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Abstract

Applying the methods of Serre duality in the setting of CR manifolds we prove approxi-

mation theorems and we study the Hartogs-Bochner phenomenon in 1-concave CR generic

manifolds.

In this paper we study Serre duality in CR manifolds to get some approximation theorem and

a better understanding of the Hartogs-Bochner phenomenon in 1-concave CR manifolds.

Because of the lack of the Dolbeault isomorphism for the ∂b-cohomology in CR manifolds,

Serre duality in this setting is not an exact copy of Serre duality in complex manifolds. The

main point is that one has to be particularly careful and always to differentiate cohomology with

smooth coefficients and current coefficients. Our main theorem in CR-manifolds (Theorem 3.2)

is a consequence of rather classical abstract results on duality for complexes of topological vec-

tor spaces which we recall in section 1 (cf. [3], [9], [21]). Note that in the case of compact CR

manifolds, Serre duality was already studied by Hill and Nacinovich in [13].

Associating Serre duality with Malgrange’s theorem on the vanishing of the ∂b-cohomology

in top degree [19] and regularity for the tangential Cauchy- Riemann operator in bidegree
�
0, 1 �

[5], we give several applications for 1-concave CR manifolds in section 4. One of the most inter-

esting is perhaps the study of the Hartogs-Bochner phenomenon. More precisely, we consider a

connected non compact ��� -smooth 1-concave CR manifold M and a relatively compact open

subset D with � � -smooth boundary in M such that M � D is connected. The question is :

does any smooth CR function f on ∂D extend to a CR function F in D. It turns out that, for the

Hartogs-Bochner phenomenon, 1-concave CR manifolds are rather similar to non compact com-

plex manifolds. In both cases the Hartogs-Bochner phenomenon holds if D is sufficiently small,

by a result of Henkin [11] in the CR case and since it holds in � n for the complex case; but it may

be false in general, it is sufficient to consider a domain D which contains the zero set of a CR or a

holomorphic function (some example is given in [12] for the CR case and in [16] for the complex

case). Moreover, if we remove the connectedness of M � D and if we strengthen the assump-

tion on f by some orthogonality condition to ∂-closed forms due to Weinstock [23], the Hartogs-

Bochner phenomenon holds in complex manifolds. In this paper we prove (Theorem 4.3) that
�
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under the same kind of orthogonality condition on f the Hartogs-Bochner phenomenon always

holds in 1-concave CR manifolds.

We conclude our paper with a generalization of the Airapetjan-Henkin approximation theo-

rem for ∂b-closed
�
p, n � k � q � -differential forms in q-concave CR manifolds of real codimension

k in n-dimensional complex manifolds ([1], Theorem 7.2.3 ). Our theorem (Theorem 5.4) fol-

lows from Serre duality and from a theorem (Theorem 5.1) on global regularity for the tangential

Cauchy-Riemann operator in bidegree
�
p, q � in q-convave CR manifolds.

1. Abstract duality theorems

For sake of completeness, in this section we recall some well-known results about the duality

for complexes of topological vector spaces which will be used in section 3.

D 1.1. — A cohomological complex of topological vector spaces is a pair
�
E
�

, d �
where E

��� �
E q � q ��� is a sequence of topological vector spaces and d

� �
dq � q ��� is a sequence of

continuous linear maps dq from E q into E q � 1 which satisfy dq � 1 � dq � 0.

A homological complex of topological vector spaces is a pair
�
E � , d � where E � � � Eq � q ��� is

a sequence of topological vector spaces and d
� �

dq � q ��� is a sequence of continuous linear maps

dq from Eq � 1 into Eq which satisfy dq
� dq � 1

�
0.

The cohomology groups H q � E � � of a cohomological complex
�
E
�

, d � are the quotient spaces

Ker dq/ Im dq 	 1 endowed with the factor topology and the homology groups Hq
�
E � � of a homo-

logical complex
�
E � , d � are the quotient spaces Ker dq 	 1/ Im dq endowed with the factor topology.

The dual complex of a cohomological complex
�
E
�

, d � of topological vector spaces is the ho-

mological complex
�
E

� , d


 � where E

� � � E 
q � q ��� with E



q the strong dual of E q and d


 � �
d


q � q ���

with d


q the transpose map of dq .

D 1.2. — A topological vector space E is reflexive if the natural map between E and

the strong dual of its strong dual is a topological isomorphism.

D 1.3. — A topological vector space E is called a Fréchet-Schwartz space or simply

an FS-space if its topology is defined by an increasing sequence of seminormes
�
pn � n � 0 such that

for n � 1 the unit ball with respect to the seminorm pn is relatively compact for the topology

associated to the previous seminorm. The strong dual of a Fréchet-Schwartz space is called a dual

of Fréchet-Schwartz or simply a DFS-space.

Remark. — FS-spaces and DFS-spaces are reflexive (for more details on FS-spaces we refer

the reader to [9], reflexive spaces are studied in [22]).

D 1.4. — If E is a topological vector space, then σE, the associated separated space,

is the quotient space E/Ō, where Ō denotes the closure of the origin in E.

The following theorem is proved in ([8],  3), (see also [21]).
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T 1.5. — Let
�
E
�
, d � be a cohomological complex of reflexive topological vector spaces

and
�
E

� , d


 � its dual complex. Then the natural map between σHq
�
E

� � and

�
H q � E � � � 
 is an alge-

braic isomorphism. If moreover
�
E
�

, d � is a cohomological complex of FS-spaces and
�
H q � E � � � 
 is

endowed with the strong topology, then this isomorphism is also topological.

In view of this theorem it is important to obtain conditions which ensure that for a given

cohomological complex
�
E
�

, d � the groups Hq
�
E

� � are separated, i.e. σHq

�
E

� � � Hq

�
E

� � .

T 1.6. — Let
�
E
�

, d � be a cohomological complex of FS-spaces or of DFS-spaces and�
E

� , d � its dual complex. For each q ��� , the following assertions are equivalent:

(i) Im dq ��� g � E q � 1 ��� g , f � � 0, 	 f � Ker d


q 
 ;

(ii) H q � 1 � E � � is separated;

(iii) dq is a topological homomorphism;

(iv) d


q is a topological homomorphism;

(v) Hq
�
E

� � is separated;

(vi) Im d


q
���

f � E


q
��� f , g � � 0, 	 g � Ker dq 
 .

Proof. — First clearly (i) � (ii) and (vi) � (v) because H q � 1 � E � � (resp. Hq
�
E

� � ) is separated

if and only if Im dq (resp. Im d


q ) is closed. Moreover it follows from ([8],  0) that (ii), (iii), (iv) and

(v) are equivalent.

It remains to prove that (iii) � (vi) and (iv) � (i). Since
�
E
�

, d � is a complex of reflexive

spaces the proof of (iv) � (i) is a copy of the proof of (iii) � (vi).

Assume that (iii) is satisfied. Since Im d


q is always contained in

�
f � E



q
�� f , g � � 0, 	 g �

Ker dq 
 by definition of the transpose map, we have only to prove the other inclusion. Let f � E


q

such that � f , g � � 0 for all g � Ker dq . Setting L f
�
g � � � f , h � where g

�
dq h, we define a linear

map from Im dq into � , which is continuous by (iii). Applying the Hahn-Banach theorem, L f

extends to a continuous linear form �L f on E q � 1 which satisfies � �L f , dqh � � � f , h � for all h � E q .

This proves that f
�

d


q �L f by definition of d



q , i.e. f � Im d



q .

C 1.7. — Let
�
E
�

, d � be a cohomological complex of FS-spaces or of DFS-spaces,�
E

� , d


 � its dual complex and q ��� . If Im dq ��� g � E q � 1 ��� g , f � � 0, 	 f � Ker d


q 
 then the

natural map

Hq
�
E

 ��� �

H q � E � � 


is an algebraic isomorphism. If
�
E
�

, d � is a complex of FS-spaces, it is also topological when�
H q � E � � 
 is endowed with the strong topology.
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2. The tangential Cauchy-Riemann complex

In this section we shall recall the main properties of CR manifolds and of the tangential

Cauchy-Riemann complex which are useful in the further sections of this paper. For more de-

tails the reader may consult for example the book of Boggess [7].

Let X be a complex manifold of complex dimension n. If M is a � � -smooth real submanifold

of real codimension k in X , we denote by T �τ � M � the complex tangent space to M at τ � M .

Such a manifold M can be represented locally in the form

M
� �

z � Ω � ρ1
�
z � ������� � ρk

�
z � � 0 
 (2.1)

where the ρν’s, 1 � ν � k, are real ��� functions in an open subset Ω of X .

In this representation we have

T �τ � M � � ����
ζ � � n � n	

j 
 1

∂ρν

∂zj

�
τ � ζj

�
0, ν

�
1, . . . , k ��� (2.2)

and dim � T �τ � M � � n � k, for τ � M � Ω, where
�
z1, . . . , zn � are local holomorphic coordinates

in a neighborhood of τ.

D 2.1. — The submanifold M is called CR if the number dim � T �τ � M � is indepen-

dent of the point τ � M . If moreover dim � T �τ � M � � n � k for every τ � M , then M is called CR

generic.

In the local representation, M is CR generic if and only if

∂ρ1 � ����� � ∂ρk �� 0 on M .

D 2.2. — Let M be a � � -smooth CR generic submanifold of X . M is r-concave,

0 � r � n � k, if for each τ � M , each local representation of M of type (2.1) in a neighborhood of

τ in X and each x ��� k ��� 0 � , the quadratic form on T �τ � M � defined by �
α,β

∂2ρx
∂zα∂z̄β

�
τ � ζαζ̄β, where

ρx
�

x1ρ1 � ����� � xkρk and ζ � T �τ � M � , has at least r negative eigenvalues.

Our choice to deal with embedded CR generic manifolds in this paper is not a true restriction.

In fact for all the results we give in sections 4 and 5, we need to be in an r-concave abstract CR

manifold, r � 1, which is locally embeddable at each point. By a theorem of Hill and Nacinovich

([12], Proposition 3.1) it is known that an r-concave abstract CR manifold, r � 1, which is lo-

cally embeddable at each point can always be embedded as a CR generic manifold in a complex

manifold.

Let X be an n-dimensional complex manifold, M a CR generic submanifold of X of real codi-

mension k locally defined by (2.1) and p, q ��� . We denote by Λp,q
X the vector bundle over X

of
�
p, q � -forms in X and by Λp,q

M the vector bundle over M of
�
p, q � -forms in M (see e.g. [7]).
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� p,q
�
M � is the space of � � -smooth sections of Λp,q

M over M and � p,q
�
M � the space of com-

pactly supported elements of
� p,q � M � . Note that Λp,q

M

�
0 if either p > n or q > n � k and

consequently
� p,q � M � � � p,q � M � � 0 for such p and q.

We put on
� p,q � M � the topology of uniform convergence on compact sets of the sections and

all their derivatives. Endowed with this topology
� p,q � M � is a Fréchet-Schwartz space.

Let K be a compact subset of M , let � p,q
K

�
M � the closed subspace of

� p,q
�
M � of forms with

support in K endowed with the induced topology. Choose
�
Kn � n ��� an exhausting sequence of

compact subsets of M . Then � p,q � M � � �
n � 0

� p,q
Kn

�
M � . We put on � p,q � M � the strict inductive

limit topology defined by the FS-spaces � p,q
Kn

�
M � .

The natural projection Λp,q
X ��M � Λp,q

M induces a projection tM from
� p,q � X � onto

� p,q � M � .
For f � � p,q

�
M � , let f̃ � � p,q

�
X � with tM

�
f̃ � � f , then ∂M f

�
tM
�
∂f̃ � is independent

of the choice of the extension f̃ of f (cf. [7], Chap. 8, Lemma 1). In this way we have defined

a continuous linear map from
� p,q � M � into

� p,q � 1 � M � . Moreover if f � � p,q � M � and g �� p,q � 1 � M � , the equation ∂M f
�

g is equivalent to

�
M

g � ϕ
� � � 1 � p � q 	 1

�
M

f � ∂ϕ (2.3)

for each form ϕ ��� n 	 p,n 	 k 	 q 	 1 � X � (cf. [7], Chap. 8, Lemma 6).

D 2.3. — Let p ��� , 0 � p � n. The tangential Cauchy-Riemann complexes on M ,� � p, � � M � , ∂M � and
� � p, � � M � , ∂M � are the cohomological complexes of topological vector spaces

defined as follows:

(i) for q < 0, E q � 0 and dq � 0;

(ii) for q � 0, E q � � p,q � M � , respectively � p,q � M � , and dq � ∂M .

The space of currents on M of bidimension
�
p, q � or bidegree

�
n � p, n � k � q � is the dual

of the space � p,q
�
M � and is denoted either by � 
p,q

�
M � , if we use the graduation given by the

bidimension, or by � 
 n 	 p,n 	 k 	 q � M � , if we use the graduation given by the bidegree. An el-

ement of � 
 n 	 p,n 	 k 	 q � M � can be identified with a distribution section of Λn 	 p,n 	 k 	 q
M . The

dual of
� p,q � M � denoted by either

� 

p,q

�
M � or

� 
 n 	 p,n 	 k 	 q � M � is the space of currents of bidi-

mension
�
p, q � , respectively bidegree

�
n � p, n � k � q � with compact supports. The dual com-

plexes of
� � p, � � M � , ∂M � and

� � p, � � M � , ∂M � are the homological complexes
� � 


p, �
�
M � , ∂M � and� � 
p, �

�
M � , ∂M � if we use the bidimension graduation and where ∂M also denotes the transpose of

∂M .

It follows from (2.3) that we have the following commutative diagram

� p,q � M � ∂M� � ��� � p,q � 1 � M �		

		


� 
 p,q � M � ∂M� � ��� � 
 p,q � 1 � M �
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where the vertical arrows are the natural injections induced by the injection of
� �

M � into � 
 � M � .
This remark shows that for most of the applications, it is more convenient to use the bidegree

graduation. In this case the dual complexes of
� � p, � � M � , ∂M � and

� � p, � � M � , ∂M � will be the

cohomological complexes
� � 
 n 	 p, � � M � , ∂M � and

� � 
 n 	 p, � � M � , ∂M � .
Since the spaces

� p,q � M � are FS-spaces and the spaces � p,q � M � are strict inductive limits of

FS-spaces, all the complexes
� � p, � � M � , ∂M � ,

� � 
 p, � � M � , ∂M � ,
� � p, � � M � , ∂M � and

� � 
 p, � � M � , ∂M �
are complexes of reflexive spaces.

In the next section we shall use the following notations:

Z
p,q

�
�
M � � � p,q � M � � Ker ∂M , E

p,q

�
�
M � � � p,q � M � � Im ∂M

Z
p,q
c, �
�
M � � � p,q � M � � Ker ∂M , E

p,q
c, �
�
M � � � p,q � M � � Im ∂M

Z
p,q
cur
�
M � � � 
 p,q � M � � Ker ∂M , E

p,q
cur
�
M � � � 
 p,q � M � � Im ∂M

Z
p,q
c,cur
�
M � � � 
 p,q � M � � Ker ∂M , E

p,q
c,cur
�
M � � � 
 p,q � M � � Im ∂M

H p,q � � � M ��� � H q � � p, � � M ��� , H p,q � � � M ��� � H q � � p, � � M ���
H p,q � � 
 � M ��� � Hn 	 k 	 q

� � 
n 	 p, �
�
M ��� , H p,q � � 
 � M ��� � Hn 	 k 	 q

� � 

n 	 p, �

�
M ��� .

3. Serre duality in C R manifolds

Let M be a CR generic submanifold of real codimension k in an n-dimensional complex

manifold X and p an integer. As we have seen in section 2 the complexes
� � p, � � M � , ∂M � ,� � p, � � M � , ∂M � and their dual complexes

� � 
 n 	 p, � � M � , ∂M � and
� � 
 n 	 p, � � M � , ∂M � are comple-

xes of reflexive topological vector spaces. Moreover for all
�
p, q � , 0 � p � n and 0 � q � n � k,� p,q

�
M � is a FS-space and its dual

� 
 n 	 p,n 	 k 	 q
�
M � is a DFS-space. Consequently we can apply

all the results of section 1 to these complexes and we get the following theorems:

T 3.1. — Let M be a CR generic submanifold of real codimension k in an n-dimensio-

nal complex manifold X . Let p, q � � with 0 � p � n and 0 � q � n � k, then the natural linear

maps

σH n 	 p,n 	 k 	 q � � 
 � M ����� � � H p,q � � � M � ��� 
 (3.1)

σH n 	 p,n 	 k 	 q � � 
 � M ����� � � H p,q � � � M � ��� 
 (3.2)

σH p,q � � � M ����� � � H n 	 p,n 	 k 	 q � � 
 � M � ��� 
 (3.3)

σH p,q � � � M ����� � � H n 	 p,n 	 k 	 q � � 
 � M � ��� 
 (3.4)

are algebraic isomorphisms.

If moreover � H p,q � � � M � � 
 is endowed with the strong topology then the isomorphism (3.2) is

also topological.

T 3.2. — Let M be a CR generic submanifold of real codimension k in an n-dimensio-

nal complex manifold X . Let p, q � � with 0 � p � n and 0 � q � n � k, then the following

assertions are equivalent :
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(i) E
n 	 p,n 	 k 	 q
c,cur

�
M � ��� T � � 
 n 	 p,n 	 k 	 q � M � ��� T, ϕ � � 0, 	 ϕ � Z

p,q

�
�
M ���

(ii) H n 	 p,n 	 k 	 q � � 
 � M � � is separated;

(iii) E
p,q � 1

�
�
M � ��� f � � p,q � 1 � M � ��� T, f � � 0, 	 T � Z

n 	 p,n 	 k 	 q 	 1
c,cur

�
M ���

(iv) H p,q � 1 � � � M � � is separated.

Moreover, if these assertions hold, then

a) the natural linear map H n 	 p,n 	 k 	 q � � 
 � M � � � � � H p,q � � � M � � 
 is a topological isomor-

phism;

b) the natural linear map H p,q � 1 � � � M ��� � � � H n 	 p,n 	 k 	 q 	 1 � � 
 � M ��� 
 is an algebraic iso-

morphism.

Let us recall some well known results on sufficient conditions on the CR manifold M which

ensure the separation of the cohomology groups H p,q � � � M ��� .

First let us consider the case when M is supposed to be compact, which implies that� p,q � M � � � p,q � M � and
� 
 p,q � M � � � 
 p,q � M � for all p, q � � . In 1981, Henkin [10] has

proven that if M is compact and r-concave then the groups H p,q � � � M � � are finite dimensional

if 0 � p � n and q � r � 1 or q � n � k � r � 1. Moreover Hill and Nacinovich [12] have shown

that H p,r � � � M � � is separated.

Another situation, where separation theorems are known, is the case when M admits an ex-

hausting function with pseudoconvexity or pseudoconcavity properties (see [12] and [1] for a

more particular case). Let us give here only some results in a special situation which occurs rather

often. If X is a pseudoconcave manifold and if M is r-concave then H p,q � � � M � � is finite dimen-

sional and hence separated for 0 � p � n and q � r � 1. If X is a pseudoconvex manifold and if

M is r-concave then H p,q � � � M ��� is finite dimensional and hence separated for 0 � p � n and

q � n � k � r � 1.

If we associate these results with the theorems 3.1 and 3.2, we get separation results on

H p,q � � 
 � M ��� , duality isomorphisms and characterizations of exact forms or currents. In the

compact case such separation theorems for current cohomology and duality isomorphisms were

already obtained by Hill and Nacinovich [13] even for abstract CR manifolds.

4. Application of duality in 1-concave C R manifolds

In this section M will always denote a 1-concave CR generic manifold of real codimension k

embedded in a complex manifold X of complex dimension n, n � 3.

Approximation theorem

A consequence of duality and Malgrange’s vanishing theorem [19] for � � -smooth forms is

the following approximation theorem which is a version of Theorem 3.2 in [19] for currents.
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T 4.1. — Let M be a connected, non compact, ��� -smooth, 1-concave, CR generic

manifold of real codimension k in a complex manifold X of complex dimension n, n � 3, and

p an integer, 0 � p � n, then the space Z
p,n 	 k 	 1

�
�
M � is dense in the space Z

p,n 	 k 	 1
cur

�
M � for the

strong topology of � 
 p,n 	 k 	 1 � M � .

Proof. — By the Hahn-Banach theorem and the reflexivity of � p, � � M � , it is sufficient to prove

that for any f � � n 	 p,1 � M � such that � f , ϕ � � 0 for all ϕ � Z
p,n 	 k 	 1

�
�
M � we have � T, f � � 0

for all T � Z
p,n 	 k 	 1
cur

�
M � . Let

f ��� n 	 p,1 � M � � � T � � 
 n 	 p,1 � M � ��� T, ϕ � � 0, 	 ϕ � Z
p,n 	 k 	 1

�
�
M � � .

Malgrange’s theorem [19] claims that, under the hypothesis of the theorem, H p,n 	 k
� � �

M � � � 0

and hence is separated, then using Theorem 3.2 we get that f ��� n 	 p,1 � M � � E
n 	 p,1
c,cur

�
M � . From

Corollary 0.2 in [5] on regularity of ∂M in 1-concave CR manifolds we deduce that there exists g �
� n 	 p,0 � M � such that f

�
∂M g . Let T � Z

p,n 	 k 	 1
cur

�
M � , then � T, f � � � T, ∂M g � � � ∂M T, g � � 0.

Hartogs-Bochner phenomenon

A second application of duality and Malgrange’s vanishing theorem [19] is a generalization of

Weinstock’s theorem [23] on the Hartogs- Bochner phenomenon in � n to 1-concave CR generic

manifolds.

The problem we consider can be set in the following terms: let M be a connected, non com-

pact � � -smooth, 1-concave CR generic manifold and D a relatively compact open subset with

� � -smooth boundary contained in M ; we are looking for a characterization of the trace on ∂D

of the � � -smooth functions in D which are CR on D.

D 4.2. — Let M be a CR manifold of class � � and V a � � -smooth submanifold of

M . A function f of class � � on V will be called a CR-smooth function if there exists a function f̃

of class � � in M such that f̃ �� V
�

f and ∂M f̃ vanishes to infinite order on V .

Note that in this definition V is not supposed to be a CR manifold. If V is CR, then this

definition coincides with the classical one (cf. [15]).

Let D ��� M be a domain with � � -smooth boundary and f � � � � ∂D � the trace of a � � -

smooth function in D which is CR in D. It is clear that f is a CR-smooth function on ∂D but this

condition is not sufficient to get the CR extension of f as it was noticed by Hill and Nacinovich

(cf. [12], section 5 or [18], section II.8). This condition becomes sufficient if ∂D is connected and if

either D is sufficiently small (see [11]) or some pseudoconvexity properties are fulfilled (see [17]).

By analogy with Weinstock’s theorem, we get

T 4.3. — Let M be a connected, non compact, ��� -smooth, 1-concave, CR generic

manifold of real codimension k in a complex manifold X of complex dimension n, n � 3, and

D ��� M a domain with � � -smooth boundary.

For a function f � � � � ∂D � the following properties are equivalent :
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(i) There exists a function F � � � � D � which is CR in D and such that F �� ∂D

�
f .

(ii) f is CR-smooth and
�

∂D f ϕ
�

0 for any CR
�
n, n � k � 1 � -form ϕ of class � � in a

neighborhood of D.

Proof. — We assume first that (i) is fulfilled. It is clear that f is CR-smooth and moreover if

ϕ is a CR
�
n, n � k � 1 � -form of class � � in a neighborhood of D then

�
∂D

f ϕ
� �

∂D
F ϕ

� �
D

d
�
F ϕ � �

�
D

F ∂M ϕ
�

0

by Stokes theorem since F and ϕ are CR.

Assume now that condition (ii) is satisfied. Let U1, . . . , UN be the relatively compact con-

nected components of M � D. Take points z j � Uj , 1 � j � N , and set �M �
M � � z1, . . . , zN � .

Then �M is a connected, non compact, � � -smooth, 1-concave CR generic manifold and con-

sequently, by Malgrange’s theorem [19], H n,n 	 k
� � � �M � � vanishes and hence is separated. We

deduce from Theorem 3.2 that

E 0,1
c,cur

�
M � ��� T � � 
 0,1 � M � ��� T, ϕ � � 0, 	 ϕ � Z n,n 	 k 	 1

�
�
M ��� (4.1)

As f is CR-smooth, let f̃ be a � � -smooth extension of f to M such that ∂f̃ vanishes to infinite

order on ∂D. Set g
�

χD∂M f̃ where χD is the characteristic function of D. The
�
0, 1 � -form g is of

class ��� and if ϕ � Z n,n 	 k 	 1
�

�
M �

� g , ϕ � �
�

D
∂M f̃ � ϕ

� �
D

∂M
�
f̃ � ϕ � �

�
D

d
�
f̃ � ϕ � �

�
∂D

f � ϕ
�

0

by Stokes theorem. Therefore by (4.1), g � E 0,1
c,cur

�
M � , i.e. there is a distribution S with compact

support on �M such that g
�

∂ �M S.

But by regularity of the ∂M operator in bidegree (0.1) ([5], Corollary 0.2), S is defined by a

function h of class � � with compact support in �M . Setting h
�
zj �

�
0, 1 � j � N , we get a

function h of class � � in M , which vanishes on an open subset of each connected component

of M � D, which is CR on M � D since supp g � D. Then by analytic continuation of CR

functions in 1-concave CR manifolds, h vanishes on M � D. Setting F
�

f̃ � h, we obtain the

required extension.

5. Approximation theorem in q-concave C R manifolds

We begin this section with a theorem on the global regularity of the ∂b-operator in bidegree�
p, q � in q-concave CR manifolds, 0 � p � n, 1 � q � n. Such a result is of particular interest

since ∂b is not locally solvable in bidegree
�
p, q � in q-concave CR manifolds (cf. [4]). For q

�
1,

the regularity of ∂b is proven in [5], (see also [2]).

T 5.1. — Let M be a q-concave CR generic submanifold of class � � and real codi-

mension k of a complex manifold X of complex dimension n, 1 � q � n � k, n � 3, and T a

9



�
p, q � 1 � -current, 0 � p � n. If ∂M T is defined by a � � -smooth

�
p, q � -form on M then for any

neighborhood U of supp T , there exists a
�
p, q � 1 � -form u of class � � on M such that

∂M u
�

∂M T and supp u � U .

This theorem is a consequence of a theorem on local regularity for ∂b in bidegree
�
p, q � in q-

concave manifolds proved by Barkatou [6] (see also [2]) and of the De Rham-Weil isomorphism.

We first recall Barkatou’s result

P 5.2. — Let M be as in Theorem 5.1 and p an integer with 0 � p � n. Let z0 � M

then there exists a neighborhood M0 � M of z0 such that if T is a
�
p, q � 1 � current on M with ∂M T

defined by a ��� -smooth
�
p, q � -form on M then their exists a

�
p, q � 1 � form u of class � � on M0

with ∂M u
�

∂M T .

Let M be a q-concave CR generic manifold in X , we denote by Ωp
M the sheaf of CR p-forms

on M , 0 � p � n. Consider the following diagram

� 
 p,1 //∂M � 
 p,2 // ����� //∂M � 
 p,q 	 1 //∂M � 
 p,q

Ωp
M

''
∂M

OOOOOO

77∂M oooooo

� p,1 //∂M

��

� p,2 //

��

����� //∂M � p,q 	 1

��

//∂M � p,q

��

(5.1)

where the vertical arrows are the natural injections.

This diagram is commutative and by the Poincaré lemma for the ∂M operator in q-concave

CR manifolds [20], both horizontal lines are exact. Moreover the sheaves � 
 p,j and
� p,j are

sheaves of
�

-modules and consequently acyclic.

Let us denote by �� 
 p,q the image by ∂M of the sheaf � p,q 	 1, this is the sheaf of locally ∂M -

exact currents, and by �� p,q the image by ∂M of the sheaf
� p,q 	 1, this is the sheaf of locally ∂M -

exact � � -smooth forms.

L 5.3. — Under the hypothesis of Theorem 5.1 and using the previous notations the nat-

ural map

H k � M ,
� p,k � θk� � H k � M , � 
 p,k � , 0 � k � q � 1

H q � M , �� p,q �
�
θq� � H q � M , �� 
 p,q �

induced by the inclusion of
� p,k into � 
 p,k , 0 � k � q are isomorphisms.

Proof. — Following the proof of the de Rham-Weil isomorphism (cf. [14], Chap. 7) we get

isomorphisms

δk

� : H k � M ,
� p,k � � � H k � M , Ωp

M � and δk
cur : H k � M , � 
 p,k � � � H k � M , Ωp

M � , 0 � k � q � 1

δ̃
q

� : H q � M , �� p,q � � � H q � M , Ωp
M � and δ̃

q
cur : H q � M , �� 
 p,q � � � H q � M , Ωp

M � .

10



such that the following diagrams are commutative

H k
�
M , � 
 p,k �

**
δk

cur
UUUUUUU

H k
�
M , Ωp

M � , 0 � k � q � 1

H k � M ,
� p,k �

OO

θk
44

δk�

iiiiiii

H q � M , �� 
 p,q �
**

δ̃
q
cur

TTTTTTT

H q � M , Ωp
M � ,

H q � M , �� p,q �

OO

θ̃q
44

δ̃
q�

jjjjjjj

where θk , 0 � k � q � 1 et �θq are the natural maps induced by the inclusion of
� p,k into � 
 p,k ,

0 � k � q. Consequently the maps θk , 0 � k � q � 1 and �θq are isomorphisms.

Proof of Theorem 5.1. — Let T � � 
 p,q 	 1 � M � such that ∂M T is defined by a � � -smooth�
p, q � -form on M . Proposition 5.2 implies that ∂M T � �� p,q � M � � �� 
 p,q � M � . Let �θq be the

isomorphism of Lemma 5.3, then the image by �θq of the class of ∂M T in H q � M , �� p,q � is the zero

point of H q � M , �� 
 p,q � . We deduce from the injectivity of �θq that the class of ∂M T in H q � M , �� p,q �
is equal to zero, which says that there exists g � � p,q 	 1 � M � with ∂M g

�
∂M T .

Now we shall modify g to get a form u � � p,q 	 1 � M � with ∂M u
�

∂M T and supp u � U

where U is a given neighborhood of supp T .

Let U be a neighborhood of the support of T . Let us consider the
�
p, q � 1 � -current T � g on

M , it is ∂M -closed and using the isomorphism θq 	 1 of Lemma 5.3 we get a
�
p, q � 2 � -current S on

M and a
�
p, q � 1 � -form h � � p,q 	 1 � M � such that T � g � ∂M S

�
h. Then ∂M S

�
g � h on M �

supp T . Using once more the isomorphism θq 	 1 we can find a
�
p, q � 2 � -form v � � p,q 	 2 � M �

such that

∂M v
�

g � h on M � supp T .

Let χ be a � � -smooth function such that χ
�

0 on a neighborhood of supp T and χ
�

1 on a

neighborhood of M � U . Setting u
�

g � h � ∂M χv we get a � � -smooth
�
p, q � 1 � -form on M

such that ∂M u
�

∂M T and supp u � U .

Using Theorem 5.1 we can prove a generalization of Theorem 4.1 to the case of q-concave CR

manifolds, q � 1.

T 5.4. — Let M be a � � -smooth q-concave CR generic manifold of real codimension

k in a complex manifold X of complex dimension n, 1 � q � n � k, n � 3, and p an integer,

0 � p � n. Assume that H
p,n 	 k 	 q � 1

�
�
M � is separated, then the space Z

p,n 	 k 	 q

�
�
M � is dense in

the space Z
p,n 	 k 	 q
cur

�
M � for the strong topology of � 
 p,n 	 k 	 q

�
M � .

Proof. — It is sufficient to repeat the proof of Theorem 4.1 replacing Malgrange’s theorem by

the assumption H
p,n 	 k 	 q � 1

�
�
M � is separated and Corollary 0.2 in [5] by Theorem 5.1.

11



R 5.5. — 1) If q
�

1 and if M is connected and non compact, by Malgrange’s theo-

rem [19] the assumption H
p,n 	 k 	 q � 1

�
�
M � separated is automatically fulfilled and Theorem 5.4 is

nothing else than Theorem 4.1.

2) If M is compact, by Theorem 4 in [10] or Theorem 7.1 in [12] H
p,n 	 k 	 q � 1

�
�
M � is finite

dimensional and hence separated and consequently it follows from Theorem 5.1 and Proposi-

tion 3.1 in [12] that in a � � -smooth compact q-concave locally embeddable CR manifold M ,

q � 1, of real dimension 2n � k and CR dimension n � k, the space Z
p,n 	 k 	 q

�
�
M � , is dense in

Z
p,n 	 k 	 q
cur

�
M � for 0 � p � n.

3) Note that the cohomology groups H
p,n 	 k 	 q � 1

�
�
M � are separated as soon as M admits

an exhausting function with good pseudoconvexity properties since, usually in this case, these

groups are finite dimensional (see for example Theorem 6.1 in [12]). As a particular case of this

situation we get a version for currents of the approximation Theorem 7.2.3 of [1] as a corollary of

Theorem 5.4.

C 5.6. — Let M be a � � -smooth q-concave CR generic manifold of real codimen-

tion k in an n-dimensional pseudoconvex complex manifold, q � 1, then for all p, 0 � p � n, the

space Z
p,n 	 k 	 q

�
�
M � is dense in the space Z

p,n 	 k 	 q
cur

�
M � for the strong topology of � 
 p,n 	 k 	 q � M �
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