THE MALGRANGE VANISHING THEOREM WITH SUPPORT CONDITIONS

C. Laurent-Thiébaut and J. Leiterer

0. Introduction

Let X be a complex manifold of dimension n, and suppose an open subset Z of X is given such that $\overline{Z} \setminus Z$ is compact.

Denote by $\Phi = \Phi(Z)$ the family of all closed subsets C of X such that $C \cap \overline{Z}$ is compact. Then Φ is a family of supports in X (in the sense of Serre [S]). Note that Φ consists of all closed subsets of X if Z is relatively compact in X. If E is a holomorphic vector bundle over X, then we use the following notations:

- $C_{s,r}^0(\Phi; X, E)$ is the space of all E-valued continuous (s, r)-forms f on X with supp $f \in \Phi$;
 - $Z_{s,r}^0(\Phi;X,E)$ is the subspace of all $\overline{\partial}$ -closed forms in $C_{s,r}^0(\Phi;X,E)$.
 - $-E^0_{s,r}(\Phi;X,E):=C^0_{s,r}(\Phi;X,E)\cap\overline{\partial}C^0_{s,r-1}(\Phi;X,E), \text{ if } r\geq 1;$
 - $-E_{s,r}^0(\Phi; X, E) := \{0\}, \text{ if } r = 0;$
 - $-H^{s,r}_{\Phi}(X,E) := Z^0_{s,r}(\Phi;X,E)/E^0_{s,r}(\Phi;X,E).$

Note that $H^{s,r}_{\Phi}(X,E)$ is the usual Dolbeault cohomology group if Z is relatively compact.

- **0.1. Definition.** We say X is (n-1)-concave at the ends contained in Z if either Z is relatively compact (and hence no end is contained in Z) or there exists a C^{∞} function ρ on X such that:
 - (1) $\rho(z) > \inf_{\zeta \in X} \rho(\zeta)$ for all $z \in X$;
 - (2) the sets $\{\zeta \in \overline{Z} \mid \rho(\zeta) \geq \alpha\}, \ \alpha > \inf_{\zeta \in X} \rho(\zeta), \text{ are compact};$
- (3) there exists $\alpha_0 > \inf_{\zeta \in X} \rho(\zeta)$ such that $\{\zeta \in X \mid \rho(\zeta) \leq \alpha_0\} \subseteq Z$ and the Levi form of ρ has at least 2 positive eigenvalues on $\{\zeta \in X \mid \rho(\zeta) \leq \alpha_0\}$.

In this paper we prove the following

0.2. Theorem. Suppose X is connected, (n-1)-concave at the ends contained in Z, and $X \setminus Z$ is not compact. Then, for each holomorphic vector bundle E over X,

$$H^{0,n}_{\Phi}(X,E) = 0.$$

Partially supported by HCM Research Network CHRX-CT94-0468.

 $^{1991\ \}textit{Mathematics Subject Classification.}\ 32\text{F1O}\ \text{-}\ 32\text{D20}$

Keywords and phrases. q-convexity, vanishing theorem, extension of CR functions

Example [Mi]: Let $X = \tilde{X} \setminus S$ where \tilde{X} is a compact complex space of dimension n whose singular points are isolated. Let S be the set of all singular points of \tilde{X} . Assume that S is divided into two non-empty subsets S_1 and S_2 . Let $U \subset \subset \tilde{X} \setminus S_2$ be a neighborhood of S_1 . Set $Z = U \setminus S_1$. Then X is (n-1)-concave at the ends defined by Z and $X \setminus Z$ is not compact.

If Z is relatively compact and hence Φ consists of all closed subsets, Theorem 0.2 is the classical vanishing theorem of Malgrange [M] (1955). Ohsawa [O] (1984) observed that this theorem can be obtained also by the following argument: Since, by a theorem of Green and Wu [G-W] (1975), any connected non-compact Riemannian manifold admits a C^{∞} exhausting function with strictly positive Laplacian, every connected non-compact complex manifold of dimension n admits an n-convex exhausting function. Therefore, the theorem of Malgrange follows from Andreotti-Grauert theory [A-G] (1962). Ohsawa used this argument to give a new proof (the first proof was given by Siu [Siu-1,Siu-2] (1969)) for the Malgrange vanishing theorem on reduced complex analytic spaces of dimension n without compact n-dimensional irreducible branches, constructing an n-convex exhausting function on such spaces.

It seems to the authors that the proof of Theorem 0.2 given below is interesting also in this classical situation of Malgrange $(Z \subset \subset X)$, because, in this case, we do not use any global complex-geometric properties of the manifold - it's true we also use the exhausting function of Green and Wu, but the difference to Ohsawa's argument is that we do not need the full information given by this function: We only use the consequence that there exists a Morse function without local maxima. By Green and Wu such a function exists on all connected non-compact C^{∞} -manifolds. This makes it possible to prove the Malgrange vanishing theorem also on CR-manifolds which are connected, non-compact, locally embeddable and 1-concave [La-L].

At the end of this paper (Sect. 4) we give an application of Theorem 0.2 to the Hartogs-Bochner phenomenon.

1. Notations

If X is a complex manifold and E is a holomorphic vector bundle over X, then we use the following notations:

If $D \subset\subset X$ is a relatively compact open subset of X, then:

 $C_{s,r}^0(\overline{D},E)$ is the Banach space of continuous E-valued (s,r)-forms on \overline{D} ;

 $C_{s,r}^{\alpha}(\overline{D}, E)$, $0 < \alpha < 1$, is the Banach space of E-valued (s, r)-forms on \overline{D} which are Hölder continuous with exponent α ;

 $C_{s,r}^{\alpha}(\overline{D};X,E), 0 \leq \alpha < 1$, is the Banach space of forms $f \in C_{s,r}^{0}(X,E)$ with

supp
$$f \subseteq \overline{D}$$
 and $f|_{\overline{D}} \in C_{s,r}^{\alpha}(\overline{D}, E)$,

endowed with the topology of $C_{s,r}^{\alpha}(\overline{D}, E)$;

 $C^{\alpha}_{s,r}(X,E)$ is the Fréchet space of forms $f \in C^0_{s,r}(X,E)$ with $f|_{\overline{D}} \in C^{\alpha}_{s,r}(\overline{D},E)$

for each open $D \subset\subset X$, endowed with the topology of uniform convergence in each $C_{s,r}^{\alpha}(\overline{D},E)$.

If now Y is an arbitrary subset of X, then we denote by $C_{s,r}^{\alpha}(Y;X,E)$ the subspace of all $f \in C_{s,r}^{\alpha}(X,E)$ with supp $f \subseteq Y$, endowed with the Fréchet topology of $C_{s,r}^{\alpha}(X,E)$. We set

$$Z_{s,r}^{\alpha}(Y;X,E)=Z_{s,r}^{\alpha}(X,E)\cap C_{s,r}^{\alpha}(Y;X,E).$$

 $Z_{s,r}^{\alpha}(Y;X,E)$ will be considered also as Fréchet space endowed with the topology of $C_{s,r}^{\alpha}(X,E)$. Note that if Y is compact, then $C_{s,r}^{\alpha}(Y;X,E)$ and $Z_{s,r}^{\alpha}(Y;X,E)$ are Banach spaces, $0 \le \alpha < 1$.

If E is the trivial line bundle, then in the above notations we omit the letter E.

2. Approximation in degree n-1

- **2.1. Definition.** Let V be a topological space and $U \subseteq V$. We shall say that U has no holes with respect to V if, for each compact subset K of U, there exists a compact set $K' \subseteq U$ such that $K \subseteq K'$ and the set $V \setminus K'$ has no connected component which is relatively compact in V.
- **2.2. Lemma.** Let X be a complex manifold of dimension n which is completely (n-1)-convex in the sense of Andreotti-Grauert (for the purpose of the present paper we may assume that X is a convex domain in \mathbb{C}^n), and let D be a domain in X which has no holes with respect to X. Then, for each holomorphic vector bundle E over X, the image of the restriction map

$$Z_{0,n-1}^0(X,E) \longrightarrow Z_{0,n-1}^0(D,E)$$

is dense in $Z_{0,n-1}^0(D,E)$.

Proof. Assume the contrary, i.e. there exists a form $f \in Z^0_{0,n-1}(D,E)$ which does not belong to the closure of $Z^0_{0,n-1}(X,E)$ in $Z^0_{0,n-1}(D,E)$. By the Hahn-Banach theorem and regularity of $\overline{\partial}$, then there exists a $\overline{\partial}$ -closed $C^\infty_{n,1}$ -form u with values in the dual bundle E^* such that supp $u \subset\subset D$ and

(2.1)
$$\int_{D} u \wedge f \neq 0,$$

but $\int_D u \wedge g = 0$ for all $g \in Z^0_{0,n-1}(X,E)$. Since X is completely (n-1)-convex, from Andreotti-Grauert theory we get an E^* -valued $C^\infty_{n,0}$ -form φ with compact support in X such that $\overline{\partial} \varphi = u$. Since D has no holes with respect to X, there exists a compact set $K \subset C$ such that supp $u \subseteq K$ and $X \setminus K$ has no connected component which is relatively compact in X. Since φ is holomorphic outside K and supp φ is compact, this implies that supp $\varphi \subset C$. Hence, by Stokes' theorem, $\int_D u \wedge f = (-1)^{n-1} \int_D \varphi \wedge \overline{\partial} f = 0$ which contradicts (2.1). \square

Recall that, since the boundary integral in the Bochner-Martinelli-Koppelman formula vanishes for forms of maximal degree, there is the following lemma:

- **2.3.** Lemma. Let $D \subset \mathbb{C}^n$ be a bounded domain with piecewise C^1 -boundary, and let B_D be the Bochner-Martinelli-Koppelman operator for D. Then $\overline{\partial}B_Df = f$ for all $f \in C^0_{0,n}(\overline{D})$.
- **2.4.** Lemma. Let $D \subset \mathbb{C}^n$ be a domain with piecewise C^1 -boundary. Then, for each $f \in Z^0_{0,n-1}(\overline{D})$, there exists a sequence U_j of neighborhoods of \overline{D} and a sequence of forms $f_j \in Z^0_{0,n-1}(U_j)$ which converges to f uniformly on \overline{D} .

Proof. Since the boundary of D is piecewise smooth, locally, this approximation can be realized by small shifts. Patching together these local approximations by a partition of unity, we obtain a sequence \tilde{U}_j of neighborhoods of \overline{D} and a sequence of forms $\tilde{f}_j \in C^0_{0,n-1}(\tilde{U}_j)$ such that \tilde{f}_j converges to f when j tends to ∞ , uniformly on \overline{D} , and, moreover, the forms $\overline{\partial} \tilde{f}_j$ are continuous on \tilde{U}_j and converge to zero for $j \to \infty$, uniformly on \overline{D} . Take bounded neighborhoods $U_j \subseteq \tilde{U}_j$ of \overline{D} so small that also

(2.2)
$$\sup_{\zeta \in U_j} \| \overline{\partial} \tilde{f}_j(\zeta) \| \longrightarrow 0 \quad \text{for} \quad j \to \infty.$$

(Here $\| \overline{\partial} \tilde{f}_j(\zeta) \|$ is the maximum of the moduli of the coefficients of $\overline{\partial} \tilde{f}_j$ at ζ .) Let B_{U_j} be the Bochner-Martinelli-Koppelman operator on U_j . Then, by Lemma 2.3, setting

$$f_j := \tilde{f}_j - B_{U_i} \overline{\partial} \tilde{f}_j$$

we obtain a sequence $f_j \in Z_{0,n-1}^0(U_j)$. Further, by the well known estimates for the Bochner-Martinelli operator, (2.2) implies that

$$\sup_{\zeta \in U_j} \| (B_{U_j} \overline{\partial} \tilde{f}_j)(\zeta) \| \longrightarrow 0 \quad \text{for} \quad j \to \infty.$$

Hence, the sequence f_j converges to f uniformly on \overline{D} . \square

2.5. Definition. Let X be a complex manifold. A triplet [A,B,V] will be called an extension element in X if A, B and V are open subsets of X with compact C^1 -boundaries such that: $A\subseteq B$, $\overline{B}\setminus A\subset\subset V$, V is convex with respect to some holomorphic coordinates in a neighborhood of \overline{V} , $A\cap V$ and $B\cap V$ have piecewise C^1 -boundary, and either $\overline{A}\cap \overline{V}=\emptyset$ or \overline{A} admits a basis of neighborhoods U such that $U\cap V$ has no holes with respect to V.

Finally, let us mention the following simple lemma, which is proved in [La-L]):

- **2.6. Lemma.** Let X be a C^{∞} manifold and φ a real C^{∞} -function on X all critical points of which are non-degenerate such that the following conditions are fulfilled:
 - (i) no critical point of φ lies on $\varphi^{-1}(0) \cup \varphi^{-1}(1)$;
 - (ii) $\varphi^{-1}([0,1])$ is compact;
 - (iii) φ has no points of local maxima in $\varphi^{-1}(]0,1[)$.

Then there exists a finite number of extension elements $[A_l, B_l, V_l]$, l = 0, ..., N, such that $A_0 = \varphi^{-1}(]-\infty, 0[)$, $B_l = A_{l+1}$ for $0 \le l \le N-1$ and $B_N = \varphi^{-1}(]-\infty, 1[)$. Moreover these extension elements can be chosen so that the sets V_l are arbitrarily small, for example, so small that a given vector bundle on X is trivial over some neighborhood of each \overline{V}_l .

3. Proof of Theorem 0.2

As already observed, for compact \overline{Z} the theorem is well-known. Therefore we may restrict ourselves to the case when \overline{Z} is not compact. (Note however that by an obvious modification of the arguments given below one obtains also a proof in the case of compact \overline{Z} , which is simpler than in the non-compact case.)

Suppose the hypotheses of Theorem 0.2 are fulfilled and let ρ and α_0 be as in Definition 0.1. Set

$$\rho_0 = \inf_{\zeta \in \overline{Z}} \rho(\zeta).$$

By a theorem of Green and Wu [G-W] (see also [O] for a proof in the case of a complex manifold), any connected non-compact C^{∞} -manifold admits an exhausting function whose Laplacian (with respect to an arbitrarily chosen Riemannian metric) is everywhere strictly positive. Therefore, we may assume that ρ has also the following properties (additional to those from Definition 0.1):

- the sets $\{\zeta \in X \setminus Z \mid \rho(\zeta) \leq \alpha\}, \alpha < \infty$, are compact;
- there exists $\beta_0 > \alpha_0$ such that the Laplacian of ρ is everywhere strictly positive on $\rho^{-1}([\beta_0,\infty[)$ (which implies that ρ has no points of local maxima in $\rho^{-1}([\beta_0,\infty[))$.

Moreover, by the Morse pertubation argument (see, e.g., the theorem on page 43 in [G-P]), we may assume that all critical points of ρ are non-degenerate. Set

$$D_{\alpha\beta} = \{ \zeta \in X \mid \alpha < \rho(\zeta) < \beta \}$$

for $\rho_0 \leq \alpha < \beta \leq \infty$. If $D \subseteq G$ are open subsets of X where D is relatively compact in X, then we denote by $C^{\mu}_{s,r}(\overline{D}; \overline{G}, E)$, $0 \leq \mu < 1$, the Banach space of all continuous, resp. Hölder continuous with exponent μ , E-valued (s,r)-forms f on \overline{G} with supp $f \subseteq \overline{D}$ (endowed with the topology of $C^{\mu}_{s,r}(\overline{D}, E)$). Denote by $Z^{\mu}_{s,r}(\overline{D}; \overline{G}, E)$ the subspace of all $\overline{\partial}$ -closed forms in $C^{\mu}_{s,r}(\overline{D}; \overline{G}, E)$.

- **3.1. Lemma.** Let $\rho_0 < \alpha' < \alpha < \alpha_0$ and let D be an open subset of X with smooth compact boundary such that $\overline{D}_{\rho_0,\alpha_0} \subseteq D$. Then:
 - (i) There is a continuous linear operator

$$A_0: C^0_{0,n}(\overline{D} \cap \overline{D}_{\alpha,\infty}; \overline{D}, E) \longrightarrow \bigcap_{\varepsilon > 0} C^{1-\varepsilon}_{0,n-1}(\overline{D} \cap \overline{D}_{\alpha',\infty}; \overline{D}, E)$$

such that $\overline{\partial} A_0 f = f$ on D_{ρ_0,α_0} for all $f \in C^0_{0,n}(\overline{D} \cap \overline{D}_{\alpha,\infty}; \overline{D}, E)$.

(ii) There exist continuous linear operators

$$A:C^0_{0,n}(\overline{D}\cap\overline{D}_{\alpha,\infty};\overline{D},E)\longrightarrow \bigcap_{\varepsilon>0}C^{1-\varepsilon}_{0,n-1}(\overline{D}\cap\overline{D}_{\alpha',\infty};\overline{D},E)$$

and

$$K: C^0_{0,n}(\overline{D} \cap \overline{D}_{\alpha,\infty}; \overline{D}, E) \longrightarrow \bigcap_{\varepsilon > 0} C^{1-\varepsilon}_{0,n}(\overline{D} \cap \overline{D}_{\alpha,\infty}; \overline{D}, E)$$

such that

$$\overline{\partial} Af = f + Kf$$
 on D

for all $f \in C_{0,n}^0(\overline{D} \cap \overline{D}_{\alpha,\infty}; \overline{D}, E)$.

Proof. Part (i): Since the Levi form of ρ has at least 2 positive eigenvalues on $\overline{D}_{\rho_0,\alpha_0}$, Lemmas 12.3 and 12.4 (iii) in [H-L] immediately imply the following statement: If $f \in C^0_{0,n}(\overline{D} \cap \overline{D}_{\alpha,\infty}; \overline{D}, E)$, then there exists $u \in \bigcap_{\varepsilon>0} C^{1-\varepsilon}_{0,n-1}(\overline{D} \cap \overline{D}_{\alpha',\infty}; \overline{D}, E)$ with $\overline{\partial} u = f$ on D_{ρ_0,α_0} . Moreover, the proof of Lemma 12.4 (iii) in [H-L] (page 107) shows that this solution u can be given by a continuous linear operator A_0 as required.

Part (ii): Choose α " with $\alpha < \alpha$ " $< \alpha_0$, and take a finite number of C^1 domains $U_1, \ldots, U_N \subseteq D_{\alpha^n, \infty}$ such that $D_{\rho_0, \alpha_0} \cup U_1 \cup \ldots \cup U_N = D$ and some neighborhood of each \overline{U}_j is biholomorphically equivalent to an open subset of \mathbb{C}^n . Then, by Lemma 2.3 and the well known estimates for the Bochner-Martinelli kernel, we have continuous linear operators

$$A_j: C^0_{0,n}(\overline{U}_j, E) \longrightarrow \bigcap_{\varepsilon>0} C^{1-\varepsilon}_{0,n-1}(\overline{U}_j, E)$$

with $\overline{\partial} A_j f = f$ for all $f \in C^0_{0,n}(\overline{U}_j, E)$. Now we take real C^{∞} functions χ_0, \ldots, χ_N on X such that supp $\chi_0 \subset D_{\rho_0,\alpha_0}$, supp $\chi_j \subset U_j$ $(j = 1, \ldots, N)$ and $\chi_0 + \ldots + \chi_N = 1$ on \overline{D} . Then the operators

$$A := \sum_{j=0}^{N} \chi_j A_j$$
 and $K := \sum_{j=0}^{N} \overline{\partial} \chi_j \wedge A_j$

have the required properties. \Box

By Ascoli's theorem and Fredholm theory, it follows from part (ii) of this lemma that the space $C^0_{0,n}(\overline{D}\cap \overline{D}_{\alpha,\infty};\overline{D},E)\cap \overline{\partial}\bigcap_{\varepsilon>0}C^{1-\varepsilon}_{0,n-1}(\overline{D}\cap \overline{D}_{\alpha',\infty};\overline{D},E)$ is topologically closed and of finite codimension in $C^0_{0,n}(\overline{D}\cap \overline{D}_{\alpha,\infty};\overline{D},E)$, and from part (i) it follows that this finite codimension is independent of α and α' . Therefore, we have the following

3.2. Corollary. If D is an open subset of X with smooth compact boundary such that $\overline{D}_{\rho_0,\alpha_0} \subseteq D$, then there exists a finite number N_D such that the following holds: If $\rho_0 < \alpha' < \alpha < \alpha_0$, then the space

$$C^0_{0,n}(\overline{D}\cap \overline{D}_{\alpha,\infty};\overline{D},E)\cap \overline{\partial}\bigcap_{\varepsilon>0}C^{1-\varepsilon}_{0,n-1}(\overline{D}\cap \overline{D}_{\alpha',\infty};\overline{D},E)$$

is topologically closed and of codimension N_D in $C^0_{0,n}(\overline{D}\cap \overline{D}_{\alpha,\infty};\overline{D},E)$.

3.3. Lemma. Let $\rho_0 < \alpha < \alpha_0$ and $\beta_0 < \beta < \infty$ such that $d\rho(\zeta) \neq 0$ if $\rho(\zeta) = \beta$. Then the space $Z^0_{0,n-1}(\overline{D}_{\alpha,\infty};X,E)$ is dense in $Z^0_{0,n-1}(\overline{D}_{\alpha,\beta};\overline{D}_{\rho_0,\beta},E)$.

Proof. By Lemma 2.6 there exists a sequence of extension elements $[A_l, B_l, V_l]$, $l=0,1,\ldots$, in X such that $A_0=D_{\rho_0,\beta},\ B_l=A_{l+1}$ for all l, and $X=\bigcup_{l\geq 0}A_l$. Moreover we may assume that, for all l, $\overline{V}_l\cap\overline{D}_{\rho_0,\alpha_0}=\emptyset$ and the vector bundle E is trivial over some neighborhood of \overline{V}_l . Now it is sufficient to prove that, for all l, the restriction map

$$Z_{0,n-1}^0(\overline{D}_{\alpha,\infty}\cap \overline{B}_l;\overline{B}_l,E)\longrightarrow Z_{0,n-1}^0(\overline{D}_{\alpha,\infty}\cap \overline{A}_l;\overline{A}_l,E)$$

has dense image. Let $l \in \mathbb{N}$ and $u \in Z_{0,n-1}^0(\overline{D}_{\alpha,\infty} \cap \overline{A}_l; \overline{A}_l, E)$ be given.

By Lemmas 2.2 and 2.4, then there exists a sequence $v_j \in Z_{0,n-1}^0(V_l, E)$ which converges to u uniformly on the compact subsets of $V_l \cap \overline{A}_l$. Take a C^{∞} -function χ on X with supp $\chi \subset \subset V_l$ and $\chi \equiv 1$ in a neighborhood of $\overline{B}_l \setminus A_l$. Setting $\varphi_j = u + \chi(v_j - u)$, we define a sequence $\varphi_j \in C_{0,n-1}^0(\overline{D}_{\alpha,\infty} \cap \overline{B}_l; \overline{B}_l, E)$ which converges to u uniformly on \overline{A}_l . Moreover, then the sequence $\overline{\partial}\varphi_j = \overline{\partial}\chi \wedge (v_j - u)$ belongs to $C_{0,n}^0(\overline{D}_{\alpha_0,\infty} \cap \overline{B}_l; \overline{B}_l, E)$ and converges to zero in this space. Hence, by Corollary 3.2 and Banach's open mapping theorem, there is a sequence $\psi_j \in C_{0,n-1}^0(\overline{D}_{\alpha,\infty} \cap B_l; \overline{B}_l, E)$ which converges to zero in $C_{0,n-1}^0(\overline{D}_{\alpha,\infty} \cap B_l; B_l, E)$ such that $\overline{\partial}\psi_j = \overline{\partial}\varphi_j$ on \overline{B}_l . Setting $u_j = \varphi_j - \psi_j$, we obtain a sequence $u_j \in Z_{0,n-1}^0(\overline{D}_{\alpha,\infty} \cap B_l; \overline{B}_l, E)$ which converges to u uniformly on \overline{A}_l . \square

3.4. Lemma. Let $\rho_0 < \alpha' < \alpha < \alpha_0$ and $\beta_0 < \beta_1 < \beta_2 < \infty$ such that $d\rho(\zeta) \neq 0$ if $\rho(\zeta) = \beta_1$ or $\rho(\zeta) = \beta_2$, and let $f \in C^0_{0,n}(\overline{D}_{\alpha,\beta_2}; \overline{D}_{\rho_0,\beta_2}, E)$ such that $f = \overline{\partial}u_1$ on D_{ρ_0,β_1} for certain $u_1 \in C^0_{0,n-1}(\overline{D}_{\alpha',\beta_1}; \overline{D}_{\rho_0,\beta_1}, E)$. Then there exists also $u_2 \in C^0_{0,n-1}(\overline{D}_{\alpha',\beta_2}; \overline{D}_{\rho_0,\beta_2}, E)$ with $f = \overline{\partial}u_2$ on D_{ρ_0,β_2} .

Proof. By Lemma 2.6, there exists a finite number of extension elements $[A_l, B_l, V_l]$, $l = 0, \ldots, N$, in X such that $A_0 = D_{\rho_0, \beta_1}$, $B_l = A_{l+1}$ for all $l = 0, \ldots, N-1$, and $B_N = D_{\rho_0, \beta_2}$. Moreover we may assume that, for all l, $\overline{V}_l \cap \overline{D}_{\rho_0, \alpha_0} = \emptyset$ and the vector bundle E is trivial over a neighborhood of \overline{V}_l . Now we assume (proof by induction over l) that, for certain l with $0 \le l \le N$, we already have $u_l \in C^0_{0,n-1}(\overline{D}_{\alpha',\infty} \cap \overline{A}_l; \overline{A}_l, E)$ with $f = \overline{\partial} u_l$ on A_l . Then we have to find $u_{l+1} \in C^0_{0,n-1}(\overline{D}_{\alpha',\infty} \cap \overline{B}_l; \overline{B}_l, E)$ with $f = \overline{\partial} u_{l+1}$ on B_l . Since, by Corollary 3.2, the space

$$C^0_{0,n}(\overline{D}_{\alpha,\infty}\cap \overline{B}_l;\overline{B}_l,E)\cap \overline{\partial} C^0_{0,n-1}(\overline{D}_{\alpha',\infty}\cap \overline{B}_l;\overline{B}_l,E)$$

is closed with respect to the topology of the Banach space $C_{0,n}^0(\overline{D}_{\alpha,\infty} \cap \overline{B}_l; \overline{B}_l, E)$, for this it is sufficient to find a sequence $(\psi_{\nu}) \subseteq C_{0,n-1}^0(\overline{D}_{\alpha',\infty} \cap \overline{B}_l; \overline{B}_l, E)$ such that the sequence $(\overline{\partial}\psi_{\nu})$ is contained in $C_{0,n}^0(\overline{D}_{\alpha,\infty} \cap \overline{B}_l; \overline{B}_l, E)$ and converges to f uniformly on $\overline{D}_{\alpha,\infty} \cap \overline{B}_l$.

By Lemma 2.3 there exists $v_l \in C^0_{0,n-1}(\overline{V_l \cap B_l}, E)$ with $\overline{\partial} v_l = f$ on $\overline{V_l \cap B_l}$. Take a C^{∞} -function χ on X such that supp $\chi \subset \subset V_l$ and $\chi \equiv 1$ in a neighborhood

of $\overline{B}_l \setminus A_l$. By Lemmas 2.2 and 2.4 we can find a sequence $(\varphi_{\nu})_{\nu \in \mathbb{N}} \subseteq Z^0_{0,n-1}(V_l, E)$ which converges to $u_l - v_l$ uniformly on $\overline{A}_l \cap \text{supp } \chi$. Setting $\psi_{\nu} = u_l + \chi(v_l - u_l - \varphi_{\nu})$, we obtain the required sequence. \square

3.5. Lemma. Let $f \in C^0_{0,n}(\Phi; X, E)$. If there exist α, β with $\rho_0 < \alpha < \alpha_0$ and $\beta_0 < \beta < \infty$ such that $f = \overline{\partial} u_\beta$ on $D_{\rho_0,\beta}$ for some $u_\beta \in C^0_{0,n}(\overline{D}_{\alpha,\beta}; \overline{D}_{\rho_0,\beta}, E)$, then there exists $u \in C^0_{0,n-1}(\Phi; X, E)$ with $f = \overline{\partial} u$ on X.

Proof. Take an increasing sequence $(\lambda_{\nu})_{\nu\in\mathbb{N}}$, converging to infinity such that $\beta_0 < \lambda_0 < \beta$ and $d\rho(\zeta) \neq 0$ if $\rho(\zeta) \in \{\lambda_0, \lambda_1, \dots\}$, and take α' , α with $\rho_0 < \alpha' < \alpha < \alpha_0$ such that supp $f \subseteq \overline{D}_{\alpha,\infty}$. Then from Lemma 3.4 we get a sequence $u_{\nu} \in C^0_{0,n-1}(\overline{D}_{\alpha',\lambda_{\nu}}; \overline{D}_{\rho_0,\lambda_{\nu}}, E), \nu = 1, 2, \dots$, with $f = \overline{\partial} u_{\nu}$ on $D_{\rho_0,\lambda_{\nu}}$. In view of the approximation lemma 3.3, this sequence can be chosen converging uniformly on the compact subsets of X. This limit is the required solution u. \square

End of proof of Theorem 0.2. We introduce on $C^0_{s,r}(\Phi;X,E)$ the inductive limit topology defined by the Fréchet spaces $C^0_{s,r}(C;X,E)$, $C\in\Phi$. Then $C^0_{s,r}(\Phi;X,E)$ is an LF-space. It follows from Corollary 3.2 and Lemma 3.5 that $E^0_{0,n}(\Phi;X,E)$ is of finite codimension in $C^0_{0,n}(\Phi;X,E)$. Since $E^0_{0,n}(\Phi;X,E)$ is the image of a closed operator between LF-spaces, this implies that $E^0_{0,n}(\Phi;X,E)$ is topologically closed in the LF-space $C^0_{0,n}(\Phi;X,E)$ and moreover, that $E^0_{0,n}(\Phi;X,E)$ itself is also an LF-space (with respect to the topology induced from $C^0_{0,n}(\Phi;X,E)$).

Now we consider a continuous linear functional L on $C_{0,n}^0(\Phi;X,E)$ such that

(3.1)
$$L(\varphi) = 0 \quad \text{for all} \quad \varphi \in E_{0,n}^0(\Phi; X, E)$$

By the Hahn-Banach theorem, we have to show that L is the zero functional.

Let E^* be the dual of the bundle E. By (3.1), L defines a $\overline{\partial}$ -closed E^* -valued current of bidegree (n,0) on X. By regularity of $\overline{\partial}$, this current is defined by an holomorphic E^* -valued (n,0)-form h. L is continuous on $C^0_{0,n}(\Phi;X,E)$ and $X\setminus Z\in\Phi$ (recall that $\Phi=\Phi(Z)$). Hence, L is continuous on the Fréchet space $C^0_{0,n}(X\setminus Z;X,E)$. This implies that (supp h) \cap $(X\setminus Z)$ is compact. Since $X\setminus \overline{Z}$ is not relatively compact in X and X is connected, it follows by uniqueness of holomorphic functions that $h\equiv 0$ on X, i.e. L is the zero functional. \square

4. An application to the Hartogs-Bochner Phenomenon

Using ideas of Lupacciolu [Lu] and Chirka-Stout (see Theorem 3.3.1 and its proof in [C-S]), Theorem 0.2 gives the following result on Hartogs-Bochner extension, which generalizes the theorem of Weinstock [W]:

4.1. Theorem. Let X and Z be as in Theorem 0.2. Suppose D is an open subset of X such that: the boundary ∂D is of class C^1 (but not necessarily compact), $\overline{D} \setminus Z$ is compact and $X \setminus \overline{D}$ has not more than a finite number of components which are either compact or contained in Z. Then for any holomorphic vector bundle E over

X and each continuous CR-section $f:\partial D\to E$ the following two conditions are equivalent:

- (i) There exists a continuous section $F: \overline{D} \to E$ which is holomorphic over D such that $F|\partial D = f$.
- (ii) $\int_{\partial D} f \varphi = 0$ for any continuous $\overline{\partial}$ -closed (n,n-1)-form φ with values in E^* (the dual bundle of E) defined in a neighborhood of \overline{D} such that $\operatorname{supp} \varphi \cap \partial D$ is compact.

In the proof of this theorem we use the following

4.2. Theorem. Let X, Z and Φ be as in Theorem 0.2. Denote by Φ^* the family of closed subsets C of X such that $C \cap (X \setminus Z)$ is compact. Let E be a holomorphic vector bundle on X and let E^* be the dual bundle of E. Then the space $E^0_{0,1}(\Phi^*; X, E^*)$ consists of all $f \in Z^0_{0,1}(\Phi^*; X, E^*)$ such that

$$(4.1) \qquad \qquad \int_X f \wedge \psi = 0 \qquad \textit{for all} \quad \psi \in Z^0_{n,n-1}(\Phi;X,E).$$

In particular, then $H^{0,1}_{\Phi^*}(X, E^*)$ is separated (with respect to the LF-topology of $C^0_{0,1}(\Phi^*; X, E^*)$).

Proof. That condition (4.1) is necessary, follows from Stokes' theorem. Conversely, let $f \in Z_{0,1}^0(\Phi^*; X, E)$ with (4.1) be given. By Theorem 0.2,

(4.2)
$$H_{\Phi}^{n,n}(X,E) = 0.$$

By (4.1) and (4.2), in the following way, a linear functional

$$u: C_{n,n}^0(\Phi; X, E) \longrightarrow \mathbb{C}$$

can be defined: For each $\varphi \in C^0_{n,n}(\Phi;X,E)$ we take $\psi \in C^0_{n,n-1}(\Phi;X,E)$ with $\overline{\partial}\psi = \varphi$ and set

$$u(\varphi) = \int_X f \wedge \psi.$$

Since both $C^0_{n,n-1}(\Phi;X,E)$ and $C^0_{n,n}(\Phi;X,E)$ are LF-spaces and the open mapping theorem holds for closed linear surjections between such spaces, it follows that u is continuous with respect to the topology of $C^0_{n,n}(\Phi;X,E)$. In particular, u is a (0,0)-current on X. From the definition of u it is clear that $\overline{\partial}u=f$. Since $X\setminus Z\in \Phi$, in particular, u is continuous on $C^0_{n,n}(X\setminus Z;X,E)$. This implies that, (supp $u)\cap (X\setminus Z)$ is compact, i.e. supp $u\in \Phi^*$. Moreover, by regularity of $\overline{\partial}, u$ is a continuous section of E. \square

Remarks. I. Consider the example given after Theorem 0.2. Let Φ be the family of closed subsets C of X such that $C \cap \overline{Z}$ is compact. In [Mi] the following separation theorem is obtained: If $n \geq 3$ and E is a holomorphic vector bundle over X such that $K^{-1} \otimes E$ extends to S_1 , then $H_{\Phi}^{0,n-1}(X,E)$ is separated. From Theorem 4.2

it follows that this is true also for n=2, even without the extendability condition on E.

II. Consider the Rossi example [R]. This is a 2-dimensional complex manifold X, diffeomorphic to $\mathbb{C}^2 \setminus \{0\}$, such that $H^{0,1}(X)$ is not separated. If Φ is the family of closed subsets of \mathbb{C}^2 which do not meet the origin, then it follows from Theorem 4.2 that $H^{0,1}_{\Phi}(X)$ is separated.

Proof of Theorem 4.1. The conclusion (i)⇒(ii) follows from Stokes' theorem. Assume now that condition (ii) is satisfied.

Let U_1, \ldots, U_N be the connected components of $X \setminus \overline{D}$ which are either compact or contained in Z. Take points $z_j \in U_j$, $1 \leq j \leq N$, and set $X_0 = X \setminus \{z_1, \ldots, z_N\}$. Let ρ and α_0 be as in Definition 0.1. Set $Z_0 = \{\zeta \in X \mid \rho(\zeta) < \alpha_0\}$. We may assume that $\overline{Z}_0 \cap \{z_1, \ldots, z_N\} = \emptyset$. Denote by $\Phi_0 = \Phi_0(Z_0)$ the family of all closed subsets C of X_0 such that $C \cap Z_0$ is compact, and denote by Φ_0^* the family of closed subsets C^* of X such that $C^* \cap (X_0 \setminus Z_0)$ is compact. Then $\overline{D} \subseteq X_0$ and $X_0 \setminus \overline{D}$ has no connected component which belongs to the family Φ_0^* . By Theorem 0.2,

$$(4.1) H_{\Phi_0}^{n,n}(X_0, E^*) = 0.$$

Consider the E-valued (0,1)-current $[i_*f]^{0,1}$ on X_0 defined by

$$[i_*f]^{0,1}(\varphi) = \int_{\partial D} f \wedge \varphi$$

for all E^* -valued $C_{n,n-1}^{\infty}$ -forms φ with compact support in X_0 . Since f is CR, this current is $\overline{\partial}$ -closed. The support of $[i_*f]^{0,1}$ is $\overline{\partial}D$ and therefore contained in Φ_0^* . Hence, as f satisfies (ii), by Theorem 4.2, we can solve the equation

$$\overline{\partial} F = [i_* f]^{0,1}$$

with an E-valued (0,0)-current F on X_0 such that supp $F \in \Phi_0^*$, i.e. supp $F \setminus Z_0$ is compact. Since $\overline{D} \setminus Z_0$ is compact, it follows that also supp $F \setminus (D \cup Z_0)$ is compact. Since no connected component of $X_0 \setminus \overline{D}$ is in Φ_0^* and F is holomorphic outside $\overline{D}D$, it follows that $F \equiv 0$ outside \overline{D} . Now it follows by standard arguments (see, e.g., the proof of Theorem 5.1 in [La]) that F is the required extension of f. \square

References

- [A-G] A. Andreotti, H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. math. France 90 (1962), 193-259.
- [G-W] R.E. Green, H. Wu, Embedding of open Riemannian Manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble 25 (1975), 215-235.
- [G-P] V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, 1974.
- [H-L] G. Henkin, J. Leiterer, Andreotti-Grauert Theory by Integral Formulas, Birkhäuser, Progress in Mathematics 74, 1988.
- [La] C. Laurent-Thiébaut, Théorie des fonctions holomorphes de plusieurs variables, InterÉditions/CNRS Éditions, 1997.

- [La-L] C. Laurent-Thiébaut, J. Leiterer, Malgrange's vanishing theorem in 1-concave CR-manifolds, Prépublication de L'Institut Fourier no. 395 (1997).
- [Lu] G. Lupacciolu, Characterisation of removable sets in strongly pseudoconvex boundaries, Ark. Mat. 32 (1994), 455-473.
- [M] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équation de convolution, Ann. Inst. Fourier, Grenoble 6 (1955-56), 271-355.
- [Mi] K. Miyazawa, On the $\overline{\partial}$ -Cohomology of Strongly q-Concave Manifolds, Osaka J. Math. **33** (1996), 83-92.
- [O] T., Ohsawa, Completeness of noncompact analytic spaces, Publ. RIMS, Kyoto Univ 20 (1984), 683-692.
- [R] H. Rossi, Attaching Analytic Spaces to an Analytic Space along a Pseudoconcave Boundary, Proceedings of the Conference on Complex Analysis, Minneapolis 1964, edited by A. Aeppli et al., Springer-Verlag (1965), 242-256.
- [S] J.P. Serre, Une théorème de dualité, Commentarii Mathematici Helvetici 29 (1955), 9-26.
- [Siu] Y.T. Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional noncompact complex manifolds, Pacific J. Math. 28 (1969), 407-411.
- [Siu] Y.T. Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77-94.
- [W] B.M. Weinstock, Continuous boundary values of analytic functions of several complex variables, Proc. AMS 21 (1969), 463-466.

CHRISTINE LAURENT-THIÉBAUT, UMR 5582 CNRS-UJF, INSTITUT FOURIER, UNIVERSITÉ GRENOBLE I, BP 74, F-38402 SAINT MARTIN D'HÈRES CEDEX, FRANCE

JÜRGEN LEITERER, INSTITUT FÜR MATHEMATIK, HUMBOLDT-UNIVERSITÄT, ZIEGELSTRASSE 13A, D-10117 BERLIN, GERMANY