a subspace of I'(X, (QF(X, D))®™) which is in-
variant relative to the action of S(m). This implies the desired conclusion.

QED.

4.3 Corollary The Kodaira-Iitaka-Sakai logarithmic k-dimesnion k(X ) does not
depend on the choice of completion X if D = X \ X is of SNC-type.

Proof. Let X' and X" be two smooth completions of X whose boundaries D’
and D" are of SNC-type. Then the identical automorphism of X generates a rational
map ¢ : X' — X”. By Hironaka’s Main Theorem II there exists a completion X
of X with a boundary D of SNC-type and two birational morphism p' : X — X'
and p" : X — X" such that p” = g o p' and the restrictions of p’' and p" to X are
automorphisms of X. Proposition 4.2 implies that

MO (X, D)) = AMQF (X', D) = MQF(X", D")).
QED.

Remark. One can define the Kodaira-litaka-Sakai dimension for a singular vari-

ety as this dimension of its smooth model.
5. The Kodaira Lemma

We remind that we use the assumption and notation from section 2.7. Let H be

a divisor which generates a very ample line bundle [H] on X.

Proposition (cf. Kodaira’s Lemma in [Sa74]) Let L be a holomorphic vector
bundle on X whose Sakai dimension \(L) is n. Then dimT'(X,S™L ® [—-H]) > 0 for

some large m.
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Proof. Since [H] is very ample it has no base points, and by Bertini theorem we
can choose H to be smooth. Hence we have the following exact sequence [GH78, ch.

1, section 1]
0—I[(X,S"L®[-H]) - '(X,S"L) = ['(X,S™(L|y)) —

where L|g is the restricition of L to H. Since dim H = n — 1 it follows from section
2.8 that dimT'(H,S™(L|g)) < O(m™'). Using the assumption about the Sakai
dimension of L we have dimI'(X,S™™L) > am™, a > 0 for some my and for any
large m. Hence the exact sequence implies that dim (X, S™™ [ @ [-H]) > 0 for
sufficiently large m.

QED.

Corollary Let &;(X) = n. Then there exists a nontrivial ¢ € I'(X, S™L ® [ H))

for some large m.
6. The Carlson-Griffiths-Sakai Construction

6.1 Our aim is to apply Theorem 3.2 and Corollary 3.3. Hence besides a nontrivial
¢ which is now provided by Corollary 5 we need v as in Theorem 3.2 which will
be constructed in this section in the manner of [CG72] and [Sa77]. Let {U,} be a
coordinate covering of X. Suppose that [H] is a very ample bundle on X and that
h = {hs} is a metric on H such that dd®logh is a positive (1,1)-form on X. Let
0; = {di,o} be a holomorphic section of [D;] defining D; where i =1,...,s. Let ||6;]|
be the length of §; in some metric on [D;]. Note that multiplying ¢; by small € > 0
we can make ||d;|| as small as we wish.

Recall that for every point zy of D there exists a coordinate system (z,w) =

(21, .., 21, W1, ..., w, ;) in a neighborhood U of xy such that
z1---21=0

defines the germ of D around this point. Consider a k-vector v € D¥X where z € U.

It is of form p p
V= ar AL —— AAFTI_—
; I,Jt =1 azi(t) t=1 awj(t)
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where the indices of summation are I = (i(1),...,i(q)),J = (j(1),...,j(k —q)), and
g runs from 0 to min(k, ) (we use the symbol A here to denote the exterior product).
We shall fix this notation zg, U, (2, w), v, and A for the rest of the section.

6.2 Lemma Let
ch

fy = s m
j=1(log [[4;[2)

where c is a positive constant, that is, v is a nonnegative section of |[H]|> which

vanishes on D only. If the lengths ||d;|| are sufficiently small then ddlog~y is positive
definite on X = X \ D and for every zo € D there exists a coordinate neighborhood

U as before this lemma such that in this neighborhood

L dz; N\ dz; n-l
dd®1 > ) J J dw; Ndw;}. b>0.
087 2 bm {Zw {log 5P T2 B A A}

Proof. The argument is exactly the same as in Proposition 2.1 in [CG72]. The
only difference is that Carlson and Griffiths considered the case where [H] is the sum
of the canonical bundle and another bundle. Thus one need to replace Q/IT;_, ||;|[?
in formula (2.3) from [CG72] by ch and [T;_, (log ||6;]|?)* by IT;—, (log ||6;||*)*™. After
this the proof becomes the exact repetition and the desired inequality for dd¢logy is
formula (2.11) from [CG72] up to notation and the inessential factor m.

QED.

6.3 Consider the k-th exterior power of the right-hand side of the inequality in Lemma

6.2
vV -1 g dZZ' N dZi _ _
W= (bm— STOAL WO A A (dwyy A did)

2r ) Hai 2 (log [2i [2)
where the indices of summation are I = (i(1),...,i(q)),J = (j(1),...,7(k — q)), and
g is any natural number from 0 to min(k,[).

Corollary Let x € U \ D. Then for every k-vector v € DX we have

(=1) 52 (dd log V(v A D) > (—1) T w(v A D).

k(k

In particurlar,

k(k 1)

[(=1)

(dd°logy)* (v A D)™ > by (Z o, |2)2>

7 TTi=1 i) [* (log |zige)
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where b, is a positive constant.

Proof. Consider the subspace W of T, X generated by v. Then the left-hand
side and the right-hand side of the inequality in Lemma 6.2 generate positive definite
Hermitian matrices A and B on W. Since A > B we have det A > det B which
implies the desired conclusion.

QED.

6.4 Let v € I'(X, S™Q*(X, D)). Then in U

dzz (r, —gr
p=> ey H DA A dwrp)
J

_ Z(rt)

where the functions cz,; are holomorphic in U, the indices of summation are 7 =
{ilr, ) 128m, T = {3(r, ) :’Q’i;ﬂl, and ¢, is any natural number from 0 to min(k, ()
which depends on r. Note that

O™ — Z ® ar,, JT t 1dZZ (r,t) A A dw](”))
I.,J,, 2,7 r=1

where the summation runs over indices Z, 7, I,., J,. such that
Z(r,:)y=1., J(r,-) = J,

for every r = 1,...,m. Hence the triangle inequality implies

(Y@ Y) (" @v®™) <

2
a
> lerso) 1 ]

I, I T, T 1 i)
Choosing a smaller neighborhood U, if necessary, we can suppose that |cz 7(z)|? does
not exceed some positive constant by for every x € U and every Z, J. Hence
| 2
_ a
WP ™) <b | 3 H
IT;J‘M
For every positive integer p there exists d > 0 such that for all numbers dy, ..., d, the

following inequality between homogeneous forms holds
(di+ ...+ dp)"" <d(di™+...+d™).
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Applying this inequality in the case when the set {d;} coincides with the set

ey
Hg:1 Zi(t) |

where I, J are the same as in section 6.1 one obtains

Lemma When U is sufficiently small, z € U \ D, and v € DX we have

m
3 larg|?
ngl |Zi(t) ‘2

1,J

(1 @ ) (W™ @ P*™) < bs

for some positive bs.

6.5 Proposition Let ¢ € I'(X, S™Q*(X, D)) ® [-H] and let y be as in Lemma
6.2. If c in the definition of «y is sufficiently small then conditions (1) and (2) from
Theorem 3.2 hold.

Proof. Condition (1) follows from Lemma 6.2. Since dd°log~y does not depend
on ¢ one can suppose that for each neighborhood of D we have

k(k—1)

(1) (dd°log7)*(v A D)™ > (v(2) ® ¢ ® §)(v*™ @ V*™)

for every z which does not belong to this neighborhood and for every v € DfX. The
compactness of D implies that it suffices to check the same inequality for every point
z from U \ D.

Let h be as Lemma 6.2 and let # be a nonvanishing section of [—-H] over U. Then
h ® 0 ® § may be viewed as a section of a trivial real line bundle over U, i.e. as a real

function. Hence, reducing U, if necessary, one can suppose that
Cb4
j—1(log ||6;][?)>’

Furthermore, since on U the length ||d;|| of the section §; (recall that J; is a defining

by > 0.

YRR <

section for D;) is the product of |z;| and a nonvanishing function for i =1,...,1 we

have
Cb5

j=1(log |z;[*)>m’

Since 6 is nonvanishing we have ¢ = 6 ® ¢ where ¥ € I'(U, S™QF(U, DN U)). Then

TRIR0 < bs > 0.

(YR®e®@P)(VE" @ ™) = (Y@ 0®0)- (v @) (V" @ *™).
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Using the upper bound on v ® # ® § and Lemma, 6.4, we have

_ _ cbg jarg? ]"
(Y@ ® @)V @7®™) < : , b > 0.
o og 577 | & 1T s
In combination with Corollary 6.3 this implies the desired conclusion.
QED.

6.6 If i, (X) = n then by Corollary 5 there exists a nontrivial
¢ € T(X,0%(X, D)) c T(Q*(X)).

By Proposition 6.5 there exists v such that the assumption of Theorem 3.2 holds.

Corollary 3.3 yields our main result.

Theorem Let X be a complex algebraic manifold of dimension n. Suppose that
the Kodaira-litaka-Sakai logarithmic k-dimension of X coincides with n. Then X is

k-measure hyperbolic.

Remark (1) It is worth mentioning that this theorem gives sufficient conditions
only for k-measure hyperbolicity. It follows from [Sa78] that a surface Y can be
1-measure hyperbolic even in the case when %, (Y) = 0.

(2) If the holomorphic mappings from the ball in the definition of Eisenman mea-
sures are replaced by meromorphic mappings which are reqular at the origin then
we obtain other intrinsic measures which are called Yau measures [Y75]. One can
introduce the notion of k-measure hyperbolicity with respect to the Yau measures
(we call it meromorphic k-measure hyperbolicity) in the same way we did for Eisen-
man measures. It can be shown that under the assumption of Corollary 3.3 the
manifold is meromorphically k-measure hyperbolic (the proof follows the argument
in [Ko76]). This may be a stronger result since for a complex manifold the meromor-
phic k-measure hyperbolicity implies the k-measure hyperbolicity but not vice versa
([Ka96].

(3) Note that Theorem 6.6 has applications to the analytic cancellation problem.
For instance, a manifold X whose Kodaira-litaka-Sakai logarithmic k-dimension coin-

cides with its dimension n cannot be biholomorphic to C™ x Y where the dimension

15



n —m of Y is less than k (e.g., see [Ka94]). We discuss such applications further in
the next paper.
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