THE MALGRANGE VANISHING
THEOREM WITH SUPPORT CONDITIONS

C. LAURENT-THIEBAUT AND J. LEITERER

0. INTRODUCTION

Let X be a complex manifold of dimension n, and suppose an open subset Z of
X is given such that Z \ Z is compact.

Denote by ® = ®(Z) the family of all closed subsets C' of X such that C N Z
is compact. Then ® is a family of supports in X (in the sense of Serre [S]). Note
that ® consists of all closed subsets of X if Z is relatively compact in X. If E is a
holomorphic vector bundle over X, then we use the following notations:

- 02 ,.(®; X, E) is the space of all E-valued continuous (s,7)-forms f on X with
supp f € ®;

- Z3,.(®; X, E) is the subspace of all d-closed forms in C?,.(®; X, E).
- EQ (% X,E) :=C?,(9;X,E) ﬂgCg’rfl(@;X, E), ifr>1;
- E9 (& X,E) = {0}, ifr=0;

-Hy"(X,E) := 22 .(%; X, E)/E27T(<I>;X, E).
Note that H3"(X, E) is the usual Dolbeault cohomology group if Z is relatively
compact.

0.1. Definition. We say X is (n — 1)-concave at the ends contained in Z if either
Z is relatively compact (and hence no end is contained in Z) or there exists a C*®
function p on X such that:

(1) p(z) > infeex p(C) for all z € X;

(2) the sets {¢ € Z | p(¢) > a}, a > infcex p(¢), are compact;

(3) there exists ag > infeex p(¢) such that {¢ € X |p({) < ap} C Z and the
Levi form of p has at least 2 positive eigenvalues on {¢ € X | p(¢) < ag}.

In this paper we prove the following

0.2. Theorem. Suppose X is connected, (n — 1)-concave at the ends contained in
Z, and X \ Z is not compact. Then, for each holomorphic vector bundle E over X,
HY™(X,E) = 0.
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Ezample [Mi]: Let X = X\ S where X is a compact complex space of dimension
n whose singular points are isolated. Let S be the set of all singular points of X.
Assume that S is divided into two non-empty subsets Sy and Ss. Let U cC X \ Sa
be a neighborhood of S;. Set Z = U \ S;. Then X is (n — 1)-concave at the ends
defined by Z and X \ Z is not compact.

If Z is relatively compact and hence ® consists of all closed subsets, Theorem
0.2 is the classical vanishing theorem of Malgrange [M] (1955). Ohsawa [O] (1984)
observed that this theorem can be obtained also by the following argument: Since,
by a theorem of Green and Wu [G-W] (1975), any connected non-compact Rie-
mannian manifold admits a C*° exhausting function with strictly positive Lapla-
cian, every connected non-compact complex manifold of dimension n admits an
n-convex exhausting function. Therefore, the theorem of Malgrange follows from
Andreotti-Grauert theory [A-G] (1962). Ohsawa used this argument to give a new
proof (the first proof was given by Siu [Siu-1,Siu-2] (1969)) for the Malgrange van-
ishing theorem on reduced complex analytic spaces of dimension n without compact
n-dimensional irreducible branches, constructing an n-convex exhausting function
on such spaces.

It seems to the authors that the proof of Theorem 0.2 given below is interesting
also in this classical situation of Malgrange (Z CC X), because, in this case, we
do not use any global complex-geometric properties of the manifold - it’s true we
also use the exhausting function of Green and Wu, but the difference to Ohsawa’s
argument is that we do not need the full information given by this function: We only
use the consequence that there exists a Morse function without local maxima. By
Green and Wu such a function exists on all connected non-compact C°°-manifolds.
This makes it possible to prove the Malgrange vanishing theorem also on CR-
manifolds which are connected, non-compact, locally embeddable and 1-concave
[La-L].

At the end of this paper (Sect.4) we give an application of Theorem 0.2 to the
Hartogs-Bochner phenomenon.

1. NOTATIONS
If X is a complex manifold and FE is a holomorphic vector bundle over X, then
we use the following notations:
If D CC X is a relatively compact open subset of X, then:
C? (D, E) is the Banach space of continuous E-valued (s, r)-forms on D;

C2.(D,E), 0 < a < 1,is the Banach space of E-valued (s,r)-forms on D which
are Holder continuous with exponent «;

C2.(D;X,E), 0 < a <1, is the Banach space of forms f € C? (X, E) with
supp fCD  and  f|5€C2.(D,E),

endowed with the topology of C¢,.(D, E);
C2,.(X, E) is the Fréchet space of forms f € C? (X, E) with f|5 € C2,.(D,E)
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for each open D CC X, endowed with the topology of uniform convergence in each
Ce.(D,E).

If now Y is an arbitrary subset of X, then we denote by C:T(Y;X, E) the
subspace of all f € C¢,.(X, E) with supp f C Y, endowed with the Fréchet topology
of C¢ . (X, E). We set

Zg,(Y; X, E) = Z3, (X, E)yn C3.(Y; X, E).

Zg¢,.(Y; X, E) will be considered also as Fréchet space endowed with the topology
of C¢,.(X, E). Note that if Y is compact, then C¢,.(Y; X, E) and Z¢,.(Y; X, E) are
Banach spaces, 0 < a < 1.

If E is the trivial line bundle, then in the above notations we omit the letter E.

2. APPROXIMATION IN DEGREE n — 1

2.1. Definition. Let V be a topological space and U C V. We shall say that
U has no holes with respect to V if, for each compact subset K of U, there exists
a compact set K’ C U such that K C K’ and the set V' \ K’ has no connected
component which is relatively compact in V.

2.2. Lemma. Let X be a complex manifold of dimension n which is completely
(n — 1)-convez in the sense of Andreotti-Grauert (for the purpose of the present
paper we may assume that X is a convex domain in C* ), and let D be a domain in
X which has no holes with respect to X. Then, for each holomorphic vector bundle
E over X, the image of the restriction map

Z(()],n—l(XJ E) — Z(()],n—l(DJ E)
is dense in Z9 (D, E).

Proof. Assume the contrary, i.e. there exists a form f € Zg (D, E) which does
not belong to the closure of Z3,, |(X,E) in Z3, (D, E). By the Hahn-Banach

theorem and regularity of 8, then there exists a d-closed C%-form u with values
in the dual bundle E* such that supp v CC D and

(2.1) /Du/\faéO,

but [yuAg=0forall g€ Z3, ,(X,E). Since X is completely (n — 1)-convex,
from Andreotti-Grauert theory we get an E*-valued CpS-form ¢ with compact
support in X such that dp = u. Since D has no holes with respect to X, there
exists a compact set K CC D such that supp v C K and X \ K has no connected
component which is relatively compact in X. Since ¢ is holomorphic outside K
and supp ¢ is compact, this implies that supp ¢ CC D. Hence, by Stokes’ theorem,
Jpun f=(=1)""' [, Adf =0 which contradicts (2.1). O

Recall that, since the boundary integral in the Bochner-Martinelli-Koppelman
formula vanishes for forms of maximal degree, there is the following lemma:
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2.3. Lemma. Let D CC C" be a bounded domain with piecewise Cl—_boundary,
and let Bp be the Bochner-Martinelli-Koppelman operator for D. Then OBpf = f

for dall f € C3 (D).

2.4. Lemma. Let D CC C" be a domain with piecewise Cl—boundary._ Then,
for each f € Zg,n_l(D), there exists a sequence U; of neighborhoods of D and a

sequence of forms f; € Zg,n—1(Uj) which converges to f uniformly on D.

Proof. Since the boundary of D is piecewise smooth, locally, this approximation
can be realized by small shifts. Patching together these local approximations by a
partition of unity, we obtain a sequence U ; of neighborhoods of D and a sequence
of forms f; € Cgm_l(f]j) such that f; converges to f when j tends to co, uniformly
on D, and, moreover, the forms 0 f] are continuous on U ; and converge to zero for
§ — oo, uniformly on D. Take bounded neighborhoods U; C U; of D so small that
also

(2.2) sup || Efj(o [[— 0 for j — .
CEU;

(Here || & f](C) || is the maximum of the moduli of the coefficients of & f] at ¢.) Let
By; be the Bochner-Martinelli-Koppelman operator on U;. Then, by Lemma 2.3,
setting

fj . - BUjgfj

=f;
we obtain a sequence f; € Zgin_l(Uj). Further, by the well known estimates for
the Bochner-Martinelli operator, (2.2) implies that

sup || (Bu,df;))(¢) [—0  for j— oc.
CEU;

Hence, the sequence f; converges to f uniformly on D. O

2.5. Definition. Let X be a complex manifold. A triplet [A, B, V] will be called
an extension element in X if A, B and V are open subsets of X with compact
C*'-boundaries such that: A C B, B\ A CC V, V is convex with respect to some
holomorphic coordinates in a neighborhood of V, ANV and BNV have piecewise
C'-boundary, and either ANV = () or A admits a basis of neighborhoods U such
that U NV has no holes with respect to V.

Finally, let us mention the following simple lemma, which is proved in [La-L]):
2.6. Lemma. Let X be a C'*° manifold and ¢ a real C*®-function on X all critical
points of which are non-degenerate such that the following conditions are fulfilled:

(i) no critical point of ¢ lies on =1(0) U p~1(1);

(i) ¢~ 1([0,1]) is compact;

(ii3) @ has no points of local mazima in =1(]0,1]).
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Then there ezists o finite number of extension elements [A;, B;,Vi],1=0,... ,N,
such that Ap = ¢~ (]—00,0]), B, = Aj41 for0 <1 < N—1and By = ¢~ !(]—00, 1]).
Moreover these extension elements can be chosen so that the sets V; are arbitrarily
small, for example, so small that a given vector bundle on X is trivial over some
neighborhood of each V.

3. PROOF OF THEOREM 0.2

As already observed, for compact Z the theorem is well-known. Therefore we
may restrict ourselves to the case when Z is not compact. (Note however that by
an obvious modification of the arguments given below one obtains also a proof in
the case of compact Z, which is simpler than in the non-compact case.)

Suppose the hypotheses of Theorem 0.2 are fulfilled and let p and ag be as in
Definition 0.1. Set

po = inf p(().
CeZ

By a theorem of Green and Wu [G-W] (see also [O] for a proof in the case of a
complex manifold), any connected non-compact C°°-manifold admits an exhausting
function whose Laplacian (with respect to an arbitrarily chosen Riemannian metric)
is everywhere strictly positive. Therefore, we may assume that p has also the
following properties (additional to those from Definition 0.1):

- the sets {( € X \ Z|p(¢) < a}, a < oo, are compact;

- there exists B9 > ao such that the Laplacian of p is everywhere strictly
positive on p~1([Bo, oc[) (which implies that p has no points of local maxima in

p~([Bo, o0]).-

Moreover, by the Morse pertubation argument (see, e.g., the theorem on page
43 in [G-P]), we may assume that all critical points of p are non-degenerate. Set

Dog ={¢ € X|a<p(() < B}

for pp < a < f < 0. If D C G are open subsets of X where D is relatively
compact in X, then we denote by C¥ (D;G,E), 0 < p < 1, the Banach space
of all continuous, resp. Holder continuous with exponent u, E-valued (s, r)-forms
f on G with supp f C D (endowed with the topology of C¥ (D, E)). Denote by
Z!.(D;G, E) the subspace of all d-closed forms in C¥,(D; G, E).

3.1.Lemma. Let pg < o' <a<ag and let D be an open subset of X with smooth
compact boundary such that D, o, € D. Then:

(i) There is a continuous linear operator

Ao : CQ (DN Dayoo; D, E) — [} Cou%1(D N D oo; D, E)
e>0

such that 8Aof = f on Dy e, for al f € CF (DN Dy,oo; D, E).
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(i1) There exist continuous linear operators

A: Cg,n(50 5oc,oo;ﬁ: E) — ﬂ C&;il(ﬁﬂ Ea’,odﬁa E)

e>0
and o - L -
K: C((J),n(D NDa,oo; D, E) — ﬂ Cé;f(D N Da,oo; D, E)
e>0
such that

OAf=f+Kf on D
for all f € C,,(D N Da,o; D, E).

Proof. Part (i): Since the Levi form of p has at least 2 positive eigenvalues on
D, 00, Lemmas 12.3 and 12.4 (iii) in [H-L] immediately imply the following state-
ment: If f € CQ,(D N Da,co; D, E), then there exists u € [\.5Coney(D N
Dy oo; D, E) with Ou = f on D,y .- Moreover, the proof of Lemma 12.4 (iii)
in [H-L] (page 107) shows that this solution « can be given by a continuous linear
operator Ag as required.

Part (ii): Choose a” with a < a” < ap, and take a finite number of C* domains
Ui,... ,Un C Dy» o such that Dy, o, UU1 U...UUn = D and some neighborhood
of each Uj is biholomorphically equivalent to an open subset of C*. Then, by
Lemma 2.3 and the well known estimates for the Bochner-Martinelli kernel, we
have continuous linear operators

Aj :Cg,n(UjaE) — ﬂ Cé,;il(UJaE)
e>0
with 0A;f = fforall f € Cgm(Uj,E). Now we take real C'™ functions xg,.-. , XN
on X such @a‘c supp xo CC Dpg.a0, SUPP x; CCU; (7 =1,... ,N)and xo+ ...+
x~N =1 on D. Then the operators

N N
A= ZXjAj and K := ngj NA;
j=0

=0

have the required properties. O

By Ascoli’s theorem and Fredholm theory, it follows from part (ii) of this lemma
that the space Cf ,,(D N Dy, 00; D, B)N 0,50 Cono1(DN Dy o0; D, E) is topolog-
ically closed and of finite codimension in C§ (D N Dy,c0; D, E), and from part (i)
it follows that this finite codimension is independent of @ and a'. Therefore, we
have the following

3.2.Corollary. If D is an open subset of X with smooth compact boundary such
that D, .o, C D, then there exists a finite number Np such that the following holds:
If po < &' < a < ag, then the space
Con(DNDaoo; D,E)ND [ Cj (DN Dyt o3 D, E)
e>0

is topologically closed and of codimension Np in Cf ,(D N Da,00; D, E).
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3.3. Lemma. Let po < a < ag and By < 8 < oo such that dp(¢) # 0 if p(¢) = B.
Then the space Z3,,_1(Da,co; X, E) is dense in Z3,,_1(Da,p; Dy, g, E).

Proof. By Lemma 2.6 there exists a sequence of extension elements [4;, By, V],
I =0,1,..., in X such that Ay = D,, 3, By = Aj4; for all [, and X = [J;5, 4
Moreover we may assume that, for all I, V; N D, o, = @ and the vector bundle E
is trivial over some neighborhood of V;. Now it is sufficient to prove that, for all 7,
the restriction map

Zg,nfl(ﬁa,oo n El; El, E) — Z(()),nfl(ﬁa,oo n Zl; Zl, E)

has dense image. Let I € N and u € Z§,, ;(Da,c0 N As; A, E) be given.

By Lemmas 2.2 and 2.4, then there exists a sequence v; € Z3,,_;(V;, E) which
converges to u uniformly on the compact subsets of V; N 4, . Take a C*°-function
x on X with supp x CC V; and x =1 in a neighborhood of B; \ 4;. Setting ¢; =
u+ x(vj —u), we define a sequence @; € C3 | (Da,c0 N Bi; By, E) which converges
to uw uniformly on A;. Moreover, then the sequence ggoj =0Ox A (v; — u) belongs to
C8 »(Dag,00 N Bi; By, E) and converges to zero in this space. Hence, by Corollary
3.2 and Banach’s open mapping theorem, there is a sequence ¢; € C3,,_;(Da,00 N
By; By, E) which converges to zero in Cf,,_; (Da,00NBy; By, E) such that 8y; = dp;
on By. Setting u; = ¢; — ¢;, we obtain a sequence u; € Z§ ,,_(Da,00 N Bi; By, E)
which converges to u uniformly on 4;. O

3.4.Lemma. Let pg < &' < a < ag and By < 1 < B2 < oo such that dp(¢) # 0
if p(¢) = B1 or p(¢) = B2, and let f € C’gm(ﬁa,gz;ﬁpo,@,E) such that f = Ou,
on Dy, g, for certain uy € C3,,_(Dar p,; Dpy gy, E). Then there exists also uy €
Cg,nfl(ﬁa’,ﬁz;ﬁpo,ﬂzaE) with f = 5’112 on DPo,ﬁz‘

Proof. By Lemma 2.6, there exists a finite number of extension elements [4;, By, V],
1=0,...,N, in X such that A9 = D,y,8,, By = Ai41 for alll =0,... ,N -1,
and By = D,,3,- Moreover we may assume that, for all I, V; N Dy, = 0
and the vector bundle E is trivial over a neighborhood of V;. Now we assume
(proof by induction over 1) that, for certain I with 0 < | < N, we already have
w € CQ 1 (Dot 0o N Ar; Ay, E) with f = Ou; on A;. Then we have to find w4, €
Cg’n_l(ﬁa:,oo NBy; B, E) with f = uyy, on B;. Since, by Corollary 3.2, the space

Cg,n(ba,oo N Fl;ﬁla E) N 5Cf((]J,n—l(Eoz’,oo n Fl;gla E)

is closed with respect to the topology of the Banach space Cgin(ﬁa,oo NBy; B, E),
for this it is sufficient to find a sequence (¢,,) C C3,,_1(Dar,c0 N By; By, E) such
that the sequence (91, ) is contained in C§ ,,(Da,00 N Bi; By, E) and converges to f
uniformly on Ea,oo N B,.

By Lemma 2.3 there exists v; € C§, ;(V; N By, E) with Ovy = f on V,NB,.
Take a C'°°-function x on X such that supp x CC V; and x =1 in a neighborhood
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of B;\ A;. By Lemmas 2.2 and 2.4 we can find a sequence (¢, )ven C Z0,,_1(Vi, E)
which converges to u; —v; uniformly on A;Nsupp x. Setting ¢, = w;+x(vi—u;—p,),
we obtain the required sequence. [

3.5.Lemma. Let f € Cg’n(d);X, E). If there exist a, 8 with po < o < ag and
Bo < B < oo such that f = dug on Dy, g for some ug € CF ,,(Da,p; Dy, 3, E), then
there exists u € Cy) ,, 1(®; X, E) with f = 0u on X.

Proof. Take an increasing sequence (\,),en, converging to infinity such that Gy <
X < B and dp(¢) # 0 if p(¢) € {Xo, A1,--.}, and take o/, a with py < o' <
a < ap such that supp f C Dy o- Then from Lemma 3.4 we get a sequence
uy € C3 i _1(Dar 2, ; Dpo r,» E), v =1,2,..., with f = 8u, on Dy, »,. In view of
the approximation lemma 3.3, this sequence can be chosen converging uniformly
on the compact subsets of X. This limit is the required solution u. O

End of proof of Theorem 0.2. We introduce on Cg,r({); X, E) the inductive limit
topology defined by the Fréchet spaces C?,.(C; X, E), C € ®. Then C} (®; X, E)
is an LF-space. It follows from Corollary 3.2 and Lemma 3.5 that Ej ,,(®; X, E) is
of finite codimension in C9 . (®; X, E). Since EJ ,(®; X, E) is the image of a closed
operator between LF-spaces, this implies that Eg’n(q); X, E) is topologically closed
in the LF-space C§,,(®; X, E) and moreover, that E ,(®; X, E) itself is also an
LF-space (with respect to the topology induced from Cj ,,(®; X, E)).

Now we consider a continuous linear functional L on C§,,(®; X, E) such that
(3.1) Lip)=0 forall ¢€Ey,(®X,E)

By the Hahn-Banach theorem, we have to show that L is the zero functional.

Let E* be the dual of the bundle E. By (3.1), L defines a d-closed E*-valued
current of bidegree (n,0) on X. By regularity of 0, this current is defined by
an holomorphic E*-valued (n,0)-form h. L is continuous on Cg . (®; X, E) and
X\ Z € & (recall that & = ®(Z)). Hence, L is continuous on the Fréchet space
C3,(X\ Z; X,E). This implies that (supph) N (X \ Z) is compact. Since X \ Z
is not relatively compact in X and X is connected, it follows by uniqueness of
holomorphic functions that h =0 on X, i.e. L is the zero functional. O

4. AN APPLICATION TO THE HARTOGS-BOCHNER PHENOMENON

Using ideas of Lupacciolu [Lu] and Chirka-Stout (see Theorem 3.3.1 and its proof
in [C-S]), Theorem 0.2 gives the following result on Hartogs-Bochner extension,
which generalizes the theorem of Weinstock [W]:

4.1. Theorem. Let X and Z be as in Theorem 0.2. Suppose D is an open subset
of X such that: the boundary 8D is of class C* (but not necessarily compact), D\ Z
is compact and X \ D has not more than a finite number of components which are
either compact or contained in Z. Then for any holomorphic vector bundle E over
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X and each continuous CR-section f : 0D — E the following two conditions are
equivalent:

(i) There ezists a continuous section F : D — E which is holomorphic over D
such that F|0D = f.

(#) [5, fo =0 for any continuous d-closed (n,n — 1)-form ¢ with values in E*
(the dual bundle of E) defined in a neighborhood of D such that supp @ N D is
compact.

In the proof of this theorem we use the following

4.2. Theorem. Let X, Z and ® be as in Theorem 0.2. Denote by ®* the family of
closed subsets C' of X such that CN(X\ Z) is compact. Let E be a holomorphic vec-
tor bundle on X and let E* be the dual bundle of E. Then the space Ej ;($*; X, E*)
consists of all f € Z3 ,(®*; X, E*) such that

(4.1) /X fAY=0  forall YeZ), ,(9;X,E).

In particular, then Hg;l (X, E*) is separated (with respect to the LF-topology of
C8,1(®*; X, E¥)).

Proof. That condition (4.1) is necessary, follows from Stokes’ theorem. Conversely,
let f € Z9,(®*; X, E) with (4.1) be given. By Theorem 0.2,

(4.2) Hy"(X,E)=0.
By (4.1) and (4.2), in the following way, a linear functional
u:Ch (9, X,E) — C

can be defined: For each ¢ € C) (®;X,E) we take ¢ € Cp , ,(®; X, E) with
0y = ¢ and set

u)= [ 1nv.

Since both Cg,n,l (®; X, E) and Cg’n(@; X, E) are LF-spaces and the open mapping
theorem holds for closed linear surjections between such spaces, it follows that u
is continuous with respect to the topology of Cp ,(®; X, E). In particular, u is
a (0,0)-current on X. From the definition of u it is clear that du = f. Since
X\ Z € @, in particular, u is continuous on Cgin(X \ Z; X, E). This implies that,
(suppu) N (X \ Z) is compact, i.e. suppu € ®*. Moreover, by regularity of 9, u is
a continuous section of £. [

Remarks. 1. Consider the example given after Theorem 0.2. Let ® be the family
of closed subsets C of X such that CNZ is compact. In [Mi] the following separation
theorem is obtained: If n > 3 and E is a holomorphic vector bundle over X such
that K~ ® E extends to S, then Hy™ (X, E) is separated. From Theorem 4.2
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it follows that this is true also for n = 2, even without the extendability condition
on E.

I1. Consider the Rossi example [R]. This is a 2-dimensional complex manifold X,
diffeomorphic to C? \ {0}, such that H%1(X) is not separated. If ® is the family
of closed subsets of C? which do not meet the origin, then it follows from Theorem
4.2 that Hg’l(X ) is separated.

Proof of Theorem 4.1. The conclusion (i)=(ii) follows from Stokes’ theorem. As-
sume now that condition (ii) is satisfied.

Let Uy, ... ,Un be the connected components of X \ D which are either compact
or contained in Z. Take points z; € U;, 1 < j < N, and set Xg = X\ {21,...,2n}.
Let p and g be as in Definition 0.1. Set Zy = {¢ € X | p(¢) < ap}. We may
assume that ZoN{z1,...,2n} = 0. Denote by ®; = ®(Z) the family of all closed
subsets C' of Xy such that C'N Z is compact, and denote by ®§ the family of closed
subsets C* of X such that C* N (Xg \ Zp) is compact. Then D C X, and Xy \ D
has no connected component which belongs to the family ®;. By Theorem 0.2,

(4.1) HE"(Xo, B*) = 0.

Consider the E-valued (0, 1)-current [, f]%! on X, defined by

I = [ Tne
8D
for all E*-valued Cp7,_;-forms ¢ with compact support in Xo. Since f is C'R, this

current is d-closed. The support of [i.f]®! is D and therefore contained in ®;.
Hence, as f satisfies (ii), by Theorem 4.2, we can solve the equation

OF = [i.f]"!

with an E-valued (0,0)-current F on X, such that supp F' € ®§, i.e. supp F'\ Zj is
compact. Since D \ Z; is compact, it follows that also supp F'\ (DU Z,) is compact.
Since no connected component of Xg \ D is in &} and F is holomorphic outside
dD, it follows that F = 0 outside D. Now it follows by standard arguments (see,
e.g., the proof of Theorem 5.1 in [La]) that F is the required extension of f. O
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