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A . — A wedge on a surface singularity
�
S, P � is a formal parametrization of

S by power series in two variables, locally at P . A genericity condition, which is expected to
be enough to guarantee that a wedge lifts to the minimal desingularization of the surface, is
proved to be so if the singularity is sandwiched.

To the memory of O. Zariski and to P. Samuel

Introduction

The following question is motivated by the challenging problem of understanding

Nash’s families of arcs on a surface singularity in relationwith itsminimal desingularization

(see [N]).

Does a wedge centered at a “general” arc on a normal surface singularity � S, P � lift to
its minimal desingularization � ?

Let us explain our terminology. An arc on � S, P � is an algebroid curve going through
P on S, given by formal power series in one variable x � t � . We say that an arc is general
on � S, P � if its strict transform on � is smooth and intersects transversally the exceptional

curve E at a point lying on a Zariski dense open set of regular points of E . Awedge on � S, P �
is a parametrization of S locally at P by formal power series in two variables x � u1, u2 � . We
say that a wedge is centered at an arc if its parametrization x � t � comes from the wedge by

substituting series u1 � t � , u2 � t � .
The aim of the present paper is to give an affirmative answer to the above question

when � S, P � is a sandwiched singularity. By Zariski’s complete ideal theory, such a singu-
larity is the birational join of finitely many primitive ones. (Definitions are given below.)
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Most of our discussion consists in extending the combinatorial argument working for toric

surface singularities developed in [L-J] to primitive ones.

A system of approximate roots of a general element in the simple complete ideal I

whose blowing-up p0 produces the primitive singularity � S, P � , or equivalently a generat-
ing sequence for the divisorial valuation ν associated to the irreducible exceptional curve

of p0, helps us drawing a toric environment. A similar construction has been given inde-

pendently by Golding and Teissier in [G.T]. Roughly speaking, we interpret p0 and various

modifications of S including its minimal desingularization as being strict transforms by

suitable equivariant modifications between toric varieties. More precisely this goes as fol-

lows.

Pick a generating sequence � x0, . . . , xg � 1 � for ν and set δg � 1 � � β0, . . . , βg � 1 � with
βi � ν � xi � . First, sending the variable Xi to xi defines an embedding of the non singu-
lar algebroid surface �� 0 supporting I in �� 0 : � Spec k ��� X0, . . . , Xg � 1 ��� . Let Σ0 be the fan,

elementary subdivision of the cone 	 g � 2
 0 by 	 
 0δg � 1, let π0 :
�

Σ0 �
��� g � 2k be the re-

sulting equivariant modification and let �� Σ0 be the strict transform of �� 0 by π0. We may

assume without loss of generality that �� Σ0 has a unique singular point �P . The main result
of [Sp1] may be reformulated by saying that � S, P � and � �� Σ0 , �P � have isomorphic formal
neighborhoods.

Nextwe derive from the explicit formulas giving xi � 1 in terms of � x0, . . . , xi � that �� 0

is defined in �� 0 by a system of g functions which is not degenerate for its Newton polyhe-

dra. Following Khovanskii [Kh], we consider the least fine subdivision Σ � of its “Newton
fans” and of Σ0, and the resulting equivariant modification

�
Σ � �

�
Σ0 . We show that the

cones σ � Σ � whose associated orbit O� σ intersects the strict transform ���� of �� Σ0 form a

fan Θ consisting of σi,1 ��� δi � 1, δi � and σi,2 ��� εi , δi � for 1 � i � g � 1 and their faces,
where � , � denotes the cone generated by the vectors written inside, εi is the unit vector

on the Xi -axis and

δi � � β0, . . . , βi , niβi , . . . , ni ����� ngβi � , 0 � i � g � 1
with n0 � 0, ni � ei � 1/ei , 1 � i � g and ei � g . c. d. � β0, . . . , βi � , 0 � i � g . By removing
σg � 1,2 and 	 
 0εg � 1 from Θ, we get the σ � Σ � such that �P lies in the Zariski closure of
the image of O� σ � �� � in �� Σ0 . These cones form another fan Ξ which we call the skeleton

of the primitive singularity. As in [G.L1], the non degeneracy property implies that ���� is a
partial desingularization of �� Σ0 with only toric singularities, namely its intersection points

with the orbits O� σi,j , for σi,j � Ξ.

Finally for any regular subdivision Σ � of Σ � whose trace on the fan Θ above is its

minimal regular subdivision, the map
�

Σ  �
�

Σ0 is an embedded desingularization of

�� Σ0 and its strict transform �� Σ  is its minimal desingularization. This is detailed in sec-
tion 1.
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We begin the next section by relating arcs and wedges on � S, P � with its skeleton.
Indeed, as a trivial consequence of the triangular inequality, the characteristic vector α �
ordt xi � t � 0 � i � g � 1 of an arc on � S, P � meeting the torus, lies on Ξ. Similarly, p being any

irreducible element in k ��� u1, u2 � � and νp denoting the p-adic valuation, for any wedge on

� S, P � , αp � νpxi � u1, u2 � 0 � i � g � 1 lies on Ξ. The finitely manyαp
�� 0 are defined to be the

characteristic vectors of thewedge.

The “general” arcs on � S, P � are exactly those whose characteristic vector belongs to
the minimal generating system of some σ � Ξ (that is of the semigroup σ ��� g � 2 � 0). By
the way, this is a combinatorial translation of Cor. 8.4 [Sp1]. Onemay also decide whether

a wedge lifts to the minimal desingularization of � S, P � by looking at its characteristic vec-
tors. This happens if and only if there exists a cone τ in the minimal regular subdivision

of Ξ which contains them all. So one may read off the skeleton of a primitive singularity,

similar informations about its arcs and wedges to those encoded in the cone giving rise to

a toric surface singularity.

The last part of section 2 is a proposition expressing additional restrictions on the

location of the characteristic vectors of a wedge. This observation is crucial in the proof of

the main theorem, which is given in section 3. The results of this paper were announced in

[L.R].
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0. Terminology, notation

In this preliminary section, we fix our terminology and notation, and we make a

review of some useful results.

0.1. — By a sandwiched (resp. primitive sandwiched, for short primitive in the

sequel) surface singularity, we mean the formal neighborhood �S of a singular point P on a
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surface S obtained by blowing-up a complete (= integrally closed) (resp. simple complete,

for short simple in the sequel) ideal I in the local ring of a closed pointO on a non singular

algebraic surface � 0 defined over an algebraically closed field k.

We may assume I to be primary for the maximal ideal of R : ����� 0,O . In addi-
tion, � 0 and I can be chosen in such a way that P is the only singular point on S and that

any irreducible curve on the minimal desingularization � of S which is mapped onto an

exceptional curve for S � � 0 is a � � 1 � -curve ([Sp2], Cor. II.1.14).

0.2. — From now on until the end of section 2, we focus our attention on a primi-

tive singularity �S.

0.3. — Recall that the exceptional curve of the blowing-up p0 : S � � 0 of a simple

ideal I is irreducible. Any minimal generating sequence � x0, . . . , xg � 1 � for the associated
divisorial valuation ν enjoys the following geometrical and arithmetical properties:

0.3.1. — Let q : � � S be theminimal desingularization of S. The dual graph Γ of

the configuration of irreducible exceptional curves for p : � q � p0 has the form

. . . . . . . .
.....

. . .
...

.
v0

v1

w1

v2

w2

vg

wg

vg � 1

where we have labelled the ends v0, . . . , vg � 1 and the stars w1, . . . , wg . By deleting vg � 1
from Γ, we get the dual graph associated to the exceptional curves for q.

For 0 � i � g � 1, the strict transform on � of the curve Ci defined by xi in

� � 0, O � is smooth and intersects transversally the curve represented by v i and no other
exceptional curve for p. The curve C � Cg � 1 is analytically irreducible at O, and has g
Puiseux exponents; C0 is smooth and transversal to C at O, while for 1 � i � g , Ci has

i � 1 Puiseux exponents and maximal contact with C .

0.3.2. — The family βi : � ν � xi � , 0 � i � g , is the minimal generating system

for the semigroup ν � R � 0 � of the valuation ν, and βg � 1 : � ν � xg � 1 � � ν � I � . We set
ei : � g . c. d. � β0, . . . , βi � , 0 � i � g � 1, n0 � 0 and ni : � ei � 1/ei , 1 � i � g � 1. Recall
that e0 > e1 > ����� > eg � eg � 1 � 1 and the following conditions hold:

i) niβi belongs to the semigroup generated by β0, . . . , βi � 1, 1 � i � g � 1,
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ii) βi > ni � 1βi � 1, 1 � i � g � 1,
For 1 � i � g , these conditions characterize the semigroup of a plane curve singularity;

the strict inequality for i � g � 1 expresses that the blowing-up S of I has a unique singular
point.

In addition, for 1 � i � g � 1, there exists a unique system of non negative integers
bi j , 0 � j < i such that bi j < nj for 1 � j < i and niβi � �

0 � j<i
bi jβj . In fact, one may

choose xi � R, 0 � i < g � 1, in such a way that they satisfy polynomial identities of the
form

xi � 1 � x
ni
i � cixbi00 ����� xbii � 1i � 1 � �

γ ��� γ0 ,...,γi �
ci,γx

γ0
0 ����� xγi

i ,

with o � γj < nj , for 1 � j � i, and �
j

γjβj > niβi , and with ciγ, ci � k and ci �� 0.

For details concerning the material of 0.3, see [Ab] and [Sp1]. In particular a proof

of the above assertion follows from [Ab] 9.4 in characteristic 0 and from [Sp1] Remark 8.16

and Lemma 8.10. See also [Z].

0.4. — As far as toric geometry is concerned, we only need the basic elements of

the dictionary given in [T.E] or [Oda], Chap. I and the characterization of the minimal reg-

ular subdivision σ � of a 2-dimensional cone σ through the minimal generating system

Gσ of the semigroup σ � � 2 � 0. To be precise, Gσ consists of the integral points on the

compact edges of the boundary polygon of the convex hull of σ � � 2 � 0 and the one
dimensional cones in σ � are the half lines through the points in Gσ [G-S].

We denote by
�

Σ the toric variety which corresponds to the fan Σ; we denote by O� σ

the T -orbit on
�

Σ which corresponds toσ � Σ. The conesσ � ,σ � are respectively the dual
and the orthogonal of σ, and 	σ denotes its relative interior.

We set ∆ : � 	 g � 2
 0 . Two sets of vectors with integral coordinates in ∆ will play a

special role: the unit vector εi on the Xi-axis and δi � � β0, . . . , βi , niβi , . . . , ni ����� ngβi � ,
0 � i � g � 1. We denote by � . . . , ai , . . . � the cone generated by the ai � ∆, while � ai , aj �
is used for the usual scalar product of ai , aj .

We consider polynomials F � k � X0, . . . , Xg � 1 � . If F �
�
α

cαX
α, the support of F ,

(for short Supp F ), is � α � � g � 2
 0 ; cα

�� 0 � ; its Newton polyhedron � is the convex hull of�
α 
 Supp F α � ∆. Its support function h � : ∆ � 	 
 0 is defined by

h� � n � � inf
m 
 � � m, n � .
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1. A toric environment

Let
�
0 : � �

∆ � � g � 2k endowed with its natural T � k � g � 2 action. The formal
neighborhood �� 0 of O in � 0 is a non singular complete intersection surface in the formal

neighborhood �� 0 � Spec k ��� X0, . . . , Xg � 1 ��� ofO in � 0 defined by the polynomials
Fi � Xi � 1 � X nii � ciX bi00 ����� X bii � 1i � 1 � �

γ

ciγX
γ0
0 ����� X γi

i , 1 � i � g .

Indeed by 0.3.1, � x0, x1 � is a regular system of parameters of R.

We will successively introduce four subdivisions of ∆. Each arrow represented on

the diagram below goes from a fan to a subdivision of this fan.

∆

Σ0

Σ�
Σ � Σ �

For each one of these subdivisions, we then decide which singularities appear on the strict

transform of �� 0 by the resulting equivariant modification.

1.0. — We begin by an elementary observation which is valid for any subdivision

Σ of ∆. Since for 0 � i � g � 1, 	 
 0εi is both a 1-dimensional face of ∆ and a cone in

Σ, the map πΣ :
�

Σ �
�
0 is an isomorphism over the corresponding orbit in

�
0, namely

Xi � 0, X j
�� 0, j

�� i. Now the image of the generic point of Ci by the canonical map

�� 0 ↪� �� 0 �
�
0 lies in this orbit; so πΣ is an isomorphism over �� 0

� O, the exceptional
locus of its strict transform �pΣ : �� Σ � �� 0 is its fiber over O and the only σ � Σ in ∆ � 	∆
such that O� σ � �� Σ

�� � are the 	 
 0εi , 0 � i � g � 1.
We first deal with the elementary subdivision Σ0 of∆ by 	 
 0δg � 1.

P 1.1. — The unique singular point �P of the strict transform �� Σ0 of �� 0

by the equivariant map π0 :
�

Σ0 �
�
0 is the closed orbit O��� ε0 ,...,εg ,δg � 1 � . Its formal neigh-

borhood in �� Σ0 is isomorphic to the formal neighborhood �S of S at P .

Proof. — Let us check that the map �� Σ0 � �� 0 is the blowing-up �p0 with center
�I : � I � � � 0 . First, by [T.E] Chap. I, th. 10,π0 is the normalized blowing-up of the monomial

ideal J generated by Xm � X
m0
0 ����� Xmg � 1g � 1 with � m, δg � 1 ��� �

0 � i � g � 1βi . On the other

hand, �ν being the divisorial valuation of the function field K � �� 0 � associated to the unique
irreducible exceptional curve for �p0, for any b �
	 , one has

�I b � � f � �R ; �ν � f ��� b βg � 1 � .
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Indeed, �I is simple, complete and the product of any two complete ideals in �R is again com-
plete. Therefore, in view of [Sp1], Th. 8.6, �p0 is the strict transform of �� 0 by the blowing-up

of J ; but also by π0 because of the normality of its top space. The claim follows except for

the identification of �P with a closed orbit for the action of T on � Σ0 . This will be proved

later in Prop. 1.6, ii).

1.2. — We now come to the definition of the Newton fan Σ � of � F1, . . . , Fg � . Let
� i be the Newton polyhedron of Fi and let h

i : ∆ � 	 
 0 be its support function.
For any non empty faceϕ of � i ,

σϕ : � � n � ∆; � m, n � � hi � n � for anym � ϕ �
is a strongly convex cone in ∆ and the resulting family � σϕ � is a fan Σ�

i
which subdivides

∆. Note that

H i
n : � � m � 	 g � 2 ; � m, n � � hi � n � �

being the supporting hyperplane of � i in the direction n, one has

� 1. 2. 1 � � i � H i
n � ϕ if and only if n � 	σϕ

The least fine subdivision of the Σ�
i
, 1 � i � g , is, by definition, the Newton fan Σ�

of � F1, . . . , Fg � . It consists of the intersections of the cones of the fans Σ �
i
. We denote by

π� :
�

Σ � �
�
0 the resulting equivariant modification and by �p� : �� � � �� 0 the strict

transform of �� 0 (instead of �pΣ � , �� Σ � ). Note that π
� 1� � O � is the union of the orbits O� σ,

σ � Σ� , such that σ � 	∆ �� �
. We now characterize which one of these orbits intersect

�� � .
P 1.3. — Let σ � Σ� such that σ � 	∆ �� � and for any i, 1 � i � g , let

σϕi
be the smallest cone of Σ�

i
containing σ. The following conditions are equivalent:

i) The intersection of the orbit O� σ with �� � is not empty.
ii) For any i, 1 � i � g ,ϕi is not a vertex of � i .

iii) σ is one of the following 3g � 1 cones � δg , εg � 1 � ; � δi � 1, δi � , � εi , δi � , 	 
 0δi ,

1 � i � g .
iv) Either dimσ � 1 and O� σ � �� � is isomorphic to k � as a scheme, or dimσ � 2

and O� σ � �� � is a simple point.
Proof. — First we exhibit g functions in the ideal defining O� σ � �p � 1� � O � in O� σ.

Since σ
�

σϕi
, we have that σ �ϕi

�
σ � and σ �ϕi

�
σ � . Moreover, by the definition of σϕi

,

there exists a half-linen
�

σ � 	σϕi
. As a consequenceσ �ϕi

�
σ �ϕi � σ � �

σ �ϕi � n � � σ �ϕi

([Oda] Lemma A4), hence σ �ϕi � σ �ϕi � σ � .
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Recall that the ring of regular functions on the affine open set
�

σ of
�

Σ � (resp. on

O� σ) is k � σ � � � g � 2� (resp. k � σ � � � g � 2� ) and the monomials Xm with m � σ � � σ �
generate the ideal defining the closed orbit O� σ in

�
σ.

Since σ � 	∆ �� �
, ϕi is a compact face of � i and there exists a unique Fi,ϕi

�
k � X0, . . . , Xg � 1 � such that Fi � Fi,ϕi

� � Xm � m 
 � i � ϕi
. Now pick anymi � ϕi � � g � 2and let

F
�
i (resp. F

�
i,ϕi
) : � X � miFi (resp. Fi,ϕi

). Then F
�
i � k �σ �ϕi � � g � 2� and F

�
i,ϕi

� k � σ �ϕi � � g � 2�
by the definition of σϕi

and F
�
i � F

�
i,ϕi

� � Xm � m 
 σ
�
ϕi
� σ
�
ϕi
because of (1.2.1).

It follows from the discussion just above that F
�
i � k � σ � � � g � 2� , F �i,ϕi

� k � σ � �
� g � 2� and F �i � F

�
i,ϕi

� � Xm � m 
 σ
�
� σ
� , which implies that � F �i,ϕi

� 1 � i � g belong to the ideal
defining O� σ � �p � 1� � O � in O� σ.

i � � � ii � Ifϕi is a vertex, then F
�
i,ϕi

is a monomial, hence invertible in k �O� σ � .
ii � � � iii � The first step in the proof is an elementary observation which does

not depend on the explicit expression of the Fi : a subset σ of ∆ satisfies the hypothesis

and condition ii) if and only if, for each i, 1 � i � g , there exists a compact face ϕi of

dimension at least one of � i such that
�

1 � i � g
	σϕi

�� � andσ � �

1 � i � g
σϕi

. This equivalence

follows from the definition of Σ� in terms of the Σ�
i
and the following general fact: if a fan

Σ
�
is a subdivision of a fan Σ and if σ is the smallest cone in Σ containing σ

� � Σ
�
, then

	σ � 	σ � . Note that we also have 	σ � � 	σϕi
.

Before going further, we need to name some compact faces of dimension one and

two of each � i , which show up immediately. The hyperplane H
i in 	 g � 2 given by

β0X0 � ����� � βiXi � niβiXi � 1 � niβi

is the supporting hyperplane of � i in the direction δ
i � 1
i : � � β0, . . . , βi , niβi , 0, . . . , 0 � .

The triangle ψi whose vertices M �i , � � � 0, 1, 2 � , are such that XM 0
i � X

bi0
0 ����� X bii � 1i � 1 ,

XM
1
i � X

ni
i , X

M 2
i � Xi � 1 is the only 2-dimensional compact face of � i in H

i . We set

ψ0
i � �M 0

i , M
1
i � , ψ1

i � �M 1
i , M

2
i � , ψ2

i � �M 2
i , M

0
i � . For i

�� 1, � i may have other compact

faces of dimension at least one than the above, but we will see that they do not contribute

to σ � Σ� meeting 	∆ which fulfill ii).
The structure of the computation is the following:

a)We prove that
�

1 � i � j
	σψ0

i
is the relative interior of � δj � 1j , εj � 1 �	� 	 g � j


0 , 1 � j � g ;

b) The only compact faces ψ of dimension � 1 of � j � 1 such that 	σψ has a non

empty intersection with
�

1 � i � j
	σψ0

i
areψ �j � 1 with � � 0, 1, 2 or empty for 0 � j < g ;

c) The only compact face ψ of dimension � 1 of � j � k � 1 such that 	σψ has a non

empty intersection with
�

1 � i � j
	σψ0

i
� 	σψ 


j � 1 � 	σψ 1
j � 2 � ����� � 	σψ 1

j � k with � � 1, 2 or empty
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isψ 1
j � k � 1 for j � 1 � j � k < g .

Proof of a). — By induction on j. This is clear for j � 1. Assume the claim for j � 1.
For any i, 1 � i � g , the cone σψ0

i
is contained in the hyperplace B0i given by

bi0X0 � ����� bii � 1Xi � 1 � niXi .

So �
1 � i � j

σψ0
i

�
�

1 � i � j
B0i � ∆ � 	 
 0 � β0, . . . , βj � � 	 g � j � 1


0 .

Since βj > nj � 1βj � 1, the inductive hypothesis implies that:
	 >0 � β0, . . . , βj � � 	 g � j � 1>0

�
�
1 � i<j

	σψ0
i
.

Hence �
1 � i � j

	σψ0
i
� 	 >0 � β0, . . . , βj � � 	 g � j � 1>0 � 	σψ0

j
.

Now n : � � β0, . . . , βj ,αj � 1, . . . ,αg � 1 � � 	σψ0
j
if and only if the face of � j in its supporting

hyperplane H
j
n in the direction n isψ0

j . By definition of its support function h
j , we have

h j � n � � inf
m 
 � j � m, n � � min � αj � 1, njβj � ,

andH
j
n � � j � ψ0

j if and only if αj � 1 > njβj , which completes the proof of a).

Proof of b). — For any n as above in 	σψ0
j
, we have

h j � 1 � n � � inf
m 
 � j � 1 � m, n � � min � αj � 2, nj � 1αj � 1, nj � 1βj � 1, inf

m 
 � j � 1 � ψj � 1 � m, n ��� .
Now either,αj � 1 � βj � 1, so

inf
m 
 � j � 1 � ψj � 1 � m, n � � inf

m 
 � j � 1 � ψj � 1 � m, δj � 2j � 1 � > nj � 1βj � 1
and

h j � 1 � n � � min � αj � 2, nj � 1βj � 1 � .

This implies that � j � 1 � H
j � 1
n may only beψ 2

j � 1, ψj � 1 or ψ 0
j � 1; and the following

three equivalences:

n � 	σψ 2
j � 1 � � αj � 1 > βj � 1 and αj � 2 � nj � 1βj � 1

n � 	σψj � 1 � � αj � 1 � βj � 1 and αj � 2 � nj � 1βj � 1
n � 	σψ 0

j � 1 � � αj � 1 � βj � 1 and αj � 2 > nj � 1βj � 1.
Or, n jβj < αj � 1 < βj � 1. The hyperplane given byβ0X0 � ����� � βjXj � αj � 1Xj � 1 � nj � 1αj � 1
intersects the Xi-axis at Xi � nj � 1αj � 1/βi for 0 � i � j and the X j � 1-axis at X j � 1 � nj � 1.
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On the other hand H j � 1 � � Xj � 2 � ����� � Xg � 1 � 0 � is a supporting hyperplane of
� j � 1 � � Xj � 2 � ����� � Xg � 1 � 0 � and intersects the Xi-axis at n j � 1βj � 1/βi for 0 � i �
j � 1. So

inf
m 
 � j � 1 � ψj � 1 � m, n � > n j � 1αj � 1.

This implies that � j � 1 � H
j � 1
n may only beψ 1

j � 1 and the equivalence
n � 	σψ 1

j � 1 � � njβj < αj � 1 < βj � 1 and αj � 2 � nj � 1αj � 1.

Proof of c). — By induction on k. In addition to our inductive hypothesis, we may

assume that � �
1 � i � j

	σψ0
i
� � 	σψ 


j � 1 � 	σψ 1
j � 2 � ����� � 	σψ 1

j � k

is the relative interior of��� �� νkj � 1 : � 	 >0δ
j � k � 1
j � 1 � 	 g � j � k>0 if � is empty

σkj � 1,1 : � � δj � k � 1j , δ
j � k � 1
j � 1 � � 	 g � j � k


0 if � � 1
σkj � 1,2 : � � δj � k � 1j � 1 , εj � 1 � � 	 g � j � k


0 if � � 2
where δ` �

` is the vector obtained from δ` by replacing its X`”-components, `
�

< `
� � � g � 1,

by 0. For k � 1, this is just what the proof of b) has established. Assume the claim for

k � 1 � 1. For any n � � αi � 0 � i � g � 1 in ∆,

h j � k � n � � min � αj � k � 1, inf
m 
 � j � k � � Xj � k � 1 ������� � Xg � 1 � 0 � � m, n � � .

By using repeatedly the inequalities niβi < βi � 1, j � i < j � k, it is easily verified that the
intersection point of the Xi-axis, 0 � i � j � k, with any of the two hyperplanes � δ j � kj , ? � �
nj ����� nj � kβj and � δj � kj � 1 , ? � � n j � 1 ����� nj � kβj � 1 lies between 0 and its intersection point
with H j � k ; moreover they coincide if and only if i � j � k and this point is n j � kεj � k .
Therefore if n lies on 	ν k � 1

j � 1 , 	σ k � 1
j � 1,1 or 	σ k � 1

j � 1,2, then h j � k � n � � min � αj � k � 1, nj � kαj � k � and
� j � k � H

j � k
n � ψ 1

j � k . So n � 	σψ 1
j � k if and only if αj � k � 1 � nj � kαj � k , which completes

the proof of c).

At last, we get iii) and the following identities:

� �
1 � i<j

σψ0
i
� � σψ 


j
� � �

j<i � g
σψ1

i
�

is ��� ��
νj : � 	 >0δj if � is empty and 1 � j � g
σj,1 : � � δj � 1, δj � if � � 1 and 1 � j � g
σj,2 : � � εj , δj � if � � 2 and 1 � j � g
σg � 1 : � � δg , εg � 1 � if j � g � 1
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iii � � � iv � Setm0
i � M 1

i � M 0
i , m

1
i � M 2

i � M 1
i , 1 � i � g . In view of the g

equations defining O� σ � �� � in O� σ previously identified and of the above identities, it is

enough to check that � � m0
i � 1 � i<j ; � m1

i � j<i<g ; m0
j , m

1
j , � resp. m1

j � , � resp. m0
j � m1

j ��� is a
� -basis of ν �j � � g � 2, (resp.σ �j,1 � � g � 2), (resp.σ �j,2 � � g � 2) for 1 � j � g , and that

� m0
i � 1 � i � g is a � -basisof σ �g � 1 � � g � 2. Verifications are left to the reader.

C 1.4. — The system � F1, . . . , Fg � is non-degenerated for � 1, . . . , � g .

Proof. — The non degeneracy condition holds if and only if for anyσ � Σ � which
fulfills condition i) in 1.3, O� σ � �� � is the intersection of g non singular hypersurfaces in

O� σ meeting transversally; we have just seen that it is defined by g coordinate functions on

the torus O� σ.

We now derive explicit equivariant modifications of
�

Σ0 which “simplify” and ulti-

mately desingularize �S.
The following proposition is preparatory.

P 1.5. — LetΣ be a subdivision of theNewton fan Σ� and let �� Σ be the

strict transform of �� 0 by πΣ :
�

Σ �
�
0. The following three conditions on τ � Σ such

that τ � 	∆ �� � are equivalent:
i) O� τ � �� Σ

�� � ;
ii) σ being the smallest cone in Σ� containing τ, O� σ � �� � �� � ;
iii) The schemeO� τ � �� Σ is isomorphic to k � or a simple point according to whether

dim τ � 1 or 2.
For any τ of dimension 1 (resp. 2) with the above properties, the surface �� Σ is

non singular along (resp. is analytically isomorphic to the germ at the closed orbit of the

toric surface
�

τ,Nτ given by τ and the lattice Nτ induced by � g � 2 on the real vector space
spanned by τ at)O� τ � �� Σ.

Proof. — First O� σ is the image of O� τ by
�

Σ �
�

Σ � , so i) � � ii). The proof of

ii) � � iii) is reduced to a mild adjustment of ii) � � iv) in 1.3 once one observes that the

smallest coneσϕi
� Σ�

i
containingσ is also the smallest cone inΣ�

i
containingτ. Indeed

since dimσ � 1 or 2 and σ � � � g � 2 is a direct summand in τ � � � g � 2, either these two
lattices coincide; or τ � � � g � 2 � � σ � � � g � 2 ��� � , so k �O� τ � � k �O� σ � �U,U � 1 � with U
an indeterminate and the ideals defining O� σ � �� � and O� τ � �� Σ in O� σ and O� τ respectively

are generated by the same functions � F �i,ϕi
� 1 � i � g . Finally, recall that the affine open set�

τ in
�

Σ is isomorphic (not canonically) to
�

τ,Nτ � O� τ, that is � 1k � k � g � 1 if dim τ � 1,
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and
�

τ,Nτ � k � g if dim τ � 2. So the last part of the claim follows from the transversality

property iii).

The first subdivision of Σ� that we consider is the least fine subdivision Σ � of Σ�
and Σ0.

P 1.6. — Let ���� be the strict transform of �� 0 by π � : � Σ � �
�
0 and

let �q � : �� � � �� Σ0 be the inducedmodification.

i) The collectionΘ of those τ � Σ � such that O� τ � ���� �� � is the fan consisting of
the 2g � 2 cones of dimension two σi,1 � � δi � 1, δi � , σi,2 � � εi , δi � , 1 � i � g � 1, and of
their faces.

ii) Let Fi be the Zariski closure ofO����� 0δi � ���� , 1 � i � g � 1. Then, for 1 � i � g ,
Fi is contracted to the closed orbitO��� ε0 ,...,εg ,δg � 1 � which is the singular point �P of �� Σ0 ; while

�q � induces an isomorphism from Fg � 1 to the exceptional curve �p � 10 � O � ��� 1 on �� Σ0 .

iii) Let � σ̃i,1; σ̃i,2 � 1 � i � g � 1 be the maximal cones in the elementary subdivision of
	 2
 0 by 	 
 0 � ei � 1, βi � ni � 1βi � 1 � ordered counterclockwise. Among these cones σ̃g � 1,2 is
the only one to be regular w.r.t. � 2. The pair � σi,j , Nσi,j � is isomorphic to � σ̃i,j , � 2 � .

iv) Let Oi,j : � O� σi,j � ���� and let
�
Oi,j be the closed orbit in the toric surface

�
σ̃i,j .

The germs � ���� , Oi,j � and � � σ̃i,j ,
�
Oi,j � are analytically isomorphic.

Proof. — The smallest cone in Σ0 containing δi , 0 � i � g , being � ε0, . . . , εg ,
δg � 1 � , the same holds for every σi,j except σg � 1,2. On the other hand δg � 1 � � δg , εg � 1 � ;
hence i) and ii) in view of 1.0, 1.3 and 1.5. Part iii) follows from explicit computations of

� -basis of the lattices Nσi,j . Let γi , λi , ρi be the primitive vectors on the half lines through

δi � 1, δi � δi � 1, and δi � � βi � ni � 1βi � 1 � εi respectively. It is easily checked that � γi , λi � (resp.
� ρi , εi � ) is a � -basis of Nσi,1 (resp. Nσi,2 ), and that σi,1 � � γi , ei � 1γi � � βi � ni � 1βi � 1 � λi �
and σi,2 � � ei � 1ρi � � βi � ni � 1βi � 1 � εi , εi � . Part iv) follows from iii) and 1.5.

C 1.7. — The collection Ξ of those τ � Σ � such that �P lies in the Zariski
closure of �q � � O� τ � ���� � is the fan obtained by removing σg � 1,2 and 	 
 0εg � 1 fromΘ.

The isomorphism between �S and the formal neighborhood of �P in �� Σ � established
in Prop. 1.1, allows us to give

D 1.8. — We call Ξ the skeleton of the primitive singularity �S.
Note that Ξ does not depend on a particular choice of � x0, . . . , xg � 1 � .
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1.9. — For any regular subdivision Σ of Σ � , the transversality property of �� Σ with

the orbits of the torus in
�

Σ observed in the proof of 1.5 may be reformulated by saying

that
�

Σ �
�

Σ0 is an embedded desingularization of �� Σ0 . Note that by applying [T.E],

Remark p. 35, to any subdivision of Σ � whose trace onΘ is its minimal regular subdivision

Θ � , one gets regular subdivisions Σ � of Σ � with the same property; Σ � is not uniquely
determined.

P 1.10. — Let Σ � be any regular subdivision of Σ � whose trace onΘ is

its minimal regular subdivision Θ � , and let �� � be the strict transform of �� Σ0 by
�

Σ  ��
Σ0 . Then �� � is the minimal desingularization of �� Σ0 .

Proof. — The claim is a direct consequence of any of the two following indepen-

dent remarks.

Remark 1.10.1. — Let p : � � � 0 be the minimal sequence of point blowing-

ups making I � � invertible as in 0.3.1. One recovers the dual graph Γ of the exceptional

curves for p from ProjΘ � by erasing its ends, namely Proj 	 
 0εi , and its adjacent edge,

0 � i � g � 1.

Proof. — It is based on the equivalence between the Zariski exponents � β0, . . . ,
βg � 1 � and the Puiseux exponents � β1, . . . , βg � 1 � of the valuation ν associated to the irre-

ducible exceptional curve on S (see [Sp1], � 6).
Recall that the minimal desingularization of S is the map q : � � S factoring p,

and that the only irreducible curve on � to be exceptional for p and not for q is represented

by vg � 1 on Γ.

Let w1, . . . , wg be the stars of Γ as shown in 0.3.1. By erasing the edge adjacent to

wi on the linear subgraph of Γ between w i and vg � 1, 1 � i � g , one breaks up Γ into

g � 1 disjoint linear graphs Γi , 1 � i � g � 1. It follows from Enriques’s theory that Γi has

�
1 � j � si

a
� i �
j vertices, where

βi � βi � 1
ei � 1 ��� a � i �1 , . . . , a � i �si � � a

� i �
1 � 1

a
� i �
2 � 1

. . . � 1

a
� i �
si

is the continued fraction expansion � � � . (By convention β0 � 0.)

The minimal regular subdivision
�
Σi � of the elementary subdivision

�
Σi of 	 2
 0 by

	 
 0 δ̃i : � � ei � 1, βi � βi � 1 � may also be described from this expansion. To be precise, Γi is

� � � Our notation does not coincide with that in [Sp1].
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obtained from Proj
�
Σi � by erasing its ends, with w i � Proj δ̃i . The claim follows from the

equality βi � βi � 1 � βi � ni � 1βi � 1, 1 � i � g � 1, and 1.6, iii).

Remark 1.10.2. — Let Θ � � 1 � be the set of 1-dimensional cones in Θ � and let α`

denote the primitive vector on ` � Θ � � 1 � (i.e. the generator of the semigroup � g � 2 � `).

If ` � 	∆ �� �
(resp. ` � 	 
 0εi ), the Zariski closure E` of O� ` � �� � is contracted

to O by �� � � �� 0 (resp. coincides with the strict transform of Ci ).

Denote by � E2` � the self-intersection of E` if contracted. Then

� E2` � α` � �̀ � 
 Λ`

α` � � 0 � � �

where Λ` � � `
� � Θ � � 1 � ; `

� �� ` and � ` � , ` � � Θ � � .
One has � E2` � �� � 1 unless ` � 	 
 0δg � 1 or equivalently E` is not contracted on �P

in �� Σ0 .

Proof. — First recall that, for any 1-dimensional cone ` � Σ � the vanishing order
of Xi along O� ` in

�
Σ  is � εi ,α` � . Because of the transversality property of �� � with the

orbits O� `, ` � Θ � � 1 � , it follows that
div xi � �

` � 
 Θ  � 1 � � εi ,α` � � E` � , 0 � i � g � 1
hence the identity � � � by intersecting with E`.

Because of 1.5 and 1.6, �� � is the minimal desingularization of �� � . So � E2` � �� � 1,
if ` � Θ � � Θ. Assume now that ` � 	 
 0δi , 1 � i � g ; the set Λ` has 3 ele-

ments whose primitive vectors α1,α2,α3 lie respectively in 	σi � 1,1, 	σi,1 and 	σi,2. Since
δi � 1 � � ε0, . . . , εi , δi � , the identity � � � implies that α2 � α3 lies in the intersection of

� ε0, . . . , εi , δi � with the plane generated by σi � 1,1, which is a cone τi � 1. The primitive vec-
tors γi � 1, λi � 1 on 	 
 0δi , and on 	 
 0 � δi � 1 � δi � respectively, form a � -basisof the lattice
Nσi � 1,1 . In this basis σi � 1,1 and τi � 1 are respectively the cones � � 1, 0 � , � ei , βi � 1 � niβi � �
and � � 1, 0 � , � ei , � niβi � � and α` � α1 � � 1, 0 � � α1 /� τi � 1, so � E2` � �� � 1. Similarly,
� δg , εg � 1 � is a � -basis of Nσg � 1,1 ; in this basis δg � 1 � � 1, βg � 1 � ngβg � , so, as expected,
for ` � 	 
 0δg � 1, one has � E2` � � � 1.

1.11. — The non singular surface �� � together with the complement of the excep-
tional curve for �� � �� 0 (resp. �� � � �� Σ0) is a strict toroidal embedding ( � without

self-intersection). The corresponding rational conical polyhedral complex, as defined in

[T.E], II.1, carries a natural extra structure of fan, namely the fan
�
Θ � (resp. �Ξ � ), obtained

from the minimal regular subdivision Θ � of Θ (resp. Ξ � of Ξ) by removing the cones of
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which 	 
 0εi , 0 � i � g , and 	 
 0εg � 1 (resp. 	 
 0δg � 1) is a face. See also 2.5.1 below for
an interpretation of the map “ord” of [T.E], p. 64.

2. Arcs and wedges on a primitive surface singularity

Before introducing arcs and relating them with the skeleton Ξ of the primitive sin-

gularity �S, we draw a straightforward consequence of the description of Ξ in terms of the
Newton fans of � F1, . . . , Fg � .

2.1. — Let �A be the local ring of �S; in view of 1.1, �A is isomorphic to the completion
of the local ring of �� Σ0 at �P with respect to its maximal ideal.

By an order function on �A, we mean a function ω : �A � � 
 0 � � ��� � such that
ω � k � 0 � � 0,ω � 0 � � ��� , ω � xy � � ω � x � � ω � y � and ω � x � y � � min � ω � x � ,ω � y � �
for all x, y � �A, with the convention that n (resp. ��� ) ��� � ��� and n < ��� for any

n � � 
 0. We will only consider order functions such thatω � xi � �� ��� , 0 � i � g � 1.

P 2.2. — For any order functionω on �A,αω : � � ω � xi � � 0 � i � g � 1 lies on
the skeleton Ξ of �S.

Proof. — The completion �R of R : � � � 0,O is a subring of �A and Q : � � f �
�R;ω � f � > 0 � is a prime ideal in �R. If αω

�� 0, there exists i, 0 � i � g � 1, such that

ω � xi � > 0. Now �R is a two-dimensional regular local ring. Therefore, either Q is principal;
x0, . . . , xg � 1 being irreducible elements in �R, xi generates Q and x j /� Q for j

�� i, so

αω � � >0εi .

OrQ is the maximal ideal of �R, so αω � � g � 2>0 . Because of the triangular inequality,

the supporting hyperplane of the Newton polyhedron � i of Fi in the direction αω inter-

sects � i along a compact face ϕi of dimension at least one and by 1.2.1, αω � � 	σϕi

�

σ � �

1 � i � g
σϕi

. Therefore σϕi
is the smallest cone of Σ�

i
containing σ and any of the

equivalent conditions of Prop. 1.3 holds for σ (for more details, go back to ii) � � iii) in the

proof of 1.3). Comparing 1.3 iii) with 1.6 i), we get that αω lies onΘ.

On the other hand, by 1.6 ii) the singular point �P of �� Σ0 is the closed orbit

O� � ε0 ,...,εg ,δg � 1 � on
�

Σ0 . So for any m � � m0, . . . , mg � 1 � � � ε0, . . . , εg , δg � 1 � � , xm �
� x

mi
i � �A, henceω � xm � � � m,αω � � 0 and αω � � ε0, . . . , εg , δg � 1 � . In view of 1.7, αω

lies on Ξ.
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We now come to the definitions of arcs and wedges on �S and of their characteristic
vectors w.r.t. the generating system � x0, . . . , xg � 1 � , via order functions.

D 2.3. — An arc (resp. awedge) on �S is a k-localmorphism from the local
ring �A of �S to the formal power series ring in one (resp. two) variables with coefficients in
k whose kernel is a prime ideal of height one (resp. 0).

Given an arc h (resp. a wedgeϕ) on �S, to any discrete valuation of rank one v, non
negative on k � � t ��� (resp. k ��� u1, u2 � � ), we associate the order functionω : � v � h (resp. v � ϕ).
By convention ω � f � � ��� if and only if f � Ker h (resp. f � 0). We denote by ωt the

t-adic order function; similarly for any irreducible p in k ��� u1, u2 � � , we denote by ωp the

p-adic order function.

D 2.4. — Given an arch on �S lying generically outside the total transform
of Ci , 0 � i � g , we define the characteristic vector of h, w.r.t. � x0, . . . , xg � 1 � , to be
αh : � � ωt � xi � � 0 � i � g � 1.

By 2.2, αh � Ξ. As a consequence, there exists a unique 2-dimensional cone in

the minimal regular subdivision Ξ � of Ξ, which contains αh ; hence αh may be written

uniquely as a linear combination with coefficients in � 
 0 of the primitive vectors lying on
its 1-dimensional faces. Taking into account that the set of 1-dimensional cones Ξ � � 1 �
in Ξ � is obtained by removing 	 
 0δg � 1 from Θ � � 1 � , this has the following geometrical
interpretation:

P 2.5.1. — Let h be an arc on �S as above and let h � be its strict trans-
form on its minimal desingularization identified with �� � . With the notation introduced
in 1.10.2, we have

αh � �
` 
 Ξ  � 1 �

� E` � h � � α`

where � E` � h � ) denotes the intersection multiplicity of E` with h � .

Proof. — Recall that the curve E` on �� � is not exceptional for �q � : �� � � �� Σ0
�

�S, if and only if ` � 	 
 0εi , 0 � i � g � 1, ` � 	 
 0δg � 1. These curves are respectively
the strict transforms of Ci , 0 � i � g � 1, and the center of the valuation ν. Now the arc

h � intersects the exceptional curve of �q � ; so it does not meet the strict transform of Cg � 1.
By definition � E` � h � � is the order in t of the image by h � of the local equation of

E` at the exceptional point of h � . The claim follows from the expression of the divisor of

zeros, div xi , of xi on �� � as a linear combination of E`, ` � Θ � � 1 � , given in the proof of
1.10.2, sinceωt � xi � � � div xi � h � � .
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The arc h � intersecting at least one exceptional E` for �q � , we have that αh /�
	 
 0εi , 0 � i � g , andαh /� 	 
 0δg � 1. In view of 0.4, we also get

P-D 2.5.2. — Let h be an arc on �S as above. Its strict trans-
form on the minimal desingularization of �S is smooth and intersects transversally the ex-
ceptional curve E at a regular point of E other than the exceptional points of the center of

the valuation ν and of the strict transforms of the Ci , 0 � i � g , if and only if its character-
istic vector αh belongs to the minimal generating system Gσ of some σ � Ξ. An arc with

the equivalent above properties will be said to be general on �S w.r.t. � x0, . . . , xg � 1 � .
Proposition 2.2 leads naturally to the following definition of the characteristic vec-

tors of a wedge.

D 2.6. — Given a wedge ϕ on �S, we define the characteristic vectors of
ϕ, w.r.t. � x0, . . . , xg � 1 � , to be the non zeroαϕ,p : � � ωp � xi � � 0 � i � g � 1, where p runs over all
irreducible elements in k ��� u1, u2 ��� up to multiplication by a unit.

By 2.2,ϕ has only finitely many characteristic vectors which all lie on Ξ.

P 2.7. — The morphism Spec k ��� u1, u2 ��� � �S given by a wedgeϕ lifts

to the minimal desingularization of �S if and only if there exists a cone in the minimal regu-
lar subdivision Ξ � of Ξwhich contains every characteristic vector ofϕ.

Proof. — Let Σ � be as in Prop. 1.10. The lifting property of 2.7 holds iff the mor-
phism Spec k ��� u1, u2 ��� � �S �

�
Σ0 lifts to

�
Σ  by 1.10. This occurs iff there exists a cone

τ � Σ � which contains every characteristic vector of ϕ. Since they all lie in Ξ, the claim

follows from the definition of Σ � .

2.8. — There is an alternative way of proving that the characteristic vectors belong

toΞ. The emphasis ismade on arcs rather than on functions. To compute the characteristic

vectors of an arc, you have to control the infinitely near points of O shared by its image in

the plane and by Ci , 0 � i � g � 1. This may be done with the help of Enriques diagrams
or by using the notion of contact. See [Ab] or [Sp1], � 7 and 8. For wedges, you only have
to observe that, either αϕ,p � � >0εi for some i, 0 � i � g � 1, or the p-adic valuation in
k ��� u1, u2 � � induces via �R � �A ϕ�
� k ��� u1, u2 � � a divisorial valuation centered in �R. By the
structure theorem for valuations in dimension 2, it is given by the intersection multiplicity

with a general curve in a linear system with infinitely near base condition in the plane;

hence αϕ,p � Θ as above. Using the same argument as in 2.2, you get that αϕ,p � Ξ.
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2.9. — In fact the approach via Newton polyhedrons is needed to get finer restric-

tions, valid for all the characteristic vectors simultaneously. This is what we do in the rest

of this section.

First, observe that the characteristic vectors of a wedge may not all lie on 	 >0δg � 1.
Indeed with bg � 1,j , 0 � j � g , as in 0.3.2, �

j

x
bg � 1,j
j x � 1g � 1 is in themaximal ideal of �A and its

image byϕ would be a unit.

Besides, 	∆ � 	 g � 2>0 must contain at least one of them, otherwise the induced mor-

phism Spec k ��� u1, u2 � � � �� 0 would be finite. More directly setting αϕ,p � αp for simplic-

ity, ifαp,g � 1 �� 0, thenαp � � g � 2>0 , because xg � 1 generates I �A, xβg � 1
i � I , 0 � i � g ; butϕ

is injective.

The filtration � � � ∆i : � 	 >0 � β0, . . . , βi � � 	 g � i � 1

0 � 0 � i � g of ∆ � ∆0 is strictly

decreasing.

P 2.10. — Let ∆i be the smallest cone in � containing a characteristic

vector of a wedgeϕ on �S. Then one of the following two conditions holds :
i) σi � 1,1 contains at least one characteristic vector ofϕ and they all lie in the union

of σi � 1,1 and of σk,j , 1 � k � i, j � 1, 2.

ii) The only characteristic vectors outside σi � 1,2 lie on 	 >0εk with 0 � k � i and
bi � 1,k � 0.

Proof. — The explicit computations carried out in the proof of 1.3 have shown that

	σk � 1,j �
∆k � ∆k � 1, 0 � k < g , j � 1, 2.

We also have that 	 >0δk and 	 >0εk � 1 �
∆k � ∆k � 1, 0 � k < g , and that σg � 1,1 �

∆g .

Since in addition we know that every αp � Ξ, i) holds if i � g . Assume now that

i
�� g . We deduce from the above remarks that every αp belongs to

�
1 � k � i � 1;j � 1,2σk,j and

no one is on 	 >0δi � 1. Now recall that
σk,j � � �

1 � `<k

σψ0
`
� � σ

ψ
j

k
� � �

k<` � g
σψ1

`
� .

As a consequence everyαp belongs to σψ 1
i � 1 � σψ 2

i � 1 . In view of the definitions of the faces
σψ 1

i � 1 ,σψ 2
i � 1 of theNewton polygon � i � 1 of Fi � 1 (see prop. 1.3, ii) � � iii)), this means that

hi � 1 � αp � � � εi � 2,αp � � min � ni � 1 � εi � 1,αp � , �
s � 0,...,i bi � 1,s � εs ,αp ���� � �

� � m,αp � for any m � � i � 1 � ψi � 1
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Moreover if αp � 	∆, this last inequality is strict because the face of � i � 1 in the supporting
hyperplane of � i � 1 in the direction αp is ψ 1

i � 1,ψ 2
i � 1 or ψi � 1. Applying ϕ to the identity

expressing xi � 2 as a polynomial in x0, . . . , xi � 1 (0.3.2), we find that there exist unitsU0,U1,
Uγ in k ��� u1, u2 � � such that

�

p

ph
i � 1 � αp � � U1 �

p

pni � 1 � εi � 1,αp � � ci � 1U0 �

p

p
�
s

bi � 1,s � εs ,αp �
� �

γ

ci � 1,γUγ

�

p

p � γ,αp � .

Since there exists at least one αp � 	∆, the minimum in � � � must be achieved on the same
side by everyαp ; in otherwords, eitherσψ 1

i � 1 orσψ 2
i � 1 contains all the characteristic vectors

ofϕ. (This is what will be used to prove the main theorem in section 3.)

To complete the proof in the first case, note that any αp � 	∆ belongs to 	σψ 1
i � 1 or	σψi � 1 . This forces such an αp to be on 	 >0δk , 1 � k � i, in 	σi � 1,1 or in �

1 � k � i,j � 1,2 	σk,j .
Since εi � 1 /� σψ 1

i � 1 and εk � ∆i � 1, i � 2 � k � g , everyαp is found in the cones listed in

i). Moreover one of them lies in 	σi � 1,1 � 	 >0δi , hence i).

In the second case, any αp � 	∆ belongs to 	σψ 2
i � 1 or 	σψi � 1 . This forces αp to be in	σi � 1,2. Finally for 0 � k � i � 1, εk � σψ 2

i � 1 if and only if k � i � 1 or 0 � k � i and

bi � 1,k � 0, hence ii).

Remark that if i
�� g , either i) or ii) holds. If i � g , the only possible characteristic

vectors ofϕ in σg � 1,2 lie on 	 >0δg � 1 and ii) is a subcase of i).

3. Lifting wedges centered at a general arc
to the minimal desingularization

We give a formal definition of the notion of a wedge being centered at an arc, out-

lined in the introduction.

D 3.1. — Wewill say that a wedgeϕ is centered at an arc h if there exists

a local morphism h0 factoring h throughϕ.

Geometrically, this means that the arc h on the surface singularity is the image of

an arc in the plane through the origin, by the morphism given byϕ.

We also make precise what we will mean by a general arc on a sandwiched surface

singularity.
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D 3.2. — Let �S be a sandwiched surface singularity and h an arc on �S.
We will say that h is general if its strict transform on the minimal desingularization of �S is
smooth and intersects transversally the exceptional curve E at a regular point of E .

We are now ready to prove:

T 3.3. — Letϕ be a wedge on a sandwiched surface singularity �S centered
at a general arc h. Then the morphism Spec k ��� u1, u2 ��� � �S induced by ϕ lifts to the

minimal desingularization of �S.

Proof. — Assume first �S to be primitive. We choose the non singular surface � 0

and the simple ideal I as in 0.1. Moreover by changing � 0 and I if necessary, we may as-

sume that the strict transform of the arc h on the minimal desingularization of �S does not
meet the strict transform of the exceptional curve for the blowing-up of �I � I � � � 0 . Indeed,
wemay replace � 0 by the affine space � 2k and I accordingly; using plumbing, wemay con-
struct a non singular algebraic surface � � containing a neighborhood of the exceptional
curve E on the minimal desingularization � of the surface S obtained by blowing-up I and

a � � 1 � -curve intersecting E transversally at any given regular point of E on its irreducible
component meeting the � � 1 � -curve on � .

For almost any minimal generating sequence � x0, . . . , xg � 1 � as in 0.3.2, h will be
general w.r.t. � x0, . . . , xg � 1 � . So we are again in the situation discussed in sections 1 and 2,
and we will use the notation introduced then.

Let h0 : k ��� u1, u2 ��� � k ��� t � � be the local morphism factoring ϕ. We have αh �
�
p

ωt � p � αp with ωt � ordt h0 � p � � � >0. We will see that ϕ has only one characteristic

vector αp and thatωt � p � � 1; in view of 2.7, this is enough to get the claim.
Let∆i , 0 � i � g , be the smallest cone in the filtration � containing a characteristic

vector ofϕ as in 2.10. If i) holds, then for any p, αϕ,p � σψ 1
i � 1 . Being a convex cone, we get

that

αh � σψ 1
i � 1 ��� n � � α0, . . . ,αg � 1 � � ∆;αi � 2 � ni � 1αi � 1 � � m,α � , � m � � i � 1 � .

But αh � 	∆, so either αh � 	σψ 1
i � 1 or αh � 	σψi � 1 . As in 2.10, this forces αh to be either in

σi � 1,1 or in �
1 � k � i,j � 1,2σk,j ; hence by 2.5 to be in the minimal generating system of one of

these cones.

Now the coordinate on the X0-axis of any α � 	∆ in the minimal generating system
Gσ`,j

of a cone σ`,j with 1 � ` � g � 1, j � 1, 2, is bounded below by n1 ����� n` � 1 (1 if
` � 1), and above by n1 ����� n` with equality if and only if α � 	 >0δ`. (This follows easily
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from the explicit isomorphism betweenσ`,j and σ̃`,j given in 1.6 iii).) Soϕ having at least

one characteristic vector in σi � 1,1, we find that αh � Gσi � 1,1 .
On the other hand, we derive from condition i) of 2.10 that αh � α1 � α2 with

α1 � σi � 1,1, α1
�� 0 and α2 � � ε0, . . . , εi , δi � . Therefore α2 lies in the intersection

of � ε0, . . . , εi , δi � with the plane generated by σi � 1,1. We have named this cone τi � 1 in
the proof of 1.10.2. Furthermore, we have seen there that, in a convenient � -basis of
the lattice Nσi � 1,1 , σi � 1,1 and τi � 1 are respectively the cones � � 1, 0 � , � ei , βi � 1 � niβi � � and
� � 1, 0 � , � ei , � niβi � � . Soσi � 1,1 � τi � 1 is again a cone; obviously � 1, 0 � belongs to itsminimal
generating system G . From its characterization by convexity properties, we conclude that

G is the union ofGσi � 1,1 andGτi � 1 . Thereforeα2 � 0, and as expected there exists a unique
αϕ,p

�� 0 with αh � αϕ,p .

Assume now that ii) in 2.10 holds. We may assume that i < g , For any p, αϕ,p �
σψ 2

i � 1 , so αh � σψ 2
i � 1 . As above, since αh � 	∆, either αh � 	σψ 2

i � 1 or αh � 	σψi � 1 . In
any case, αh lies in σi � 1,2 and by 2.5, αh � Gσi � 1,2 . On the other hand, we derive from
condition ii) of 2.10 that αh � α1 � α2 with α1 � σi � 1,2 and α2 � � ε0, . . . , εi � . Therefore
α2 lies in the intersection of � ε0, . . . , εi � with the plane generated by δi � 1 and εi � 1; since
i � 1 < g � 1, its coordinate on the Xg � 1-axis may not be zero unless α2 � 0. Once again

there exists a unique αϕ,p

�� 0 with αh � αϕ,p .

In the general case, the non singular surface � 0 and the complete ideal I being

chosen as in 0.1, let p0 : S � � 0 (resp. q : � � S) be the blowing-up of I (resp. the

minimal desingularization of S). The irreducible exceptional curves � Fi � i 
 Λ for p0 are in
1-1 correspondence with the simple factors Ii of I and our assumption implies that for any

i � Λ, the unique singular point P of S lies on Fi and that its strict transform Ei on � is a

� � 1 � -curve. We have a commutative diagram

� S � 0

� i Si

q p0

gi fi
p0i

qi

where p0i (resp. qi ) is the blowing-up of Ii (resp. the minimal desingularization of Si ). The

curves Fi and Ei project respectively onto p
� 1
0i � O � on Si and the unique � � 1 � -curve on � i .

Since gi : � � � i is a composition of point blowing-ups and both curves Ei and gi � Ei �
have self-intersection � 1, gi is a local isomorphism at any point of Ei , hence Pi : � f i � P � is
the unique singular point on Si .

Consider now a regular point Q of q � 1 � P � ; there exists a unique irreducible curve
E

�
q � 1 � P � containing Q. Two things may happen:
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— either Q is the intersection point of E with some Ei ; hence gi is a local isomor-

phism at Q andQi : � gi � Q � is a regular point of q � 1i � Pi � .
— or Q is a regular point of p � 1 � O � with p : � p0 � q. The morphisms p and pi : �

p0i � qi are again composition of point blowing-ups. Now, I being the product of powers of
Ii , I is made invertible as soon as each Ii is so. Hence there exists i, not necessarily unique,

such that E projects onto an irreducible exceptional curve for pi . Being contracted on Pi
by qi , this curve is also exceptional for qi . Here also, gi is a local isomorphism at Q, which

sendsQ on a regular point Qi of q
� 1
i � Pi � .

In both cases, a wedge on �S centered at a general arc gives rise by composition to a
wedge centered at a general arc on the formal neighborhood �Si of Si at Pi , which is prim-
itive. This reduces the proof of the theorem for arbitrary sandwiched singularities to the

special case of primitive ones.
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