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Introduction

This work is a direct continuation of the work [ 798;: ], in which there were obtained
the necessary and sufficient condition when all the ideals of an abelian p-extension of a

complete discrete valuation field of characteristic p are simultaneously indecomposable

(or, which is the same, the necessary and sufficient condition of the existence of decom-

posable ideals in such p-extension).

The authors are very grateful to Prof. Panchishkin and all the staff of the Fourier

Institute (Grenoble) for their hospitality and the excellent conditions for the creative work.

Remark that the problem of studing of the Galois modules of number and local fields is

due, as many other number problems, to D. Hilbert who in 1897 proved that in an abelian

tame extension K / < with the Galois group G the ring of integers OK as =-> G ? -module is a
free module of rank 1.

The following generalization of these results in number fields gave only the neces-

sary, not sufficient conditions when the ring of integers OK is a free ok > G ? -module in the
extension K /k (here OK and ok are the rings of integers of the fields K and k correspon-

dently).

Naturally, in the local fields (that is in the complete discrete valuation fields) the

situation should be more easier and really, a complete answer to the corresponding local

question was given by Emmi Nœther ([N]) in 1932:

T. — Let K /k be a finite extension of local fields, G @ Gal A K /k B . Then
two conditions are equivalent:

1)OK C@ ok >G ? (we say: OK has a normal basis over ok );

2) K /k is tamely ramified.
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A more general question, when the given ideal M
i
K in OK has normal basis over

ok also has a complete answer.

T. — M
i
K C@ ok >G ? as an ok >G ? -module if and only if M

i
K � k @

trK /k M
i
K .

This was proved by S. Ullom in 1970 ([U]) and in explicit form by S. Vostokov in 1976

([V3]).

The following studying of ideals as Galois modules in local fields were developed in

three directions.

The series of works which are due to G.V. Leopoldt ([L]) studied the ring of integers

OK as module over the corresponding order Λ in k >G ? for the Galois extension K /k with

the Galois group G where

Λ @ � λ � k >G ?�� λOK � OK � .
This direction was developed intensively by A.M. Bergé, F. Bertrandias, B. Martel, M.T. Fer-

lon and today by Byott, Lettl.

Another approach is to describe the structure of OK over = p > G ? rather then over
OK > G ? . The essential role here is played by the circumstance that A. Jones (1962) described
all the indecomposable = p > G ? -modules, in particular�� 	 Number of isomorphism classes of

indecomposable = p > G ? -modules


 �� @� 3, if G @ = /p =
4p � 1, if G @ = /p2 =�
, otherwise.

Besides, it is used a variant of Krull-Schmidt theorem, proved by Z.I. Borevich andD.K. Fad-

deev.

There aremany new results here, due to G.H. Elder andM.L. Madan (see [E], [EM]).

The most interesting observation: if G C@ = /pm = then only finitely many different inde-
composable modules can occur in decomposition of any OK as a = p >G ? -module. (This is
true under a restriction of such kind: the first jump of ramification is not too small.)

The third series of papers is aimed to get some information aboutOK (or, more gen-

erally, about M
i
K ) as an ok > G ? -module. We can try to answer as a first step, the following

questions:

A) When M
i
K C@ M

i
K as ok >G ? -modules

B) When M
i
K has a non-trivial decomposition into a direct sumofok > G ? -submodules.

There is a following partial answer to question A) of N. Byott (see [B]).
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T. — LetK /k be an abelian extensionwith ramification index pm , k a local

field. Assume h1 A K /k B�� ep

p � 1 be the first jump of ramification. If m � 2, assume that

G @ Gal A K /k B is not cyclic. Then M
i
K C@ M

j
K over ok >G ?���� i � jmod pm .

The answer to the second question for abelian extension of local field was given in

the cycle of S. Vostokov’s papers (see [BV], [V1], [V2]). In this case there were determinated

the necessary and sufficient conditions of decomposability of ideals.

Theworks of Y. Migata (see [M1]–[M3]) should also bementioned, where therewere

obtained some results of [BV], [V1], [V2] in other way. In his recent paper [M4] Y. Migata

considered abelian extension K 	 /k and K 	 	 /k with the same Galois group G and studied
the question in which condition OK 
�� OK 
 
 as OK > G ? -modules.

When we pass on from local fields to arbitrary complete discrete valuation field

then there appear two essential difficulties. Firstly, the residue field becomes an arbitrary

field (of characteristic p) and secondly, for such fields practically there is not the ramifica-

tion theory which is the essential part of the proofs of [V1], [V2].

The difference between this work, the preceding one [ 7 8;: ] and the first works
[BV], [V1], [V2] is that here there is the unique approach to the proof of the main results

without difference of the cases when there is or there is not the p-roots in the ground field

as it was in the paper [V1] and [V2].

Besides, the theory of ramification in complete discrete valuation fields is being

developed.

The main theorem of the work [ 798;: ] is following.

T A. — Let K /k be an abelian p-extension of complete discretely valuated

fields of characteristic 0with residue field of characteristic p.

It is assumed that the corresponding extension of residue field is separable. LetG @
Gal A K /k B and let o be the ring of integers in k. Then some of ideals in K are decomposable
as o >G ? -modules if and only if the ramification index of K /k divides the different of K /k.

Aswehave seen in the formulation of the theorem the condition of decomposability

is connected with the different of the extension or, in other words, with the ramification

jumps. Remark that when the ramification index of the extension divides the different then

there are only two possibilities.

Or p divides all the ramification jumps or all of them are relatively prime to p (see

[FV], Ch. III, Prop. (2.3)).

We prove the following main result:

3



T B. — Under assumptions of the theorem A we have got

1) If p divides all the ramification jumps of the extension K /k then all the ideals

M
i
K in the ringOK are decomposable as ok > G ? -modules.
2) If the ramification index pm of the extension K /k divides the different � K /k of

the extension and all the ramification jumps are relatively prime to p then the ideals M
i
K

are decomposable if and only if p divides i or in the p-adic decomposition of imod pm

there is a digit which is more than e � , where e � is the remainder of division of the absolute
ramification index e of the field k by p � 1 in the positive residue system.

Notation

We use such a notation

p : the fixed prime;

ā : the remainder of division an integer a by p;

ζn : the primitive n-th root of the unity;

νF : the valuation in the given discrete valuated field F ;

OF : the ring of integer of the given discrete valuated field F ;

M F : the maximal integral of the ring OF ;

eF : eF @ νF A p B ; if char F @ 0, char F @ p.

1. Auxiliary and also known results

1.0. — In this paragraph we use the following notation:

k : a complete discrete valuation field of characteristic 0with arbitrary residue fields

of prime characteristic p;

e : the absolute ramification index p;

e � : the residue e modulo p � 1 in the positive residue system;

K /k : a normal finite p-extension;
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pm : ramification index of K /k;

G : the Galois group K /k;

� : the different of the extension K /k;

d @ νK A � B : the exponent of the different of the extension K /k;

π : a prime element of the field K

tr @ trK /k .

1.1. — Ramification subgroups Gi , i � 1 (see [Se], Ch. IV or [FV], ch. II,
�
4) are

defined in such a way

Gi @
�
σ � G � νK A πσ/π � 1 B � i � .

It is said that the natural number h is a ramification jump for K /k if Gh �@ Gh � 1.
Remark. — Themaximal ramification jump forK /k is notmore than pme/ A p � 1 B .

This follows from [Se], Ch. IV,
�
2, Ex. 3c or [FV], Ch. III, Prop. (2.3).

In the work [ 7 8;: ] there was proved very important for the further considerations
results from the ramification theory of complete discrete valuation fields, namely

P 1.1. — Let K /k be a normal p-extension, in which the minimal ram-

ification jump is more then 1 if p @ 2. Then the following three conditions are equivalent:
1. The different � @ � K /k can be divided by p

m , that is d @ νK A � B � mepm .
2. The maximal ramification jump h for K /k is such that

h ��� h
p � @ pm � 1e.

3. The extension K /k is cyclic with the ramification jump h1 < ���	� < hm @ h such

that

hi @
� hi
p � @ pi � 1e, i @ 1, 2, . . . , m

(see [ 798;: ], Prop. 1.5).

C. — Let in the extensionK /k pm divide the different, then the maximal

ramification jump h is such that

h � h̄ A 1 � p ���	��� � pm � 1 B mod pm
h̄ � emod A p � 1 B .

In particular, if A h, p B#@ 0 then h̄ @ e � .
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Proof. — The proposition 1.1 gives

h � � h
p � @ pm � 1e

in our case; hence

h @ pm A e � h̄ B
p � 1

� A pm � 1 B h̄
p � 1

and the congruences of the corollary immediately follow from the last equality.

1.3. — Let F be an intermediate field in the extension K /k such that K /F is the

cyclic extension of power pwith theGalois groupH @ Gal A K /F B#@�� σ � @ = /p = . Suppose
that the ramification jump h of the extensionK /F is relatively prime to p. Consider ok >H ? -
the submodule � in K , having ok basis like this

� @�� ξ, λ1 A σ � 1 B ξ, . . . , λp � 1 A σ � 1 B p � 1 � ,
where ξ � K , νk A ξ B � hmod p, λ1, . . . , λp � 1 � k, � e � νk A λp � 1 B � �	��� � νk A λ1 B � 0.

P 1.3. — The following conditions are equivalent:

a) � is decomposible as ok >H ? -module;
b) tr /p A��"B � � , where tr @ trK /F ;

c) A pλp � 1 B � 1 � OK , that is νk A λp � 1 B � e � 0.
For the proof see [ 798;: ], lemma 3.1.

1.4. — Let M
κ be an ideal of K . Consider ok-modules

� i @�� ξi , λi,1 A σ � 1 B ξi , . . . , λi,p � 1 A σ � 1 B p � 1ξi � ,
where νK A ξi B @ κ � h � κ � pi, 0 � i < pm � 1;

λi j � k, νk A λi j B @ � � νk A ξi B � jh � x

pm � @ � � h � x � jh � pi
pm � .

It’s clear that

� e � νk A λi,p � 1 B � νk A λi,p � 2 B � ���	� � νk A λi,1 B � 0
hence � i are ok >H ? -modules.

Besides, from ν A ξi B � hmod p we’ve got that νK A�A σ � 1 B jξi B @ ν A ξi B�� jh, 0 �
i < pm � 1, 0 � j � p � 1. These numbers form a complete residue system modulo pm ,

hence the meanings

νK A λi j A σ � 1 B jξi B
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is a transposition of numbers κ, κ � 1 � κ � pm � 1. Therefore the joining of ok -basis

of all � i is ok-basis of all ideal M
κ and hence the ideal M

κ has the following ok >H ? -
decomposition

M
κ @

pm � 1�

i � 1
� i . A 1 B

P 1.4.

a) If pm A e � 1 B < A p � 1 B h � pm A e � 1 B � p then all � i except � pm � 1 � 1 for every
ideal M

κ in K are decomposable as ok >H ? -modules.
b) If A p � 1 B h � pm A e � 1 B then all � i for every ideal M

κ in K are decomposable

as ok >H ? -modules.
c) If pm A e � 1 B < A p � 1 B h < pme � A p � 1 B or A p � 1 B h @ pme � A p � 1 B and

A p, x B @ 1 then � 0 for every ideal M
κ in K is the only decomposable ok >H ? -module.

The statements can be checked directly using the condition c) of Proposition 1.3

(see also Lemma 3.3 from [ 7 8;: ]).

L 1.4. — Let in the extension K /k the ramification index pm divide the dif-

ferent and all the ramification jumps of the extension K /k are relatively prime to p. Let for

the ideal M
κ we’ve got

0 < κ̄ < h̄ . A 2 B
Then in the decomposition (1) there is only one undecomposable ok >H ? -module, namely
� 0.

Proof. — According to Proposition 1.3 the undecomposability of ok >H ? -module
� i is equivalent to the inequality

� νk A λi,p � 1 B � e � 1

that is � h � κ � pi � A p � 1 B h
pm � � e � 1 .

This, in his turn, is equivalent to

h � κ � pi � A p � 1 B h � pme � 1 . A 3 B
As pm � � then be have got h � � h

p � @ pm � 1 � e, hence A p � 1 B h @ pme � h̄. Besides, from

(2) we have got

h � κ @ h̄ � κ̄ .
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Taking into consideration these two equality the inequality (3) can be rewritten as

pi � κ̄ � � 1
and it holds only for i @ 1, that is only ok >H ? -module � 0 is undecomposable.

The lemma is proved.

1.5. — Let k be an arbitrary field of characteristic char k �@ p and K /k be a cyclic

extension of degree pn ; G @ Gal A K /k B @�� σ � .
Suppose that the order of the p-torsion in k

�
is equal to ps , s � 1.

Denote µ @ min A n, s B , ζ @ ζpµ . Let E be a subextension in K /k, > K : E ? @ pµ.

Then K @ E A θ B , where θp
µ � E .

L 1.5.1 (see also lemma 4.1.1 from [ 7 8;: ]). — Consider E : @ Ker A σpn � µ �
ζi B @ Eθi . Then k > G ? -modules Ei are undecomposable when A i, p B @ 1.

Proof. — It is known that K C@ k > G ? as k >G ? -module . On the other hand, the ring
isomorphism

k > G ? C@ k > X ? / A X p � 1 B @
pµ � 1�

i � 0
k > X ? / A X pn � µ

� ζ
i B

makes Ei identical to k > X ? / A X pn � µ � ζi B . If A i, p B�@ 1 then the polynomial X p
n � µ � ζi

is undecomposable over k, hence k > X ? / A X pn � µ � ζi B is a prime k > X ? / A X pn � 1 B C@ k > G ? -
module and Ei is a prime k >G ? -module.

From this lemma one can immediately obtain the following statement. Let the ini-

tial field k from 1.5 do not contain all the p-th roots of unity.

Suppose k 	 @ k A ζp B , K 	 @ K A ζp B
G 	 @ Gal A K 	 /K B C@ Gal A k 	 /k B .

Let E be a subextension in K /k of degree pµ and µ @ min A n, s B , ps is the order of p-torsion
in k 	 . If E 	 @ E A ζp B then K 	 @ E 	�A θ B , where θp

µ � E 	 .
L 1.5.2. — Let there is a k >G ? -decomposition

K @ M � N A 4 B
and the field E is in one of the decomposition component. Then the decomposition (4) is

a E > GE ? -module decomposition where GE @ Gal A K /E B .

Proof. — If k contains all the p-th roots of the unity then the statement follows

from Lemma 1.5.1. Otherwise, we can consider the extension K 	 /k 	 .
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1.6. — Under assumption of 1.1 suppose that K /k is an abelian extension of de-

gree pn and the corresponding extension of the residue field is separable.

Let T be the inertia subfield,GT @ Gal A K /T B , O @ OK .

P 1.6. — Any o >G ? -decomposition of an ideal of the field K is also a

OT > GT ? -decomposition.
(See [ 798;: ], Prop. 4.6.1 and 4.6.2.)

1.7. — Let k be a complete discrete valuation field of characteristic 0 with the

residue field of characteristic p, containing an primitive pm-th root of unity ζ : @ ζpm and

let K /k be a cyclic extension of degree pm :

K @ k A θ B , θp
m � k .

Let Kr be subextension in K /k such that > K : Kr ?�@ pr , G
�
r � @ Gal A K /Kr B and let σ be

a generator of the Galois group G @ Gal A K /k B , s @ σp
m � r

be a generator of the Galois

group G
�
r � .

L 1.7. — Let I be an ideal in K and I @�� � L be anOK > G ? -decomposition.
Consider

K
�
i � @ Ker A s � ζ

i B @ Krθi

I � K � i �r @ Ir,iθi

� � K � i �r @�� r,iθi

L � K � i �r @ L r,iθ
i

where i @ 0 or A i, p B5@ 1. Then the ideal Ir,i of the field Kr is the direct sum of ok >G/Gr ? -
modules � r,i and L r,i .

Proof. — We have

Ir,iθ
i @ Ker A s � ζi : � � L ���� � L B
@ Ker A s � ζi : �����)B � Ker A s � ζi : L �� L B
@�� r,iθi � L r,iθ

i .

So Ir,i @�� r,i � L r,i as ok -module.

Further, � r,i and L r,i are contained in Kr therefore they are stable with respect to

the action of G
�
r � .

So now we have to check that � r,i and L r,i are G-stable. Really, � r,iθi and L r,iθ
i

are G-stable. For every g � G , g A θi B @ ζaθi for some a � = and ζa � ok . Lemma is

proved.
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1.8. Normal basis lemma. — Let K /k be a cyclic totally ramified extension of de-

gree pm with the maximal ramification jump h : @ hm , A h, p B+@ 1 and let the correspond-

ing extension K 	 /k 	 , k 	 @ k A ζp B be radical, that is K 	 @ k 	 A θ B , θpm � k 	 ; d @ > k 	 : k ? .
L 1.8.1. — One can take a unit of K 	 as the radical element θ.

Proof. — Let σ be a generator of the Galois group of the extension K 	 /k, g be a
generator of the Galois group of the extension k 	 /k. Then we have θσ @ ζθ, ζg @ ζr ,

where ζ is some primitive pm-th root of unity, r is a generator of the group of the pm-th

roots of unity in the group A�= /pm =5B �
. It is obviously that r �� 1mod p. Consider the

element ε @ θr/θg and check that ε � k 	 . Really,
εσ @ θrσ/θgσ @�A ζθ B r/ζrθg @ θr/θg @ ε.

So v 	 A ε B � 0mod pm , then v 	�A θr/θg B @ A r � 1 B v 	 A θ B � 0mod pm , then v 	 A θ B �
0mod pm . Lemma is proved.

L 1.8.2 (normal basis lemma). — An element x of the field K for which

vK A x B � hmod pm generates a normal basis in the extension K /k.

Proof. — Prove the lemma by induction in the degree of the extension K /k. If

m @ 1 then the elements x, A σ � 1 B x, . . . , A σ � 1 B p � 1x have the orders which compose
a complete set of residues modulo p. Hence they compose a basis of the extension K /k.

Hence a k > G ? -module X , generated by x is equal to K .
Furthermore, decompose an element x in the basis 1,θ, . . . ,θp � 1 of the extension

K /K1 :

x @ x0 � x1θ � ���	� xp � 1θp � 1, xi � K1.
Let X @ � x � , Xi @ � xi � , 0 � i � p � 1, � k > G ? -modules, generated by x, x0, . . . , xp � 1
correspondingly.

We have to check that

X @ K .
In the paper [BV] there was proved that

vK1 A xi B @
vK A x B � A p � 1 B h

p
� pm � 1e, 0 � i � p � 1

so we have got

vK1 A xi B � hmod pm � 1.

But h : @ hm � hm � 1mod pm � 1 (see Prop. 1.2), therefore the induction assumption holds
for the elements x0, x1, . . . , xp � 1 and k > G ? -modules Xi are equal to K1.
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Furthermore, for any element g � G , g A θi B @ ζaiθi , a � = holds and ζai � k.
So k >G ? -module, generated by xiθi , 0 � i � p � 1 is equal to Kiθ

i . It is clear that these

k >G ? -modules are contained in X , so X @ K . The lemma is proved.

2. The main theorem

2.1. — According to Proposition 1.6 we can suppose that the extension K /k is to-

tally ramified. Throughout this paragraph we suppose that the ramification index pm of

the extension K /k divides the different � of this extension, hence in particular Prop. 1.2

induces that K /k is cyclic.

Let

Ki be a supextension of degree p
i in K /k;

M i be the maximal ideal in the ring of integers of the field Ki ;

dK /k @ νK A � B be the exponent of the different
e � be the residue of the absolute ramification index e of the field k modulo A p � 1 B

in the positive residue system.

2.2. — Consider the ideal M
κ in the fieldK and let κ @ κ0 � κ1p � �	��� , 0 � i < p

be the p-adic decomposition.

P 2.2.1. — If for the ideal M
κ we have

1) p � κ, or
2) 0 < κ0 � h̄, 0 � κ1 � h̄, . . . , 0 � κr � 2 � h̄, xr � 1 > h̄ for 1 � r � m then there

is a o > G ? -decomposition
M

κ @ trK /Kr

pr
A M κ B � A Ker trK /Kr � M

κ B .

Remark. — The residue h̄ can be changed according to the congruence A 5 B to be
residue e � .

Proof. — Calculate the powers of the ideals

M
cj
j @

trK /kj

p j
A M κ B .
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We’ve got

c1 @ κ � h � κ �2A p � 1 B h
p

� pm � 1e @ � κ
p � @ κ1 � pκ02 � ���	� A 5 B

(see [Se], ch. V,
�
3) because h � κ @ h̄ � κ̄ and h̄ � A p � 1 B h @ pm � 1e.

Similarly c2 @ � c1p � @ � κ
p2 � , . . . , cr @ � κ

pr � � 1 because κr � 1 > h̄.

This induces prcr � i. Hence trK /Kr /pr is an idempotent operator on the ideal

M
κ. This induces the statement of the proposition.

C 2.2.2. — If h @ pme

p � 1 then any ideal of the field K is a decomposable

o >G ? -module.
The proof is obvious, since in this case h̄ @ 0. Taking into consideration Corollary

1 further we can suppose that A h, p B#@ 1, hence
pme

p � 1
� 1 � h <

pme

p � 1
.

2.3. L 2.3. — Let the ideal M
κ be decomposable as o >G ? -module, that is

M
κ @�� � L

and 0 < κ̄ � h̄ @ e � . Then one of the decomposition component contains an element x
such that

νk

� tr
p
A x B�� @ p � κ

p � .
Proof. — Consider ok >H ? -decomposition (1) of the ideal M

κ;

M
κ @

pm � 1�

i � 0
� i ,

where H @ Gal A K /K1 B . In this decomposition under our assumption all the ok >H ? -
modules � i are decomposable except � 0 (see Lemme 1.4). The Krull-Schmidt theorem
[see [BF],

�
8] shows

��@
�

i � I � 	i , L @
�

i � I � 	i
where I ��� 0, 1, . . . , pm � 1 � 1 � and � 	i C@ � i as ok >H ? -modules. Suppose that 0 � I , that
is � 	0 C@ � 0 is a direct summand in � .

It’s easy to compute that themeaning of
trk/k 

p

for the generator ξ0 of themodule � 0
is equal to p � κ

p � , really
νk A ξ0 B @ κ � h � κ.
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But tr @ 1 � σ � ���	� � σp � 1 @ pf A σ B�� A σ � 1 B p � 1, where f A X B is a polynomial with
the integer coefficients.

Since νk A ξ0 B � hmod p
νk A A σ � 1 B p � 1ξ0 B @ νk A ξ0 B � A p � 1 B h @ κ � h � κ � A p � 1 B h.

On the other hand,

νk A pf A σ B A ξ0 B B � pme � νk A ξ0 B @ pme � κ � h � κ .

But A p � 1 B h < pme, hence

νk A tr ξ0 B @ νk A A σ � 1 B p � 1ξ0 B @ κ � h � κ � A p � 1 B h.
The condition h � � h

p � @ pme induces A p � 1 B h @ pme � h̄. Besides, h � κ @ h̄ � κ̄ in

our case; therefore

νk

� tr
p

ξ0 � @ A κ � h � κ � pme � h̄ B @ pme @ κ � κ̄ @ p � κ
p � .

On the other hand for all the rest generators ξi , i �@ 0 we’ve got
νk

� tr
p
� � κ

because the corresponding Ok >H ? -modules � i are decomposable which is possible ac-
cording to Prop. 1.3 if and only if

tr

p
ξi � � i � M

κ .

Let ξ 	i be corresponding generators of isomorphic OK >H ? -modules � 	i .
Since all the modules � 	i , i �@ o are decomposable because they are isomorphic to

the corresponding modules � i then again according to Prop. 1.3

tr

p
ξ 	i � � 	i � M

κ, i �@ 0 .
Then for the ideal tr

p
M

κ we’ve got two Ok-bases:

tr

p
M

κ @ � tr
p

ξi , i @ 0, 1, . . . , pm � 1 � 1 �

@ � tr
p

ξ 	i , i @ 0, 1, . . . , pm � 1 � 1 � .
In both bases the elements with the positive indexes are contained in the ideal M

κ. The

first basis contains the only element tr
p

ξ0, which is not from M
κ therefore correspond-

ing to it and also not included in the ideal M
κ element tr

p
ξ 	0 has the same order, that is

νk

�
tr
p

ξ0 � @ νk

�
tr
p

ξ 	0 � which induce (see (1.4))
νk

� tr
p

ξ 	0 � @ p � κp � .
Le lemma is proved.
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2.4. — Let the assumptions of 1.3 and 1.4 hold and let ζ : @ ζp be a p-th root of

unity. Remark, that νk A ζi � 1 B#@ pme

p � 1 > h. So for any element x of the ring OK which has

the relatively prime to p order in the field K we’ve got

νk A A σ � 1 B x B @ νk A�A ζiσ � 1 B A x B�B ,
because ζiσ � 1 @ ζi A σ � 1 B ��A ζi � 1 B . That’s why in 1.3 and 1.4 we can replace the
operator A σ � 1 B by A ζiσ � 1 B and repeating the proof of Prop. 1.3, 1.4, Lemma 1.4.1 and
Lemma 2.3 we get the following result.

L 2.4. — Let the ideal M
κ be decomposable as o >G ? -module, that means

M
κ @�� � L

and

0 < κ̄ � h̄ @ e � .

Then one of the decomposition component contains an element xi for which the element

yi @�� 1 � ζiσ � ζ2iσ2 ���	��� � A ζiσ B p � 1 � A xi B /p
satisfies the condition

νk A yi B @ p � κ
p � .

2.5. — Here there will be proved the main theorem B (see Introduction). If the

conditions of the theorem B hold then the corresponding ideals are decomposable (see

Prop. 2.2.1).

Prove the converse statement. So, let the ideal M
κ of the extension K /k in which

the ramification index pm divides the different of this extension is decomposable. We use

the induction in the degree of the extension. Remark that the extension K /k can be con-

sidered according to Prop. 1.6 as totally ramified, so pm @�> K : k ? .
Let m @ 1. If the ramification jump h can be divided by p then all the ideals in

K /k are decomposable (see Corollary 2.2.2). If A h, p B#@ 1 and M
κ is an ideal in K /k then

decomposability of the ideal induces, according to Lemma 1.4 that p � κ or κ̄ > h̄. In both

cases the decomposability is proved in Prop. 2.2.1.

2.6. — Furthermore, let

M
κ @�� � L A 6 B

be a nontrivial o >G ? -decomposition.
Consider three cases

14



A) The field Km � 1 (see 2.1) is included in one of the linear envelopes k � or k L .

B) The field Km � 1 is not included in these linear envelopes and k 	 @ k A ξp B (the
field k 	 can coincide with k) does not contain all the pm-th root of unity.

C)The field k 	 contains all the pm-th roots of unity.

In case A) according to Lemma 1.5.2, decomposition of the linear envelope

k @ k M
κ @ k � � k L

will be a Km � 1 >GKm � 1 ? -module decomposition where GKm � 1 @ Gal A K /Km � 1 B , hence de-
composition (6) of the ideal M

κ will be a OKm � 1 >GKm � 1 ? -module decomposition and we
can apply to it the induction assumption.

2.7. — In the caseB) any intermediate field is not included in the linear envelopes

k � and k L . That’s why the non trivial decomposition (6) induces the nontrivial decom-

position of the following ideals

M
ai
i @

trK /Ki

pi
A M κ B @ trK /Ki

pi
� �

trK /Ki

pi
L

in the extensions Ki/k, 1 � i � m � 1

M
bi
i @ Ki � M

κ @ A Ki � �)B � A Ki � L B .
Let κ � κ0 � κ1p � �	��� mod pm where 0 � κi � p � 1. If κ0 @ 0 or κ0 > h̄ then the

conditions of Theorem B hold and the proof is finished.

If 0 < κ0 � h̄ then the degree a1 is equal to
a1 � κ1 � pκ2 ���	��� mod pm � 1

(see (5) from Prop. 2.2.1).

For the ideal M
a1
1 the induction assumption holds, hence κ1 @ 0 or there exists

κi > h̄, 1 � i � m � 1. In the second case for the ideal M
c the condition of the Theorem

B holds. In the first case we can pass to the next extension K2/k and the same arguments

give the holding of the conditions of the Theorem B for the ideal M
κ, or κ1 @ κ2 @ 0.

So we’ve got two possibilities: the conditions of the Theorem B hold for the ideal

M
κ or κ � κ0mod p

m , where 0 < κ0 � h̄.

In the second case consider for our ideal M
κ @ M

κ0 the ideal M
b1
1 @ K1 � M

κ

for which on the one hand

b1 � 1mod pm � 1 A 7 B
and on the other hand it has a nontrivial decomposition in K1/k, hence according to the

induction assumption the conditions of Theorem B hold, that is b̄1 @ 0 or b̄1 > h̄ � 1

which is contradiction to (7).
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2.8. — For the case C)we need the following lemma. Let K /k be a totally ramified

cyclic extension of degree pm with the maximal jump

h : @ hm @ pme

p � 1
� 1

and suppose ζpm � k. Then
K @ k A θ B

where θp
m � k.

L 2.8. — Suppose that in any subextension F/k, F �@ K , the ideal M
κ
F with

p � � κ is decomposable as o >Gal A F/k B ? -module. Let for the ideal M
κ, p � κ, of the field K

we have o > G ? -extension
M

κ @ � � L �	�	� A 8 B
If one of the summand (for example, � ) of this decomposition contains an element κ such

that

νk A κ B � κ � 1mod pm

then another summand is trivial.

Proof. — If κ � 0mod pm then the element x from the lemma will satisfy the

following condition

νk A x B � κ � 1 � hmod pm

so it generates according to Lemma 1.7 a normal basis of the extensionK /k, then the linear

envelope k � will coincide with K so L @ A 0 B .
If κ @ prκr , A κr , p B @ 1 and 1 � r � m � 1 then consider the subextension K /Kr

of degree pr and show that the decomposition (8) is Or -decomposition, where Or is the

ring of integers of the field Kr .

If it is so then the element x in the extensionK /Kr will satisfy Lemma1.8 thatmeans

it will generate a normal basis in this extension. So again k � @ K and L @ A 0 B . So we
have to check that decomposition (8) is defined overOr .

Consider the intersections M
κ � Krθi and M

κ � Kr , where A i, p B @ 1. According
to Lemma 1.7 we have

M
κ � Krθi @ M

ci
r θi @ � iθi � L iθ

i ,

where � iθi @�� � Krθi , L iθ
i @ L � Krθi and there is such a o >Hr ? -decomposition

M
ci
i @�� i � L i ,

whereHr @ Gal A Kr/k B since pr � κ, ci @ � κ
pr � @ κr �� 0mod p.
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Therefore, according to the condition of our lemma the ideal M
ci
r is decompos-

able, so the linear envelope k M
ci
r θi @ Krθ

i lies or in the linear envelope k � or k L .

That’s why according to Lemma 1.5.2 decomposition (8) is a >Hr ? -decomposition. The
lemma is proved.

2.9. — Check the case C) (see 2.5). Consider the intersections of the ideal M
κ

and the kernels of the operators s � ζi , i @ 0, 1, . . . , p � 1, where s is a generator of the

Galois group of the extension K /K1, ζ : @ ζp .

Then we have, according to Lemma 1.7

M
κ � Kiθi @ M

ci
i θi @�� iθi � L iθ

i

where
� iθi @�� � Ker A s � ζ

i B @�� � K1θi ,
L iθ

i @ L � Ker A s � ζ
i B @ L � K1θi .

And there is a O >H1 ? -decomposition
M

ci
r @�� i � L i ,

where

H1 @ Gal A K /K1 B @ � s � .

Compute the orders ci :

ci @

����
��
	 κ

p
� iνk A θ B

p
, if p � κ

� κ
p � � 1 � iνk A θ B

p
, if p � � κ. A 9 B

If ci is relatively prime to p then the ideal M
ci
1 is decomposable in the extension K1/k

according to the induction assumption, so the linear envelope k M
ci
i θi @ K1θi lies or the

linear envelope k � , or in k L .

Suppose now that p � ci , the ideal M
κ is decomposable in the extension K /j and

the condition of Theorem B for it doesn’t hold, that is 0 < κ̄ � h̄ @ e � . Then we can
apply Lemma 2.3.1 for the intersection M

κ � K1 and Lemma 2.4 for the intersections
M

κ � K1θi , 1 � i � p � 1. According to these lemmas one of the component of the

decomposition M
κ @ � � L , say � , contains an element xi , 0 � i � p � 1, for which

yi @&A 1 � ζis � �	��� � A ζis B p � 1 B A xi B /p satisfies the condition νk A yi B @ p � κp � . So, on one
hand yi is contained in the o > G ? -module � and on the other hand yi � Ker A ζis � 1 B @
Ker A ζi A s � ζ � i B�B5@ K1θ

� i , that means yi � � � iθ � i . The element zi @ yiθ
i � � � iand

has the order νk A zi B @ � κp � � iνk
�
θ �

p
.
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But the corresponding ideal M
ci
1 @ � � i � L � i has the order

c � i @ � κ
p � � 1 � iνk A θ B

p

because p � � κ (see (9)). Hence,
νK1 A zi B @ ci � 1

and the conditions of Lemma 2.8 hold. Therefore, L � i @ A 0 B and k M
c � i
1 @ K1θ

� i lies
in k � .

So we’ve shown that for every i : 0 � i � p � 1 the linear envelope K1θ
i lies or in

k � , or in k L and that means that the decomposition K @ k � � k L is defined over K1,

so M
κ @�� � L is a o1 >H1 ? -decomposition and the theorem is proved.

2.10. — It’s left the case, when the field k has not all the p-th rooth of unity but the

extension K 	 /k is radical. In this case consider so called composit-modules defined in the
paper [ 7 8;: ].

D. — An OK >G 	 ? -submodule in K 	 is called a composit if it is also a
= p > ζp ? -module.

Remark 1. — If k 	 @ k then composit-modules are the ideals of K 	 .

Remark 2. — If I is an ideal in K then o 	 I is a composit-module in K 	 .

Applying Prop. 2.3 of [ 798;: ] and repeating the preceding arguments we get our
statement in this case.
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