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On étudie le probleme de caractérisation des distributions grace & I’indépendance
des formes linéaires & coefficients aléatoires. On obtient une généralisation d’un
théoreme connu de Darmois-Skitovich.

1. Introduction. The Darmois—Skitovich theorem [1, 2] is one of the first results
concerning characterization problems of the mathematical statistics. Consider in-
dependent random variables (i.r.v.’s) Xi,..., Xy, n > 2, and two linear statistics

Li = X1+ -+ o, Xy, Ly=p1 X144 6 Xn,

where «;, 3; — are constant coefficients.

Theorem A (Darmois, Skitovich [1, 2]). If Ly and Ly are independent, then
those X; which appear in the both forms L1 and Lo, i.e., correspond to those j for
which o;3; # 0, are Gaussian.

This theorem was extended by Linnik Yu.V. and Zinger A.A. [3] to linear forms
with random coefficients. The studying of such random linear functionals was
useful for the investigation of the independence of many non-linear statistics (see
[4]). The Linnik-Zinger result is as follows. Let X(™) = (X1,...,X,,) and U®") =
(Uy,...,Us,) be n-dimensional and 2n-dimensional random vectors respectively.
Suppose that the random vector U2 satisfies the following conditions:

1) its distribution has the bounded support in Euclidean space R,
) there exists e > 0 such that P (|U;| >¢) >0 for j =1,...,n,

3) Upn+j =1 almost surely (a.s.) for j =1,...,n,

) the relation

le,...,mn (t) -,ljé const

is valid for each collection of non-negative integers (ms, ..., my) such that

> i—1m; # 0, where

Qmy..m, &) =E (1+U)™ ...(1 +Upt)™), teR.
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Theorem B (Linnik-Zinger [3]). Let a random vector X" = (Xy,...,X,)
with independent components and a random vector U™ = (U1, ...,Us,) be inde-
pendent. Let the conditions 1) — 4) be satisfied. If the forms

Ly =U1 X1+ -+ UpXy, Lra =Upp1 X1+ -+ Uzn Xy

are independent, then the vector X is Gaussian.

This theorem generalizes Theorem A in the case where all coefficients of the two
forms L, and Ly are not equal to zero.

The problem of the investigation of independent linear forms with random co-
efficients was raised in [4, p. 637]. One may consider the forms L,q, L2 as linear
forms with random coefficients U;, j = 1,...,2n. In Theorem B the form L,, has
non-random coefficients. We will find conditions on the vectors U®m) and X (™)
such that Theorem B remains valid in the case where the both forms L, and L,
have random coeflicients.

Denote by P;, j = 1,...,n, the probability distributions (pr.d.’s) of the r.v.’s
Xj, 7 = 1,...,n, respectively and by Q;, 5 = 1,...,2n, the pr.d.’s of the r.v.’s
Uj, 3 =1,...,2n, respectively.

Assume that the r.v.’s U; satisfy the following conditions:

(i) the pr.d.’s @, j =1,...,2n have bounded supports,
(ii) there exists € > 0 such that P (|U;| >¢) >0 for j =1,...,2n,
(iii) there exist a constant b > 1 and a r.v. U > 0 such that

1
EEU"’ < E|U;* <bEU*

forallk=1,... and j=n+1,...,2n.

Remark 1. If the r.v.’s Uj, j = n+1,...,2n, are identically distributed, then (iii)
is valid for b =1 and U = |Up,41|.

By the condition (i), the characteristic function (ch.f.) ¢(t;U;) of the r.v. U;
is an entire function of order one and finite type for j = 1,...,2n. Denote by
{ak,j : k=1,2,...} the set of zeros of the function ¢(¢; U;).

We shall say that the r.v. X; satisfies the condition (iv) if there exists € > 0 such
that P (|.X;| > €) > 0, a median p; of X; is equal to zero, and the support of P; is
not contained in the sets

R! N{zar; : k=1,2,...}, R! N{zakntj: k=1,2,...}

for any complex z € C\ {0}.
Here and in the sequel we denote by C the open complex plane.

Remark 2. Let the r.v. X; be not equal to zero a.s. and its median pu; = 0. If X;
has a non-atomic pr.d., then it satisfies the condition (iv).

Let X, have an atomic pr.d. and let N;(T') denote the number of its value in the
interval [—T,T], where T > 0. This number can be equal to +oo. If

N;(T)

lim sup —Z

= +OO’
T—o0 T
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then X satisfies the condition (iv). Indeed, let n;(T) be the number of zeros
of the entire function of order one and finite type ¢(¢;U;) in the circle [t| < T.
The second assertion of the remark follows from the well-known fact (see 5, p.p.
14-16) that
lim sup M
T—oo

< +o0.

QOur main result is as follows.

Theorem 1. Let X = (X41,...,X,) and UG = (Uy,...,Us,) be independent
random vectors with independent components. Let the r.v.’s. U, j = 1,...,2n,
satisfy the conditions (1)—(iii) and let the forms L., and L.s be independent. Then,
for every j such that X; satisfies the condition (iv), the r.v. X; is Gaussian and
the r.v.’s U; and U,,4; are a.s. constant.

Assume in addition that the r.v.’s X; have moments of order two and consider
the condition
n
(V) E Uj E Uj+n Var Xj = 0.
i=1

J
Theorem 1 easily implies

Theorem 2. Let X(™ = (Xy1,...,X,,) and UC™ = (Uy,...,Us,) be independent
random vectors with independent components. Let the r.v.’s Uj,j = 1,...,2n,
satisfy the conditions (1)-(iii) and the r.v.’s X;, j = 1,...,n, satisfy the condition
(iv). The forms Ly1 and Lo are independent iff the r.v.’s X;,j = 1,...,n, are
Gaussian, the r.v.’s U, 1 = 1,...,2n, are a.s. constant, and the condition (v) is
valid.

Let us show that Theorem 1 is a generalization of Theorem A in the case where
all coefficients of the two forms L; and Ls are not equal to zero. We assume,
without loss of generality, that the coefficients 3;, 7 = 1,...,n, of the form L,
are equal to one and medians of all r.v.’s X;, 5 = 1,...,n, are equal to zero.
Indeed, in the opposite case we shall consider the r.v.’s (X; — p;)/0; instead of
X; for j =1,...,n. It is easy to see that the rv.s U; = a; # 0,5 = 1,...,n,
and U; =1, j = n+1,...,2n, satisfy the conditions (i)—(iii). Since in this case
o(t;U;) # 0 for all t € C, we see that the condition (iv) for X;, j =1,2,...,n, is
also valid.

Our nearest aim is to prove that the ch.f.’s of the r.v.’s X;, satisfying the as-
sumptions of Theorem 1, are entire functions of finite order.

Theorem 3. Let X(™ = (X1,...,X,,) and UCY = (Uy,...,Uy,) be indepen-
dent random vectors with independent components. Let the components Uj, j =
1,...,2n, satisfy the conditions (i)-(iii). If the random forms L,; and L,y are
independent, then the ch.f.’s of all components of the random vector X(™ can be
continued to C as entire functions of finite order.

2. Proof of Theorem 3. To prove Theorem 3 we use some ideas and the following
result of the paper [3].
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Theorem C (Linnik-Zinger [3]). Let a random vector X" = (Xy,...,X,)
with independent components and a random vector U™ = (U1, ...,Uz,) be inde-
pendent. Let the distribution of U™ satisfy the condition 1) and
P (|U;| > e, |Upt4] >¢€) >0, j=1,...,n,
for some € > 0. If the forms L,.1, L,o are independent, then
E|X;N < +oc, j=1,...,n, (2.1)

for all positive integers N.

It is easy to see that the random vectors X(™ and U™ from Theorem 3 satisfy
the assumptions of Theorem C. Therefore the inequalities (2.1) are true for the
r.v.’s X;, 7 = 1,...,n. Our next step is to show that the ch.f. ¢(¢; X;) of every

r.v. X, is regular in some horizontal strip of C.
In the sequel we need the following notation

P(n):P1X"'XPn, Q(n):le"'XQn7

QP™ = Q1% - x Qan, ) = Quyr x -+ X Qan,
so that the masures P, Q™ Q2n) Qg") are the product-measures of the cor-
responding pr.d.’s. We shall denote by ¢y, ca,... positive constants depending on

the r.v.’s X4,..., Xy, Uy, ..., Usy,, U, and the parameter n only.
Since the r.v.’s Xy,..., X, satisfy (2.1) and L,; and L,s are independent, we
have the relation
E (L1 [*[Ly2|Y) = E|Ly1 [*" E [ Lya| ™ (2.2)

for all positive integers N. Consider the set

A= {(a:1,...,a:n,u1,...,u2n) e R :

1 1
|-'L'1‘ > C%a(m%---axn) € G7 "U,1| > —, |un+1| > _}
C1 C1

Here G is a (n — 1)- dimensional bounded set such that (P X --- X P,)(G) = ca.
We select ¢y sufficiently large, so that

1 1
Q1({|u1| > c—) > Ca, Qn+1({|u1| > c_) > C2,
1 1
and the inequality
|U13§'1+“‘+’U;n.’13n| Z C3|$‘1| (23)

is valid in the set A for sufficiently small c¢3. Let us find a lower bound for the
left-hand side of (2.2). With the help of (2.3) one obtains

E (|Lpi[*"|Lpa|™) =

J[ b v P+ N AP x QOV) >
RrxR2n

/ (03|$1|)2"|Un+1:131 + - +U2n.’L‘n|Nd(P(”) % Q(2n)) >
A

o2 / / 1P [Juna|ler] — lumgazs + - + wsnan||Y (PO x QEM).
¢ (2.4)
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Let us find an upper bound for the right-hand side of (2.2). Select ¢4, so that
/ lurxy + - - + Upzy [ d(P(") X Q(”)) < c3m.
R X R?
Then we obtain the estimate
E (L [*™)E(|La|™) =

/ Iu1x1+---+unxn|2”d(P(")><Q(”))/ 171+ - Ftignzy [V d(P™ x Q™)
R xR" R xR»

<cp" //(|un+1||x1|+---+|uzn\|mn\)Nd(P(”) x Q™). (2.5)
RnxR™

Writing together the estimates (2.4) and (2.5) and dividing by c3™ both sides of the
obtained inequality, we get

// |x1\2" ||unt1]|z1| — [Upyoxs + -+ -+ uannHN d(P(”) X Q(2")) <
A

2n
C n
(—) J[ Qnsalizal -+ uloal)¥ (P x Q).

R xR™
Let us add the integral

I, = // 121%™ ||tbpg1 | |21] = [Ungoo + - - +uzna:n\|N d(P(") X Q(2")),
A

where
A= {(xl,...,xn,ul,...,uzn) e R .

1 1
1| < €f, (w2, .-, 20) € G, lur] > —, Junta| > —},
C1 C1

to both sides of the preceding inequality. We obtain

/ / 212 (s o] — tnsas + - - + tznza)™ d(PT) x Q)

AUA

2n
C. n
<I+ (é) //(\un+1ux1|+---+ ign )N d(P x Q).
R
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We expand the N-th powers of corresponding expressions under the integral signs
and get

N
N
//Z(_l)u(y> |2 N2 (1 [N [t 2@t - ton @ [7d(PM x QM) <

~ v=0

AUA

Cq\2 I | | | |
Il+(C_) " Z ﬁ|un+1|l1|$1|l1 |U’2n|ln|$n|z"d(P(n)Xan))
’ R™ xR™ i14-+ip=N 1ieeslp:

We shall carry over all summands on the left-hand side of the preceding inequality,
except of corresponding to v = 0, to the right-hand side of one and conclude that

1
aQ(liul> b [[ P Y d(P X Quin) < Bt
1

REx{|unt1|>1/c1}

2n
Cq N! . ) ) , . .
(g) // Z 2-1!%_2-”!|“n+1|“|1f1|Zl oo U '@ [ d(P( ) % Qg ))+

RrxRn it tin=N

N
N —v —v 174 n n
//Z (V>|a:1|N+2" 1|V 7Y [Unama + - ugnw,|” d(P™ x QEM).

Aui v (2.6)

Since Qn41({|unt1| > 1/c1}) > ca, we see that there exists ¢ € (0,1) such that

es E Uy [N < Unt1N dQntr
{lunt11>1/c1}

for all positive integers N. Taking into account this estimate we deduce from (2.6)
the inequality

6 E| X1 NP E Uy |V

C3 ! -in

2n

c N ) . . ,
<L+ (—4> Y A EUpn["E|Xi[" .. E Uz B X[
i14tin =N 11:...%p-

Y (N
+3 (V) Bt BN,
v=1
where ¢g € (0,1), and c7 is chosen from the condition

/ |Un+2$2+"'+u2n$n\yd(P2 X oo X Py X Qnya X"'Xan) <cz,
GxRn—1
v=12,....

In view of Lyapunov’s moment inequalities we have

EU' < (EUM)Y,  1=1,...N
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Then using (ii) and the right-hand side of the inequality (iii) we obtain

0 < E[Upy;l' <b(BUN)V,

By the left-hand side of (iii), we get

E|U, 1N > -EU".

>N =

With the help of the two last inequalities we conclude that

ZBUNEB|X; V" <

2n
N! . .
Il+<c_4> Z — " BUVNE[X|" ... E|X,["+
C3

‘ , 11! i)
i1ty =N LT

+Z< ) b EUN)(N_V)/NE‘X1|N+2TL_U.

Taking into account that EUY > 0 we obtain from this estimate the main relation

b 1
E X, Nton < {EUNIIJr
2n
N 4 .
“) Y S EX [ E X[+
C3 T N21!...?,n!
11 Tn=

bZ( ) (EUN)” ”/NE|X1|N+2"—V}. (2.7)

We shall show that there exists a positive number M such that
E|X;* < M*E!, k=1,2,...,5=1,...,n. (2.8)

Select M such that (2.8) is true forallk =1,...,2n and j = 1,...,n. Let us prove
by induction on k that (2.8) is valid for k > 2n. Let (2.8) be valid for £ < N+2n—1
and 7 = 1. Verify it for kK = N + 2n and j = 1, using the estimate (2.7).

We first note that there exists cg such that

I1 S Cév.

Since the estimate EUYN > cI is valid for some cg and for all positive integers N,
we shall choose M > 1+ (3bcg)/(cgco), so that

N
1 c8 106 N+2
L <|= —M "(N +2 2.9
EUNl—(c9> =3% (N +2n)! (2:9)

for all positive integer N.
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We shall estimate the second summand in braces on the right-hand side of
(2.7), taking into account inductive hypothesis. Choosing M such that M >
(ca/c3) (30" /cg)t/ ?™) | we see that this summand does not exceed

2n 2n
(C—‘*) MNNL YT 1< (C—“) by MYNIN +1)"!
c3 . X C3

i1+ +in=N

< C—bGMN“”(N +on)l . (2.10)

Wl

Let us estimate the third summand in braces on the right-hand side of (2.7). We
obtain with the help of inductive hypothesis

N

N —v
Y Ran——
v=1
N
S b N(N— 1)'(N—V+1)c,7, (EUN)_V/NMN+2n—u(N+2n_V)!
V.
v=1
N
M)¥ —v
V.
v=1

Cr N+2n
(exp (M(EUN)l/N) - 1) bMN T2 (N + 2n)! .

Since EUYN > clY, we shall choose M > (6b%c7)/(ceco), so that the first factor on
the right-hand side of the last inequality does not exceed cg/3b%. Then we conclude
that the third summand in braces on the right-hand side of (2.7) does not exceed
¢ MN*T™(N 4 m)!. In view of this estimate and (2.9), (2.10), one finally obtains

E | XNt < MNF2Y(N 4+ 20)),

where the parameter M depend on the r.v.’s Xq,...,X,, and n,b, and c1,...,cg
only. We prove the last estimate for the r.v.’s Xs,..., X,, in the same way. Thus,
we have proved that the ch.f.’s of the r.v.’s Xi,...,X,, are regular at least in

the strip |Imz| < 1/M for some M > 0. We write as usual ¢(z; X;), j =1,...,n,
for the functions of the complex argument z = t + iy (¢,y real) which agree with
o(t; X;), 7 =1,...,n, on the real axis respectively.

It is clear we may assume, without loss of generality, that |U;| < 1 a.s. for all
j=1,...,2n and one is a point of increase of the distribution function (d.f.) either
of |Uj| or |Up4j| forall j=1,...,n.

We shall show that the ch.f.’s of all r.v.’s X, j = 1,...,n, are entire functions.
We give an indirect proof and suppose that there exist jo and 75, € (0, c0) such that
E e Xiol < 0o for 7 < 74, and Ee™Xiol = 400 for 7 > 7;,. Define the parameter
7; for the rest X; in the same way. If Ee™ Xl < oo for all 7 > 0, we assume
that 7; = +00. Let, for the definiteness, 7 = min{7,...,7,}. Consider the event
Ar = {(Xo,...,X,) € G}, where G is the set of the (n — 1)-dimensional space
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which was earlier defined. Let 14, (w) be equal to unit or zero according as w does
or does not satisfy w € A;. The inequalities

\U1||X1| < [Ly1]| + €10, \Uny1/|X1] < [Lya| + c10
hold in the event A;. Taking into account these inequalities we shall write
Ely, E XU+ Uni1]) — B (IAleT|X1|(|U1|+|Un+1|)) <
e20107 B (T4, e7 (L 1H1Er2D) < g2e107 B 7L+ Lral) — p2e107 | o7ILo| o7 ILr2]

Since |L,x| < | X1|4---+|Xy|, we conclude according to the choice of the parameter
71 that

n
Ee™ Ll < H Ee™%il < 400
i=1

for all 7 < 71 and k = 1, 2. Therefore we have

n 2
E6T|X1|(|U1|+|Un+1|) < 611620107 <H EeT|Xj|> < 400, T<T1. (2.11)
j=1

Denote by Q1 n+1 the pr.d. of the r.v. |[Ui| + [Up41|- The following formula

oo

E e XU +1Un1]) =/EeTy|X1|dQ1,n+1
0

is true. Since one is a point of increase of the d.f. either of |U;| or |Uy,41], the d.f.
of the r.v. |Uy| + |Up+1]| has a point of increase 6; > 1. Therefore the inequality

c1o E e(ITo)TIXl/2 < / E e vIXl dQ1.n+1 < +00 (2.12)
0

holds for 7 < 7. Choosing 7 < 77 sufficiently close to 71, we arrive at the contra-
diction.

It remains to show that the ch.f.’s of the r.v.’s X;, j = 1,2,...,n, are entire
functions of finite order. We note that (2.11) holds for all 7 > 0. In addition the
same inequality is true for the r.v.’s X, ..., X,,. The inequality (2.12) is also true

for all 7 > 0 and for X5, ..., X,, with some constant § € (1,6;] instead of ;. We
obtain from these inequalities

n 2
013E6(1+6)T|Xj|/2 < EeTlXj|(|Uj|+|Un+j|) < C14€2CI5T (H EeT|Xl|) ’ ,7 — 1’ .y
=1

The last estimate yields

n n 2n
s H E(+9)7IX;1/2 < 6111462615717' (H Eer|X,|) .

j=1 =1
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n
Denote by 1(7) the sum Y log Ee”!Xil and rewrite the last estimate in the form
i=1

nlogeiz + v (14 6)7/2) < nlogcis + 2¢i5n7 + 2nh(7), > 0.

It is not difficult to see from this inequality that ¢(7) has the polynomial growth as

n
T — +o00. Thus, we have proved that the ch.f. [] ¢(¢;|X;|) is an entire function of
i=1
finite order. Then, by Raikov’s theorem [6, p. 58], the ch.f.’s ¢(¢; | X;|), 1 =1,...,n,
are also entire functions of finite order. It is clear that the same assertion holds for
the ch.f’s ¢(t; X;), j =1,...,n, so that the theorem is proved.

3. Proof of Theorem 1. Since, by Theorem 3, the ch.f.’s of the r.v.’s Xj,
J =1,...,n, are entire functions of finite order and the r.v.’s U;, j = 1,...,2n, are
a.s. bounded, we conclude that the ch.f.’s of the random vectors (U; X;, Uy, 4;X;),
j =1,...,n, are entire functions of finite order. (About entire functions of several
variables of finite order see [7]). It follows from this fact that ch.f.’s of the r.v.’s
U;X; and Up4;X; are also entire functions of finite order for all j = 1,...,n.
We obtain from the independence of the forms L,;, L,o the following functional
equation

n n n
[ Bttt Xs — [] Btk [[ B0, (1s) e B (3.)
j=1 j=1 J=1

It is obvious that this relation remains true for all complex ¢, s. We now need one
simple result from the theory of several complex variables.

Lemma A. Let ¢(z,w) be an entire function of finite order and let the set of its
zeros counting the multiciplicity has the form

(U{(z,w) Lz = zk}> U ( U{zw):w= 'wm}> . (3.2)
k=1 m=1

. Then, for all complexr z,w,

p(z,w) = Py (2)pa(w),
where D(z,w) is a polynomial such that D(0,w) = D(z,0) = 0 and ¢1(z) and
pa(w) are entire functions of finite order.

We omit the proof of this fact and refer the reader to [8]. The function on
the right-hand side of (3.1) is an entire function of finite order and the set of its
zeros has the form (3.2). Then the functions Ee®VUiXitisUn+iXi j = 1 .. 'n
satisfy the assumptions of Lemma A and, by this lemma, admit the representation

EeitUij+iSUn+ij — eDj (t,s) EeitUij EeiSUTH_]'Xj’ t e (C’ s € (C’ (33)

where Dj(t, s) are polynomials and D;(0,s) = D;(t,0) = 0.
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In the sequel we shall consider only those indices j for which the r.v.’s X; satisfy
the condition (iv). Let us show that E e®*ViXs does not vanish in C. Let the opposite
be true. Then there exists to € C such that Eei*UiXi = (. Consider the function

IJ(S) — EeitonXjeisUn+ij —

/sﬂ(tol‘; Uj)e(s2;Uny;) dP; = /w(sxs Un+;j) dvj, (3.4)

where v; is a finite complex-valued measure. Denote by ¢(s;v;) the ch.f. of the mea-
sure v;. It is easy to see that the function ¢(s;v;) is an entire function, its modulus
is uniformly bounded for all s € R'. We obtain from (3.3) that

I;(s) =0, seC. (3.5)

Then it follows from (3.4), where s = 0, that ¢(0;7;) = 0. We now note that from
(3.4) and (3.5) it follows the relation

/ o(sx;v5)dQnt; =0, seC
—00

(recall that Qn4; is the pr.d. of the r.v. Uy, ;).
Apply Mellina’s transform to both sides of the preceding equality. One gets
the relations

Ui (BT (2) — €y (2)R7 (2) =0, ¢ ()R] (2) — €y () BT (2) = 0

for all complex z such that —1 < Re z < 0, where

oo 0
q:—l—j(z) :/x_denﬂ‘a q’r:—i-j(z) = /w_den—Fj
0 —00
and o
RI@) = [y ey, Ry @)= [ v ey
0 — 00

are regular functions in the strip —1 < Rez < 0. From these relations it follows
that

(6500 + 4y 2)) (R ) - 77 (2)) =0 (36)
" (602 = 025 ) (R )+ 15 ) =0 (37)

for all complex z such that —1 < Rez < 0. Since the pr.d. Q,,4; is not degenerate
at zero, the first factor on the left-hand side of (3.6) is a regular function in the



a1 YAROV G.F., FPERGANMBNLISEKEYV S.YU.

strip —1 < Rez < 0 which is not identically equal to zero. Therefore the second
factor on the left-hand side of (3.6) is equal to zero for —1 < Re z < 0. This implies
that Rj(z) = R} (z) for —=1 < Rez < 0. Then in a similar way one obtains from
(3.7) that R;r(z) = 0 for the same z. This easily implies that ¢(y;v;) = 0 for y > 0.
Since ¢(y;v;) is an entire function, we obtain then that ¢(y;v;) = 0 for all real y
and conclude that v; = 0. In other words we have

/‘P(tow; Uj)dP; =0
S

for all Borelian’s set S. It is possible only in the case where the support of the pr.d.
Pj is situated in the set of real zeros of the function ¢(toz; Uj). It is impossible in our
case where the r.v. X; satisfies the condition (iv), so that E e®Vi%i does not vanish
in C for every j under consideration. In the same way we prove that the function
E ¢?*Un+iXi does not vanish in C. Then, by (3.3), the function E e!(tUs+sUn+;)X;
does not vanish for all complex ¢, s. This function is entire function of two vari-
ables of finite order. By many-dimensional Marcinkiewicz’s theorem [6,p. 41], the
random vector (U;X;,Up4;X;) is Gaussian and therefore the r.v.’s U; X;, Up4; X
are Gaussian. We then conclude that in (3.3) D;(t, s) = cts, where ¢ is a constant.
Differentiating sequentially both sides of (3.3) by ¢ and s and setting t = s = 0, we
obtain ¢ = —EU; EU,4; Var X;.

Let us show that EU; # 0 and EU,4; # 0. If at least one of them vanishes,
then ¢ = 0 and in (3.3) the polynomial D;(¢,s) = 0. This implies the independence
of the r.v.’s U; X; and U,4,;X; and we can write the relation

2 2 4 2 v2 2 2y __
EU?EU2 EX}!=E(U2X2 U2, ,X2?) =
2 v2 2 2 2 2 2\2

n

By condition (ii), EU? # 0 and EU?,; # 0, and we obtain from the preceding
relation that EX; = (EX7)?. Hence X; = EX? as., and since a median of
the r.v. X; is equal to zero, we obtain E X; = 0. We now note that the r.v.’s U; X;
and U,4;X; are a.s. bounded and, as it was shown above, Gaussian. Therefore

their variances are equal to zero and we have the relations
EUEX; = (EU;)*(EX;)* =0,

EU} ,EX; = (EU,;)*(EX;)*=0.

Since, by (iv), EX J2 # 0, we get from the preceding relations that EUJ2 =
EU? +; = 0. By condition (ii), it is impossible.

For all j under consideration, medians of the r.v.’s X; are equal to zero. Since
the r.v.’s Uj, Up4j, and X; are independent, we see that medians of the r.v.’s U; X;
and Up;X; are also equal to zero. Hence U;X; and U, ;X; are Gaussian r.v.’s
with the mathematical expectations are equal to zero. Then there exists ¢ such

that U; X; and c¢16Up4;X; are identically distributed. Therefore we obtain

EUEX} = E(U;X;)* = (c16)" E (Un1;X;)* = (c16)* EUy, , EX]
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for all positive integers k. We see from these equalities that, for all even positive
integers k,
]‘3(]]’C = (Cle)kEU,,If_'_j. (38)

Since the random vector (U; X}, U, 1;X;) is Gaussian, then Z; = (aU; + fUp+;)X;
are Gaussian r.v.’s for all real values of the parameters o and 8. We assume,
without loss of generality, that EU;C = EUF +; for all even k. Indeed, by (3.8),
this is true for U; and ¢16Up+j. Choosing instead of 8 the value ci63, we obtain
the required assumption. It is easy to see that a median of the r.v. Z; is equal to
zero, therefore E Z; = 0. On the other hand,

Var Z; = (&®EU; 4+ 208EU; EU,1; + °EU., ;) EX?.
Therefore the value of event moments of the r.v. Z; is calculated by the formulas

EZ* = E(aU; + BUn+;)** E X3,
EZ* = (0’?BU; +20B8EU; EUpny; + B EU., ;) F(EX2)*(2k — 1)1,
k=1,2,....

We now note that polynomials of the variables o and 3 stand on the right-hand sides
of the last equalities. Comparing coefficients of the powers o?%, a2¥=13, o2k—232,

and o?*=333 in these polynomials we obtain the relations
2k 2% _ 21k 2\k
EU 'EUn; EX* = (BU))* 'EU;EUn;(EX)) (26— 1)1, (3.10)

2k 2k—2 2 2k k 2\k—1 2

+4(§)(EUf)H(EUj>2<EUn+j)2}<EX?>’“<2k -DE, (1D

2
( 3’“) EUEUS,,EXF = {4(2) (EU})* ?EU,;EUn,; EU. j+

+ s@<EUf)’“—3<EUj>3(EUn+j>3}<EXf>’“<2k -hE - (312)

for k=2,3,.... Since EU; # 0 and EU,; # 0, and the r.v. X; is not a.s. zero,
we see that the left-hand sides of (3.9) — (3.11) do not vanish. Dividing (3.9) by
(3.10) we arrive at the relation

2
Uj

E
2k
BEU;" =

EU2F1, 3.13
By, oV (3.13)
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An analogous relation is valid for the r.v. U,y;. If we divide (3.10) by (3.11), then,
taking into account that the even moments of the r.v.’s U; and U, 4; are the same,
we obtain

(EU})’EU;
(1= 5= (BUj)2(EUpnyj)? + 55 (EU?)?

We have from (3.13) and (3.14)

2k—1 __
EUj =

EUZ*2. (3.14)

(EU})?

2% _
B = ) (BU (B U ) + 5 (BUD2

EU*2 (3.15)

We see from the formula (3.13) for the r.v.’s U; and U,4; that EUJ-%_3 # 0,
EU2,; # 0 and hence the left-hand side of (3.12) is not equal to zero. Dividing
(3.9) by (3.12) we arrive at the relation

T 8G)(EUP(BU)Y () +4() (BUF)? EU E Uy / (5) J( |
3.16
for k =2,3,.... We get from (3.15) and (3.13) the formula
(EU?)* 1
EUZ* — J EU?3 (3.17)
7T TEU; (1- i) (BUA(BUny)? + 521 (BU2?
for k = 2,3,.... We mentioned above that EUJ.%_1 # 0 for all £k = 1,2,....

Comparing the right-hand sides of (3.16) and (3.17) and tending k to infinity, we
deduce the equality

EUS, ;= EU; EU,y;. (3.18)

On the other hand, we obtain from (3.14), where k = 2,

3(EU2)?EU,4,

EU3, . = )
" (BUj)(BUn)? + (BU)?

(3.19)

We see, comparing the right-hand sides of the formulas (3.18) and (3.19), that
the equality
EU? = |EUj||EUpy;| (3.20)

is true. Taking into account (3.20) and (3.15) we obtain
2k _ 2 1 772k—2
EU;" = EU;EU;
for k =1,2... and therefore
U2k ( E U2)

for the same k. It is easily follows from these relations that Uj2 = EUJ-2 a.s.
So that U; takes the two values —(EU?)Y/? and (EU?)'/? with probabilities p;
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and p, respectively. Since even moments of the r.v.’s U; and U, ; are the same,
the r.v. Upy; takes the values —(E(UZ2))Y/2, (E(U?))'/? with probabilities ¢; and
qo respectively. Let us show that one of the numbers p; and ps, and one of the
numbers ¢; and ¢2 are equal to one. Without loss of generality, we assume that
p2 > 1 and ¢o > 3. Then we rewrite (3.20) in the form (2ps —1)(2¢2 — 1) = 1. One
obtains then that ps, g2 satisfy the relation

1 1
— 4+ — =2
b2 q2

It is possible only in the case where po = 1 and ¢2 = 1. Thus, it is proved that
the r.v.’s U; and U,,4; are a.s. constant .

Since, as we saw before, the r.v. U; X, is Gaussian and U; = const a.s., the r.v.
X is Gaussian. This completes the proof of the theorem.
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