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Abstract

The aim of this paper is to consider the set of cubical decompositions of the compact manifolds
mod a set of combinatorial moves analog to the bistellar moves considered by Pachner. We prove
that, in general there are obstructions for two cubulations of the same PL-manifold be related by
such moves, which we called bump moves, answering in the negative a question of Habegger. Therefore
we consider the quotient set of cubulations for a sphere and prove that it inherits a natural group
structure. On the other side, we prove that, when restricting to a special class of cubulations, called
mappable, these moves act transitively on the set of all cubulations. The mappable cubulations are
those which map combinatorially on the standard decomposition of R™ for some large enough n.
Finally a detailed description of the 2-dimensional cubulation groups is given.
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1 Introduction

1.1 Outline

In the twenties Alexander proved that two triangulations of the same polyhedra (or equivalently of two PL-
homeomorphic manifolds) are related by a set of combinatorial moves, called stellar moves. After seventy
years Alexander’s moves were refined to a set of finite local moves on the triangulations of manifolds which
were used to prove that certain state-sums associated to a triangulation provide topological invariants of
3-manifolds, the so-called Turaev-Viro invariants. The new moves are the so-called bistellar moves and
Pachner ([37]) has proved that they relate any two triangulations of the same polyhedra so settling a
long standing conjecture in combinatorial topology. Basically such a move in dimension n corresponds
to replace a ball B by another ball B’, where B and B’ are complementary balls, unions of simplexes
in the boundary of the standard (n + 1)-simplex. For a nice exposition of Pachner’s result and various
extensions, see [31].

On the other hand Alexander’s theorem becomes trivial in the context of some more general cell
decompositions (“cellulation réguliére”) considered by Siebenmann [38] where the analog moves are called
“bisections”. Here the cells are convex subsets in some Euclidean space, with an arbitrary number of
vertices.

When restricting ourselves to the 3-dimensional context we notice that the topological invariants of
Turaev-Viro, deduced from triangulations, are carrying slightly less information than their Reshetikhin-
Turaev counterpart, which are defined using some Dehn surgery presentation of the manifolds. Actually
the latter has a strong 4-dimensional flavor, as explained by the theory of shadows developed by Turaev
(see [42]).

In this setting it is naturally to ask whether some other intrinsic definitions of state-sum invariants
would get a refined version of the Turaev-Viro invariants, containing also the phase factor. It is naturally
then to look towards some more general decompositions of manifolds into standard pieces, which encodes
in their combinatorics more information. The first example we sought is the decompositions into cubes,
also known under the names of cubulations, cubications, cubillages, etc. In order to apply the state-
sum machinery to these decompositions we have to search for an analog of the Alexander’s theorem
(or Pachner’s theorem) to cubulations. There is a natural candidate for the bistellar moves, which was
considered by Habegger. Specifically, the problem 5.13 from Kirby’s book ([26]), proposed by Habegger
states that:

Problem 1 Suppose M and N are PL-homeomorphic cubulated n-manifolds. Are they related by the
following set of moves: excise B and replace it by B', where B and B' are complementary balls (union
of n-cubes which are homeomorphic to B™) in the boundary of the standard (n + 1)-cube?

These moves will be called bump moves in the sequel. A complete list of bump moves will be given in
section 2. A more restrictive family of moves is obtained by requiring that one of the balls B or B’ have
no parallel faces. We call them bubble moves. There are n + 1 distinct bubble moves by, k =1,2,...,n+1
and their inverses; here by replace B which is the union of exactly k£ cubes by B’ which is the union of
2(n 4+ 1) — k cubes (the (n + 1)-cube has 2(n + 1) faces). We drawn in picture 1 the bubble moves for
n = 1 and for n = 2. In case n = 1 the move b, is the identity, and it is not figured. The last bump move,
denoted by bs,1, is also figured in picture 1.

Set C(M) for the the set of cubulations of a closed manifold M, C BB(M) for the equivalence classes of
cubulations modulo bubble moves and CB(M) for the equivalence classes of cubulations modulo bump
moves. The case when M has non-void boundary needs some additional conditions. For example two
simplicial triangulations of a manifold with boundary are bistellar equivalent if the restrictions of the two
triangulations at the boundary coincide (see [8]). We restrict ourselves in this sequel to the case without
boundary.

Look first at the case n = 1. The move b; is dividing an edge into three other. It follows that the
number of edges in the cubulation, when considered modulo 2, is invariant with respect to the bubble
moves. Conversely if we have a cubulated circle, we can use bl_1 to obtain either a bigon or else a 1-
edge cubulation. This means that CB(| |, S') = CBB(|l,,S') = (Z/2Z)", where n is the number of
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Figure 1: Bubble moves for n =1 and n = 2

components. We observe that we have non-trivial obstructions for two cubulations be bubble (bump)
equivalent. Assume from now on, that the manifolds considered are connected unless the contrary will be
specified.

In the following section we will describe the analog obstructions in higher dimensions. These are
defined in an elementary way: we look for the transforms of the f-vector under bubble/bump moves.
There are further some other arithmetic obstructions coming from the fact that two f-vectors can be
transformed one into the other by bubble/bump moves if and only if some linear system of equations has
integers solutions. All these together define a finite Abelian group of obstructions.

Notice that there exist some other obstructions as the index of non-simplicity, which has a geometric
definition.

We did not find a good invariant using the state-sum method already used in quantum topology. Maybe
here it is much more complicated than the case of triangulations, where only topological invariants can
appear.

This numerical invariant shows that the number of obstructions is infinite. And this suggests that the
study of bubble equivalent cubulations should be restricted (with respect to the the problem above) to
the class of simple, standard cubulations. A smaller but related class is that of embeddable cubulations.

Let us explain the motivation for looking to embeddable cubulations: the index of non-simplicity is
related by the results of [16] to embeddability and mappability. On the other hand, the most natural
way to get an affirmative answer in a restricted case using the geometry, would be the following: to each
triangulation C' (or cubulation) a Morse function fo (or a class of a Morse function, up to isotopy) is
associated. For instance we could ask for the critical points of index k of the function fo be precisely
the barycenters of the k-cells. Then, in a suitable space of functions D, larger than the space of Morse
function, (in order to become path connected) we get a path f; between the two functions fy and f;
associated to two cell decompositions Cy and C7, which we wish to compare to each other. We would like
that the space of Morse functions arising from triangulations, form an open dense subset of D. Also by
general position (Cerf’s theory) arguments the complementary (of positive codimension) would be made
transverse to the path f;, by a small homotopy of the later. Around a critical value t. of the parameter



(i-e. fi, is not a Morse function) we follow how the cell decompositions changes, when passing from f; _.
to fi.4+e- This idea of associating spaces of functions to topological objects and to study their discriminant
has been revealed very powerful in the theory of singularities developed by Arnold as well as the recent
Vassiliev-type invariants for knots, planar immersions etc. (see for a very interesting account the lectures
given in [1]).

However if for triangulations such an approach could succeed, for cubulations it definitely fails. The
reason is that the Morse functions associated to cubulations in the space of all Morse functions cannot
be generic: small deformations change the cubical decomposition into a more general cell decomposition.

Another way to overcome this difficulty would be to use embedded Morse theory. Equivalently we
look at manifolds as sub-manifolds of the Euclidean space. Morse functions correspond to hypersurface
levels having only few singularities. The simplest case is the behavior with respect to pencils of hyper-
planes. In a discrete model this is equivalent to an embedding of the given cubulation into the standard
cubulation of some Euclidean space. In this context we will use the idea from above: each manifold has a
suitable approximation by a cubical structure coming from a sufficiently fine lattice. When an isotopy is
perturbing the manifold the approximation is locally constant unless for a finite number of critical values
of the parameter, when a jump occurs. The jumps will be precisely bump moves. This way we give a
partial affirmative answer for the problem we stated at the beginning: two embeddable cubulations C,
C' are bump equivalent. Notice that using bubble/bump moves we could exit the class of embeddable
cubulations. A larger class is that of mappable cubulations: we don’t require that the cubulation be em-
bedded but only combinatorially mapped on an Euclidean cubulation. Then our main result below states
that two mappable cubulations are bump equivalent.

Acknowledgements: Part of this work was done during the author’s visit at University of Palermo
and University of Columbia, whose support and hospitality are gratefully acknowledged. I'm thankful to
Sergei Matveev for the discussions we had on this subject and the suggestions he gave me, Maria-Rita
Casali for sending me her paper [8], Alexis Marin for a careful reading of the manuscript and correcting
some mistakes, to Eric Babson and Clara Chan for sending me their paper [3] and to Joan Birman for
her interest.

1.2 Elementary obstructions

We want to identify obstructions, similar to that for the 1-dimensional case, in higher dimensions: set for
z € C(M), and M of dimension n, f;(z) = card{ the set of i-dimensional cubes in z}. Putting all these
together we get a map f : C(M) — Z™*! whose components are f;, and it is usually called the f-vector
in the theory of polytopes.

Proposition 1.1 There exist some natural numbers a;(n) € Zy such that:
o All the a;(n) are non-trivial, and divisible by 2.

o The map [ induces a well-defined map fb: CBB(M) — [[i—yZ/a;(n)Z by
fo(z) = (fi(z)(modulo ai(n))i=o,,...,n-
o The greatest such numbers a;(n) verify
an(n) =2,ap—1(n) = 2n,a,—2(n) = 2,a0(n) =2,a1(n) =3+ (-1)", (n > 2)

This means that we have arithmetical obstructions for two cubulations be bubble equivalent as in the
1-dimensional situation. We compute easily for n = 2 and n = 3 the vector a(n) whose components
are a;(n): a(2) = (2,4,2), and a(3) = (2,2,6,2). After some messy computations we obtain a(4) =
(2,4,2,8,2), a(5) = (2,2,4,2,10,2), and a2(6) = 6. We denote by fb*) the values of fb reduced modulo
(2,2,2,...,2,2n,2) .

Next we can extend this result on obstructions to bump moves:



Proposition 1.2 There exist some natural numbers a;(n) € Z; such that:

o All the a;(n) are non-trivial, and divisible by 2.

e The map f induces a well-defined map fb: CB(M) — [[, Z/ai(n)Z by
fo(z) = (fi(z)(modulo G;(n))i=o,1,...,n-

e The greatest such numbers a;(n) verify

an(n) =2,a,_1(n) = 2n,dn_2(n) = 2,d0(n) = 2,a@1(n) =3+ (-1)", (n > 2)
The two sequences a; and @; are not identical since we have:

G2(6) = 2 # ax(6), @2(4) = 2 # a2(4).

Notice that f, 1(z) = nf,(z) for all z. This means that the image of fb, 1 is Z/2Z = {0,n} C Z/2nZ.
By the way the component fb, 1 is determined by fb,.
Remark also that the Euler-Poincaré equation holds:

x(M) = Z(—l)ifi(a:), for any cubulation z.
i=0

Thus, fixing M, there at most (n — 1) independent components of fb: for n = 2 everything is determined
by the number of vertices, for n = 3 we have the number of vertices and the number of edges etc.

The most natural question now would be to know which are the images fb(CB(M)), fbb(CBB(M)),
or at least their mod 2 reduction. This will be necessary, in order to know how powerful these invariants
are. We are far from having a complete answer now, and this problem is more difficult than it seems
at first glance. There are some partial results for the case of the mod 2 reductions fb* (CB(M)) and
fob2(CBB(M)). Actually this is equivalent to characterize those f-vectors mod 2 which can be realized
by cubulations of the manifold M. Obviously there are constraints for the existence of a simplicial
polyhedra with a given f-vector and fixed topological type. For convex simplicial polytopes we have for
instance the McMullen conditions (conjectured by McMullen in [32] and proved in [6, 7, 39]; the reader
may consult also other proofs and results in [32, 5, 33, 34]). The complete characterization of the f-vectors
of simplicial polytopes (and PL-spheres) was obtained by Stanley in [40]. The analogous problem of the
realization of f-vectors by cubical polytopes has also been addressed in some recent papers, for example
[4, 3, 23, 24] and references therein. The Dehn-Sommerville equations have a counterpart for cubical
polytopes as in [21]. The lower bound conjecture and the upper bound conjecture have also analogous
statements in the cubical case. The new feature is that, unlike in the simplicial case, there are parity
restrictions on the f-vectors. This was firstly observed in [4]. Remark that it is exactly these restrictions
in which we are interested. We have, as a simple application of the Dehn-Sommerville equation, a first
constraint on the mod 2 image:

Proposition 1.3 The rank of the affine module rank fb®(CB(M)) < [2].

The relationship between cubical PL n-spheres and the immersions was described in the following beau-
tiful result of Babson and Chan (see [3]):

Proposition 1.4 Let ¢ : M — S™ a codimension 1 normal crossing immersion. Then there ezists a
PL cubical n-sphere K, such that

[ilK) = x(Xi(M, ¢))(mod 2),

where x denotes the Euler characteristics, and X;(M,p) = {x € S™; card ¢~'(z) =i}.

As a consequence, there exists a PL cubical n-sphere K with given f;(mod 2) if and only if there exists
a codimension 1 immersion (M,p) in S™, for which the Euler characteristic of the multiple point loci
Xi(M,p) of degree i equals f; mod 2.



Remark that this result extends immediately to other varieties than the spheres. We have only to consider
immersions ¢ : M — N such that the image ¢(M) is a spine of N, which means that N — (M) is an
union of balls.

There is a wide literature on immersions, and especially on the following function 6,,, considered
first by Freedman ([20]), where 6,,(y) is the number of multiple n-points mod 2. The beginning of this
theory was the result of Banchoff [2] saying that the number of normally triple points of a closed surface
immersed in R3? is congruent mod 2 with its Euler characteristic. The function 6,, is easily seen to be
well-defined as a function on the Abelian group B,, of bordism classes of immersions of (n — 1)-manifolds
in S™. We have therefore an induced homomorphism:

O : B, — Z/27.

Remark that the question on whether 6,, is surjective (i.e. nontrivial) is equivalent to find the image of

fb,(fll(S"). From the results concerning the function 6,, obtained in [20, 17, 18, 19, 22, 28, 29, 30, 9, 10, 11]
we deduce that the f-vectors of a n-sphere have the following properties (see also [3]):

e Forn = 2 wehave fo = fo(mod 2) and f; = 0(mod 2) and thus fb(2) (CB(S?)) = fb®)(CBB(S?)) =
7./27.

e Forn =3, fo = fi = 0(mod 2), fo = f3(mod 2). The existence of Boy’s immersion j : RP? — S§2,
with a single degree 3 intersection point furnish a 3-sphere with an odd number of facets. Therefore
OB (CB(S?)) = fb¥(CBB(S?%)) = Z/2Z.

e The problem of characterizing the image fbsfll(S") is reduced to a homotopy problem. Namely,
the image is Z/2Z if and only if

— either nis 1,3,4 or 7.

— orelse n = 2% — 2, with a € Z, and there exists a framed n-manifold with Kervaire invariant
1. The latter is known to be true for n = 2,6, 14, 30, 62.

o If we consider only the class of edge orientable cubulations in the sense of [23] the problem of

characterizing the image fbgll(S") is also reduced to a homotopy problem, which is completely
solved. In fact the condition of edge orientability is equivalent to ask that the associated manifold
M immersed in S™ be orientable. Thus we have to consider only the restriction of the map 6, at
the subgroup of oriented bordism classes of immersions, as originally considered by Freedman [20].
Away from the trivial cases n = 1,2 the only case when the restriction of §,, remains surjective in
the orientable context is n = 4. Thus f,—1 = 0(mod 2) if n #1,2,4.

Thus, at this time only a finite number of n is known, for which the last component of fb(?) is nontrivial.
However the remarks from above show that the bump/bubble invariants fb and fbb are interesting and
nontrivial. One may also wonder if these are all the obstructions for bump/bubble equivalence. There
are some other arithmetical obstructions coming from the linear equations satisfied by the two f-vectors
must satisfy if the polyhedra are related by a sequence of bump/bubble moves. Basically these amount
to a series of additional congruences, which are rather complicated to write down explicitly, but they can
be worked out in concrete examples. This will be briefly explained in 2.3.

On the other side there are another, more subtle, obstructions taking values in Z and showing that
there are infinitely many of bubble non equivalent cubulations with the same f-vectors mod 2. Such an
invariant is described for n = 2 in section 5.

1.3 The 2-dimensional case

The derivative complez of a cubulation M was introduced abstractly in [3]. We only say now that it
is endowed with an immersion into M, whose image is the (n — 1) skeleton of the dual of the cubical



structure M. In the 2-dimensional case we have therefore an union of circles K; immersed in M, with
normal crossings.
An easy observation is that

Proposition 1.5 The collection of homology/homotopy classes of the circles K; is bubble invariant.

Notice that we have a collection, and not a set, since some elements can be multiple, i.e. can appear several
times in the collection. It follows, as a simple corollary, that C BB(M) is infinite provided that the genus
of M is at least 1. This generalizes also in higher dimensions for manifolds with infinite 71 (M). As a
simple consequence we derive a strong rigidity of the bubble equivalence, which makes it unsuitable for a
complete classification: consider an embeddable cubulation M, and AM be a homothetic copy embedded
in RV, with integer A. Then, if 71 (M) # 0, there exists at least one non-trivial homotopy class among the
collection of K;. However the homothetic cubulation AM will contain A times more the same homotopy
classes, so AM and M cannot be bubble equivalent. In particular the theorem (see the next section) on
the bump equivalence of mappable cubulations cannot be improved to bubble equivalence, in general.
However it is possible that two mappable cubulations of the sphere are bubble equivalent. We will prove
that this holds in dimension 2. We say that a two dimensional cubulation is simple if the circles K; are
individually embedded in the respective surface. It is known that for the cubulations of S? the simplicity
is equivalent to mappable. A cubulation is called now semi-simple if each image circle p(K;) has an even
number of double points, which form cancelling pairs. A cancelling pair is a set of two distinct double
points connected by two distinct and disjoint arcs.
The main result of this section is the characterization of CB(S?).

Theorem 1.6 The bubble moves act transitively on the set of simple cubulations of S%. The orbit of the
cubulation OC™t! is the set of semi-simple cubulations.
The map fb® (or equivalently Fy) is an isomorphism between CB(S?) and Z/27Z.

The proof is given in section 3. It is very tempting to claim that fb(® is an isomorphism between C'B(M)
and Z/27Z for a general surface M.

1.4 Embeddable and mappable cubulations

Cubical complexes, as objects of study from a topological point of view, were introduced by Novikov
([35], p-42). One of the first question was to answer whenever a cubical complex of dimension n embeds
(or can be mapped to) the n-skeleton of the standard cubic lattice of dimension N? These will be called
embeddable and respectively mappable cubulations. By the standard cubic lattice (or the standard cubical
decomposition) is meant the usual partition of R into cubes whose vertices are identified to Z~. When
speaking of the decomposition into cubes we specify R, and when speaking of the whole cubic complex
we use the lattice terminology, so we can specify the k-dimensional skeleton etc. We will use both terms
in the sequel.
Our main result (see also the theorems 4.1 and 4.7) is the following:

Theorem 1.7 Two mappadble cubulations My and Ms of a DIFF manifold M are bump equivalent.

The proof will be given in section 4.

In order to have a deeper understanding of this results we should know how far are these embed-
dable/mappable cubulations from arbitrary cubulations, and what single them out.

Let us say that a cubulation is simple if any circuit in which consecutive points correspond to edges
which are opposite sides of some square of the cubulation does not contain two orthogonal edges from the
same cube. The cubulation is standard if any two cubes (of dimensions running from 0 to the top dimen-
sion) of the cubulation are either disjoint, or have exactly one common face. An immediate observation
is that embeddable cubulations are standard and simple and mappable cubulations are simple. On the
other hand the simplicity is very close to the mappability, at least for manifolds with small fundamental
group. We have for instance the following results of Karalashvili ([25]) and Dolbilin, Shtanko and Shtogrin
([15]) stating that:



e The double of a simple cubulation is mappable. Recall that the double of a cubulation is the result
of dividing each k-dimensional cube in 2* equal cubes.

o If the manifold M underlying the simple cubulation has the fundamental group 71 (M), which does
not admit nontrivial homomorphisms into a free Abelian group, then the cubulation is mappable.
This was strenghted in [15], where the mappability is obtained only under the condition that the
homology group Hy(M,Z/2Z) = 0, or the cohomology group H'(M,Z/2Z) = 0.

e A simplicial decomposition S can be subdivided in a standard manner into a cubical decomposition
C(S): divide any n-simplex into n + 1 cubes of the same dimension. Then, it is shown in [15] that
the associated cubical decomposition C(S) is always embeddable.

There is then a close connection between triangulations and cubulations, between Pachner’s result and
the theorem from above. The last remark shows that the cubulations of type C(S) associated to simplicial
complexes are always bump equivalent. It would be interesting to find a direct combinatorial proof for
this corollary of the theorem. Remark that it fits well with Pachner’s theorem. We think that conversely,
an indirect proof for Pachner’s theorem may be derived from these results, in the case of DIFF manifolds.

We already saw that M and N mappable implies N is bump equivalent to M. In particular, for
cubulations of the sphere two simple cubulations are bump equivalent. Notice however that the set of
simple (or mappable) cubulations is not closed to arbitrary bump moves. In general the simplicity is not
preserved even by the bubble moves: it may be destroyed using the move b,.

However it should be stressed that the bubble equivalence is interesting only for the PL-spheres. We
think that any two simple cubulations of the sphere are bubble equivalent, likewise to the two dimensional
case. However in the presence of non-trivial topology, the mappability alone does not suffice for the bubble
equivalence. This is explained in the last part of the section 4.

1.5 Cubulation groups

We have previously seen that the obstructions induced by fb are lying in some finite Abelian groups which
are rather complicated to find out explicitly. However we are able to prove now that the obstruction map
fb factors through a product of Z/2Z’s. This makes sense because all @;(n) are even. This will be derived
as a corollary of the following:

Theorem 1.8 The set CB(S™) has a natural group structure induced by the connected sum of cubula-
tions. Moreover CB(S™) is a direct product of Z/2Z’s.

The proof will be given in section 4.
Therefore each element of the cubulation group has order 2. On the other hand it is not difficult to
see that fb becomes a group homomorphism. Therefore the congruence

2fi(z) = 0( modulo a;(n))
holds for all i,n. We derive that the true obstructions are in Z/2Z:
Corollary 1.9 The formula
Fy(z) = (2fi(z) /a;(n)(modulo 2))i=0.1,...n

defines a well-defined map
Fy:CB(S") — (Z/2Z)" .

Now, a characterization of the image F,(CB(S™)) is an useful intermediate step towards the computation
of CB(S™). We have an immediate result modeled on proposition 1.3:

Corollary 1.10 For all n > 1 we have rank F,(CB(M)) < [=].



Proof : Set f; = fla;(n)/2 and introduce the new variables f/ in the Dehn-Sommerville equations. We
can therefore reduce mod 2 all the linear equations in f;. O

On the other hand notice that we already obtained some new obstructions for the f-vector of a cubical
n-spheres:

Corollary 1.11 The f vector of a PL n-sphere satisfies:
2fi(x) = 0(mod d;(n)),
which are meaningful only for those i,n, for which a;(n) > 2.

Remark that the corollary 3.2 of [3] states that the only nontrivial modular relations which hold among
the f vectors of all cubical polytopes (and hence spheres) are modulo 2. This agrees with the previous
corollary, since the order of the image of f;(mod @;(n)) is in fact 2. Thus it seems natural to ask whether
there are some other numbers by, (n) such that for a linear functional L we have

2L(f0(£b'), sy fn(x)) = O(mOd bL(n))a

so that the nontrivial modular relations induced are always modulo 2. This will give informations about
the realization of f;(mod 2), as well as about the image group Fy(CB(S™)).

2 The obstructions

2.1 The proof of Proposition 1.1

At the beginning we make some notations: D is the union of k cubes (of dimension n) which are
the faces of a (n + 1)-dimensional cube, and no two of them are parallel faces, for k = 1,2,...,n + 1.
The complementary union of 2(n + 1) — k cubes is denoted D, . So a bubble move by replaces D:
by D . Now f,(Dj) is the number of p-dimensional cubes in D). The number of interior p-cubes is
fo(int(D})) = f,(D{) — f,(8D}). Notice that this is a notational convention because it does not count
the number of p-cubes in the interior of D,EJr but the number of open such p-cubes sitting in the interior
of Dif.

Irkl order to find the corresponding a;(n) we have to compute the numbers f,(bi(2))— fp(z) = fo(D})—
£2(D;) = alk,n,p); then a;(n) = ged{f,(bi(@)) — fo(@),k = 1,2,..,n + 1}.

We use the method of generating functions: set Fix (T') = >_7_ f,(X)T. It is well-known that f,(C») =

( Z )2"‘1’ for the n-cube C}, so that Fg (T) = (2+ T)™.

Let e;, ¢ = 1,..n + 1 be the vectors spanning C, 1 and L; be the n-cube spanned by ey, es,..., €;_1,
€it+1,e-+5 Ent+1, Where e; is omitted. Then a combinatorial model for D,:r is L]i.“:1 L;. The inclusion-exclusion
principle states that:

k k k
UL = Do fl) =Y fLinLy) + ..
i=1 =1 i<j
k
+=D YT f(Li, N Ly NN L) + o
11<12<...<1%

+(=D) (LN Ly ...N Ly).

We observe that L;, N L;, N...N L;, is combinatorially the cube Cy41-; and we derive

IR C R (B

i=



It follows that, at the level of generating functions, we have:

Fpr(T) = zk:(—l)i“( § )P (T) = i(—l)’“( E)@+ Ty =

* i=1 i=1
@+ T)"t ((2 +T)* - 2(—1)"( , )(2 + T)’H’) =
+T)" -2+ T)" A+ 1)
Therefore the generating function counting the interior cubes in D, is simply
Fiypoy(T) = @+ T)" T H 1+ T)F — T — kT,

In fact the total number of p-cubes in Di and D}, is f,(Cpt1), but there are no (n+ 1)-dimensional faces
and also the n-dimensional cubes are not interior in D, , so k of them have to be removed from the total.

It remains to compute the number of interior p-cubes in D,j: all of them come as intersections L;, N
Li,n..NL with the additional condition that n —p + 1 > 2. It follows that

in—pt1
k .
—1>p>n—
fintopy =4 (ampar) i n-12pzn—k+l
0 elsewhere
The generating function is therefore
n—1
k —k k k— k
Fryoty(T) = D ( n b )TP = Tn=kH[(1 4+ T)F — fTh=1 _Th].
p=n—k+1

We find that the series associated to the jumps of the f-vector is
—Fmt(D,j)(T) + FM(D;)(T) =((2+ Ttk _ Tn+17k) (T + 1)k,

so that

n
> a(k,n,p)T? = ((2+T)" 1k — k) (T + 1)*.
p=0
As an immediate corollary we derive that all a(k, n, p) are divisible by 2 since (24 T)**+1 % — Tk hag

even coefficients. This prove the first two claims. Developing the terms we obtain by a simple computation
a(k,n,n) =2(n+1-k), a(k,n,n—1) =2n(n+1—k), and

1—
a(k,n,n —2) = %’“ BGnin—1)+ (n—k)(n—1-k)).
Also - ;
okl k<n+1
a(k,n,0) = { 0 elsewhere
2"k +14+k), if k<n-—1
a(k,n,1) = 2n, if k=n
0 elsewhere
20k 2 (n+1—k)(n+k)+4k(k—1)), if k<n-—1
_ 2n(n — 1), if k=n-1
a(k7n7 2) - n(n — ]_), lf k‘ =N
0 elsewhere

A tedious verification ends the proof. O
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2.2 The proof of Proposition 1.2.

Set more generally D,:rr for the union of k cubes (of dimension n) which are the faces of a (n + 1)-
dimensional cube, and exactly 2r of them arise in pairs of parallel faces, for kK =1,2,...,n+1, and 2r < k.
The complementary set is denoted by D, .- Denote by by, the bump move Wthh replaces D?:,T by D,

Lemma 2.1 The set of all combinatorially distinct unions of k cubes, k < n + 1, of dimension n, which
are faces of the n + 1-dimensional cube, and are topologically disks, is exactly the set of all D,c » With
2r < k. Therefore the bump moves are the by, and their inverses.

Proof : Obvious. O
We have the following:

Lemma 2.2 For all k,r,p we have the identity:
fp(D;:,r) - fp(D;,r) = fp(D;:) = fp(D})( modulo 2).

Proof : Set k = 2r + q. We denote the faces of C,,+1 by L
Then Dy, , is combinatorially equivalent to some

where LY = L; and L} is the opposite face.

i

r+q

T T
Dy = | | L7 | L; [ ] LF,
=1

i=1 i=r+1

for some ;. But now the choice of the ¢; is irrelevant because there is an isometry of C), 11 which transforms
an €; into 1 —¢e; and preserve the others. In terms of coordinates z; this is defined by z; — x; for i # j,
and z; — x;. Therefore we can choose a combinatorial model for Dy, with all ; = 0.

The only difference with the previous case is that

ﬂ Lo = n+1 m  if there are no sy, 89 such that is, = i,,,€4, # €,
otherwise

Therefore, with respect to the computation we made previously we have to take into account that some
of intersections are void. The void intersections correspond to the combinations of h-tuples L?,..., L}, ...
(the remaining h — 2 faces being arbitrary) which has been counted as cubes Cj,y1—p previously. In the

caleulation of f,(||7_, LY|"_; L} | /X2, | L5?) we have to see how each term arising in the inclusion-

exclusion principle, namely X =3 c. o4 fp(Ni; L5*), has changed. Here A is the set of faces of Dy,

For h = 1 there are no intersections so that this factor is conserved. For h = 2 all the factors L) N L}
have been counted before, but now their contribution is zero. There are r such factors which implies that:

%= (e ()

For h = 3 the now vanishing combinations are r(k — 2) since a couple can be chosen among the r pairs
and the third can be chosen in k — 2 ways. It follows that :

0om (50 e () -re-2)

We continue with h = 4: we have r( k 5 2 ) possibilities to get at least one couple of parallel faces but the

couples L?, L}, L}, LY are counted two times. Applying again the inclusion-exclusion principle we derive

that Xo= (" ) ((5)=r( 557 )+ ()

11



This generalizes easily by induction to:

25<s ' )
Xo= () | R er () (5)
We are able now to write:
n—p+1 2j<s 4
$o(DE) = 1) + D2 (= (e )t (S (523 ) (5)
s=2 j=1

Now we need to know how the number of interior p-cubes fp(z'nt(D,J{,T)) has been changed. Of course
these interior p-cubes are always coming as intersections

n—p+1

N L

s:1;L§SS cA

Again some of these intersections are void because parallel faces are allowed to be in A. But the inclusion-
exclusion principle gives (in the non-trivial casen —1>p>n—k+1) :

2j<n—p+1

£int(DF) = intDF) > (L 5P ) (5)

=1

It suffices now to see that the difference fp(D,:r,T) — fp(int(D;:,T)) has the same parity for all r. In the
previous formula for fp(D,Jcr,T) only the term for s = n — p + 1 has not a coefficient divisible by 2. But
for s = n — p+ 1 the contributing term in fp(DkJr,T) is exactly the same as the total contributing term in
fp(z'nt(D,J{ﬂ,)) and they cancel each other. O

Remark that in fact the greater common divisors of fp(D,Jcr,r) — fp(Dy,,.) are the analogs @;(n) of a;(n).
It is clear than a;(n) are divisors of a;(n). However the explicit computations are more difficult. We omit
the annoying details for checking that dag(n), a1 (n), d,_1(n) are exactly those claimed. This ends the proof
of the Proposition 1.2. O

2.3 The proof of Proposition 1.3.

The proof of our claim has two steps: we show firstly that the affine Z /2Z-module generated by fb*)(C(B(M))
has dimension less or equal than [%tL]. This is a consequence of the Dehn-Sommerville equations.

For the first step we concentrate firstly on the case M = S™. Let P™"*! denotes the family of convex
cubical polytopes. Some of the cubulations of the sphere corresponds to the boundaries 9P of elements
from P"*!. The last component of the f-vector of elements in P**1 is trivial. Consider next A"*! be the
affine Z-submodule (or Z-submodule coset) generated by all the f-vectors of elements of P"*! | viewed
in Z"+1,

Lemma 2.3 ( Dehn-Sommerville Equations) The affine space At ® Q C Q™t! is of dimension

["T“] A set of defining equation is obtained from the Euler-Poincaré equation

n

Y (D) = 1= (=)

=0

together with

(—1)1'( g )2f—kfj = (=13 k=0,1,2,..,n — 1.
j=k

12



Figure 2: A cubulation with odd f,

Equivalently we have the Euler-Poincaré equation and the set of independent equations

(—1)J'< J )fj=O,kzn+1(mod2),1§k§n—1.
j=k

Proof : See [21], p. 156-159. O
In the general case of an arbitrary manifold M, not necessary S™, we have to replace the Euler-Poincaré
equation by the corresponding:

Lemma 2.4 (Dehn-Sommerville Equations for a manifold) The affine space A?*1(M)®@Q C Q™!
is of dimension at most ["T“] A set of equations which define a flat containing A" (M)® Q is obtained

from the FEuler-Poincaré equation
n

D (1) filz) = x(M)
=0
together with

i(—w’( J )2j—kfj = (~1)3 1k =0,1,2,..,n— 1.
=k

Equivalently, we have the FEuler-Poincaré equation and the set of independent equations

i(—l)]( i )fj:0,kEn+1(mod2),1§k§n—1.

i=k
This was proved by Klee for simplicial complexes in [27], see also [21], p. 152. The case of cubulations is
entirely analog, and we omit the proof. O

As a corollary we derive that the affine Z/2Z-submodule of (Z/2Z)™" generated by fb®)(CB(M))
has rank at most ["TH] In fact, the system of independent equations written above has the determinant
1 mod 2.

In the case M = S™ the affine Z/2Z-submodule is a Z/2Z-submodule because the only hyperplane
which was not incident to the origin was the (Euler-Poincaré)-hyperplane, but 1+ (—1)¢ = 0(mod 2), so
that also this hyperplane pass through the origin, when tensorizing with Z/2Z.

Let us say few words about the image of fb(?), from an elementary point of view. For n = 2 we
have to prove that there exist cubulations of the sphere S? having an odd number of faces (or vertices).
An example of a such cubulation of the sphere S? is drawn in picture 2: it has the f-vector (11,18,9).
This proves that the image is in fact Z/2Z. Remark that our example is not an isolated one. There exist
polyhedrons having 3k 4-gonal faces, for each k > 3, which are constructed likewise. Topologically, some
of these can be obtained by sewing the three regions from picture 3.
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Figure 3: More general cubulations with odd f»

2.4 Other arithmetic obstructions

We have seen that f(b,(z)) = f(z) + a(k,n), where a(k,n) = (a(k,n,p)p=o,...,n). Therefore, starting from
the f-vector a we will obtain 3 after some bubble moves if and only if the system of linear equations

n+1

> zka(k,n) =~ a,
k=1

has integer solutions z} € Z. Here z; is the algebraic number of b; moves used: an inverse move b,;l
counts as -1. Of course for a linear system

n+1

Z zra(k,n) = b,
k=1

has integer solutions, a necessary condition is that ged(a(k,n,p),k = 1,n + 1) divides b,, for each p =
0,1,...,n. These obstructions on a— 3 are exactly those described in the first part, namely f;(mod a;(n)).
But these are only necessary conditions for solving this linear system, and they are not sufficient.

For the over-determined systems there are several conditions on the compatibility (as for usual sys-
tems) and another conditions for the integrality of the solutions. Written in an explicit form terms the
latter give rise to another series of congruences.

On the other side the proposition 1.2. says that, in our case, the linear system has rank less than
[241]. In fact it suffices to look at the first [241] components of the f-vector, the other one being
determined by the these. For this type of under-determined linear system the situation is a little more
complicated. There are some new compatibility relations obtained as follows: an equation az + by = ¢ has
as solutions = and y in some arithmetical progressions. Let us add a new equation a'z + b’z = ¢'. Then
the two arithmetical progressions which describe the set of solutions for z, for each equation taken alone,
must have a non-trivial intersection. Basically a short computation for this particular example shows that
the system above has solutions z,y, z if and only if (the conditions given above being satisfied altogether)
we have ged(a,a’) divides be' — b'c. The new obtained obstructions will be called secondary arithmetic
obstructions. These can be explicitly got by hand as follows: we consider the same number of unknowns
as the rank, the other unknowns being considered parameters. We saw that such a system has secondary
obstructions by setting that the (unique) solutions be integral. This is a system of congruences in the
parameters. The compatibility conditions for the latter give another conditions only in the coefficients.
The concrete realization is elementary and algorithmic but rather cumbersome.

In the case of our system modeling the transformations of the f-vector by bump/bubble moves, for
n = 1,2, we do not find any new obstructions.

For n = 3 there is one new obstruction. There are at most two independent f;, let choose for instance
fo and fi. Then the bubble moves b; act as follows:

bi(fo, f1) = (fo, f1) + (8,20),
b2(f07f1) = (anfl) + (43 12)7

14



bs(fo, f1) = (fo, fr) + (2,6),
bs(fo, f1) = (fo, f1)-

Suppose now that (fo, f1) is transformed into (f5, f1), and f/ — fi = u;, i = 0, 1. Then, if we used z times
b1, y times by, z times bz, we have the following system:

8z + 4y + 2z = uy,

20z + 12y + 62 = u;.

Therefore u; are even numbers, thus the obstructions f;(mod 2) are obtained. Set now u; = 2v;, with
v; € Z. We find then that 2z = 3vg — v holds, which implies that vy + v; must be even. Equivalently,
this amounts to say that (fo + f1)(mod 4) is an invariant. This is the new obstruction we got, and it is
not a consequence of the previous obtained congruences modulo a;(3). Therefore for n = 3 we have three
essentially independent obstructions from the f-vector for the bubble equivalence: fo(mod 2), fi(mod 2)
and (fo + f1)(mod 4).

In the case we have to do with the bump moves, there are two more moves to add to the previous
list, namely bs ;1 and bs,;. Then an explicit computation shows that

b3,1(fo, f1) = (fo, f1) + (0,4),
ba,1(fo, f1) = (fo, f1)-

Thus (fo + f1)(mod 4) is also an invariant for bump moves.

Let observe that the standard cubulation of S® (the boundary of the 4-cube) has trivial (fo +
f1)(mod 4). On the other hand, C B(S?) is a group whose elements are of order two, hence 2(fy + f1) =
0(mod 4) for any cubulation of the sphere. This implies that fo = f1(mod 2), which agrees with the results
of [3] for the polytopes. Remark however that the obstructions fo(mod 2), fi(mod 2) and (fo+ f1)(mod 4).
are defined on C'B(M) for all surfaces M, not only for the sphere.

3 Cubulations of surfaces

3.1 Non-simplicity and non-standardness for n = 2

The exact form of all arithmetic obstructions in the case n > 3 is hard to make explicit but there are
algorithmically defined. So far the obstructions live in finite groups (also the secondary ones). But we
will express now a different kind of obstructions.

We begin by looking at the case n = 2. Here the arithmetic obstruction we get is only fo(mod 2), or
equivalently f2(mod 2). This means that two cubulations with the the same number mod 2 of faces can
be transformed by bubble moves into cubulations with the same number of faces. Let us look at the dual
4-valent graph associated to the cubulations of S?. These are planar graphs with fo vertices. The four
examples drawn in picture 4 fulfill the following properties. They are combinatorially distinct.

All of them are non-standard. Here standard means according [15] that the intersection of any two
cubes is either empty or a face common to both. Of course the non-standardness implies that none of
A, B, C, D is embeddable. But remark that A and B can be mapped into the standard cubulation of
R2. Also C and D are not simple and A and B are simple. Since A and B are mappable they are bump
equivalent; actually it can be shown they are bubble equivalent. Moreover the bubble moves preserve the
mappability so A and C' cannot be bubble equivalent. Thus there are at least two different classes of
bubble equivalence among A, B,C, D.

This suggests that it should exist some other obstructions. We define the index of non-simplicity ns(C)
of a cubulation in dimension 2 as follows. First observe that the dual graph is canonically embedded in
the cubulated surface. Therefore there is a cyclic order on the edges incident to each vertex. Define a path
p in the dual graph be straight if at any vertex the incoming and outcoming edges are not consecutive.
A Z-loop in the graph is a closed path which is straight away from the start and end point, where is not

15



A z 2 B 2
| @ | i ;
Figure 4: Examples of cubulations with fo =4

straight. Consider ns(C) be half the number of such 7 -loops in the graph (some other possible variants
would be to consider some additional properties, like being minimal, or pairwise non-homotopic etc).
Alternatively, we can define ns(C) as the number of corners in the straight lines.

Now we claim that:

Proposition 3.1 ns(C) is invariant by all bubble moves except ba. Also ns(C)(mod 2) is both bump and
bubble invariant, and in fact it coincide with fo(mod 2).

Proof : We prove that ns(bg(z)) = ns(z). The transformations by at the level of dual graphs are shown in
picture 5. To prove that ns(bi(x)) > ns(x) it suffices to see that the T -loops of 2 survive in some sense
in by (x). It suffices to see when the corner of the % -loop, which is the vertex where is not straight, is not
in the region changed by the bubble move. In fact otherwise there is a canonical extension, because any
straight line transforms through a bubble move to another straight line. This may be easily visualized on
the picture. For example see the picture 5 to see such a transformation. But now case by case it can be
shown that also corners given by the edges a and b inside a small region where the b; acts transform into
corners passing through the images of a and b, and living already in the region considered.

For instance if we look at b; there is only one possibility for a corner occurs, up to symmetry, as
can be seen in figure 7. For by we have essentially two possibilities and for b3 as well, up to the obvious
symmetries. We figured out the transformation of corners.

Further we need to prove the converse inequality, namely ns(b; (z)) < ns(z). It suffices now to see that
the corners which could appear in a region after bubbling can be collapsed into a corner which existed
before. Alternatively, the corners from the right hand side of the pictures 7 are the only possible corners
in the corresponding regions. In fact a new corner for by (different from the center) would determine by
straight continuation a closed loop so that we would not have a § -loop. And up to symmetry there is
no other possible corner not figured in 7, and this proves the claim.

We remark that there exists only one situation where the bubble move by modify ns. This arises
precisely when we have two twin cells. This means that we have two adjacent cells e and e’ having a
common edge f. Let  and z' the two edges of the dual graph which are parallel to f. We assume
furthermore that x and z' are on the same connected component, or equivalently, that there is a straight
line containing both of them. Then a b, move with the support on the union of e and e’ changes the number
of Z-loops by 4. Thus ns reduced mod 2 is invariant. On the other hand, the circuits made of straight
lines are topologically circles, which are immersed in the surface, with only ordinary double points. Then
the number ns(C) is half the sum, over all connected components, of the number of self-intersections of
each circle. It follows now that fo = ns(mod 2). O

So far ns(C) could have been defined for arbitrary graphs embedded in surfaces, whose complement is
an union of disks. The bubble/bump moves are local, so that the proposition from above has an immediate
reformulation in this more general context. A priori we saw that ns(C) is not bubble invariant, because
a by-move could create/annihilate 2 more self-intersections, if the support is a pair of twin cells. Thus
the non-invariance of ns(C') is conditioned by the existence of twin cells in the cubulation. We will see
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in the proof of the lemma 4.9 that embeddable cubulations have no twin cells so that the simplicity (i.e.
ns(C) = 0) is preserved by bubble moves, in this particular case.

Remark 3.2 o The standardness is not invariant to bubble moves: for instance apply a by L to the
standard OCy 1. We get a two cubes cubulation of the sphere which is not standard.

o Also for n > 2 the simplicity, and ns are not invariant at bump moves. For example apply the bump
move bs 1 (the dual graph changes like in figure 5) to the cubulation represented by A. The image
is no more simple, as can be seen in picture 5.

e Observe that ns is always an integer because any straight closed curve has an even number of J
-loop components.

The discussion above shows that the most optimistic conjecture (however not true without additional
hypothesis) would be that two cubulations with the same f-vector, both of them being standard and
simple, are bubble equivalent. We will prove a weaker statement by restricting ourselves to the mappable
cubulations and allowing all bump moves. The first condition is intuitively not a strong constraint because
there are sufficiently many mappable cubulation. The second is stronger, but it seems more realistic to
work with all bump moves, because the bubble equivalence is too finer, as it will be seen below.

3.2 The simple cubulations of S?

We will prove in the next section that simple cubulations of the sphere are bump equivalent. The aim of
this paragraph is to prove the analogous affirmation about the bubble equivalence. The first result is:

Proposition 3.1 The set CBB(S?) is infinite.

Proof : The derivative complex associated to the cubulation C in [3] is topologically the desingularization
of the dual graph. The maximal straight lines (see 3.2) are connected l-manifolds K;, hence circles
which are immersed in the surface underlying C'. Consider the disjoint union of these circles K;, which is
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Figure 8: Conjectured representatives for elements of C BB(S?)

naturally endowed with an immersion ¢ : U; K; — C'. Recall that the non-simplicity index ns(C) is the
sum of the numbers of self-intersections of the components ¢(K;). In particular C is simple if all K; are
individually embedded.

We can define then an invariant of the bubble class by setting

ns1(C) = inf{ns(z); = is bubble equivalent to C},

but a priori it is hard to compute it effectively.

We claim that ms;, as function on CBB(S?), is not bounded. It suffices to show that there exist
cubulations C' whose derivative complex has an arbitrary large number k of components K;, and each
ns(K;) is odd. Indeed, a bubble move by may modify ns(C) by 2 units, and the other ones keep it
invariant. Meantime the number of components is not invariant, but the number of components with odd
self-intersections is an invariant, because the only move creating new components is by, and each new
created component must be an embedded circle. Remark that the image of all K; is always a connected
graph; this is a necessary and sufficient condition for the graph to be associated to a cubulation of the
sphere. In fact, we identified before the moves by and b3 with the second and the third Reidemester moves,
in the context where some additional strings exist in the picture (even if they are not changing during
the operation). This proves that the number of components is invariant under by and bs.

It follows that ns1(C) > k, for a cubulation C fulfilling the previous conditions. For instance consider
a cubulation C' whose dual graph is the union of k kinks (or figure eight), which form a connected planar
graph. This proves the claim.O
The similarity with the Reidemester moves in the plane suggests that

CBB(S?) is closed to the set of planar curves mod Reidemester moves, which is equivalent to the set
of framed circles in the plane. Framed here means that we have to count the number of double points of
each component. An immediate observation is that unlike the case of Reidemester moves, the dual graph
here must remain connected, so that the various components cannot be completely separated. This is
due of course, to the fact that Reidemester moves can be applied only if some additional strings exist in
the configuration, conditions which avoid the possibility of separating into disjoint pieces. On the other
hand the move b, can create/annihilate a pair of self-intersections. However it is not at all clear that the
singularities can be paired such that suitable bubble moves destroy all pairs of singularities and each circle
will have only ns(K;)(mod 2) € {0,1} remaining singularities. Moreover if this is true it should be also
proved that all configurations of circles among which there are m circles, each of them with one singularity
and the others being embedded, are bubble equivalent. This would establish a semi-group isomorphism
between C BB(S?) and Z. Then the elements of C BB(S?) would have canonical representatives as in the
figure 8.

We are able to prove this statement for the case m = 0. Alternatively, this can be stated as follows:

Theorem 3.2 Two simple cubulations of S® are bubble equivalent.

Proof : The only way to shrink a cubulation C is to get rid of the self-intersections of one component K of
its derivative complex. We do not assume for the moment that the cubulations are simple, because we do
not know whenever two equivalent simple cubulations are always equivalent among simple cubulations.
More much we think this is not the case and in our proof below we will use paths of equivalences which
are outside of the realm of simple cubulations. Suppose that we have at least two self-intersections of K
which fulfill the following conditions: there exist two points « and 8 on K which are joined by two arcs,
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The monocolor biangle with thearc ¢ The bicolored biangle and the transversal u

Figure 9: Biangles
self-identification

Figure 10: Smashed kinks and smashed biangles

say [ and r, of K. The arcs [ and r bound together a disk in the plane, and the intersection of this disk
with the complementary arc to [ and r is void. Up to a topological equivalence the situation is that shown
in the figure 9. Observe that two different embedded components are always intersecting each other like
in this description. A cubulation whose dual graph components have only this kind of self-intersections
is called a semi-simple cubulation of S2. Also K is immersed in C, and a, 8 are corresponding to cells
of C (see the picture). The disk on S2, which is also cubulated, will be called a biangle. Another type
of self-intersection is that of a component where a = (. This means that we have only one arc r = [.
Most times such singularities arise with a biangle, but in the case when the ns is odd there is at least
one which cannot be paired. The first step is to see how biangles can be destroyed using bubble moves.

Biangles are of two types: either there is some transversal line in the graph cutting one of the two arcs
[ or r, or else there is no room for other transversals. In the second case the biangle is called a smashed
biangle. By default a biangle, if not explicitly specified otherwise is like in the first case. We have an
explicit model for a smashed biangle, which is drawn below. Notice that an analogous notion of smashed
self-intersection exists in the case of & = 3, and will be called a smashed kink.

Such biangles can appear from two arcs with common endpoints in the dual graph which are not
necessary in the image of the same connected component of the derivative complex. In this case it will be
called a bicolored biangle, and in the former case a monocolored biangle. That is equivalent with coloring
the arcs of each component of the derivative complex with a different color.

Proposition 3.3 The dual graph of a semi-simple cubulation can be reduced using bubble moves to a
picture where all minimal biangles are smashed biangles.

Proof : We have actually to see that in this context we can apply Reidemester moves as long as the
self-intersection are not smashed biangles. Assume now we have a minimal monocolor biangle, as above.
The first cell near «, on [, has an inward normal arc (. If the arc ¢ enters the disk and exits (Jordan’s
theorem) by cutting again the arc [ we obtain either a bicolored biangle - made up from ¢ and [ - if ¢ and
[ are differently colored, or else a smaller monocolor biangle, otherwise. Using the minimality hypothesis
the second alternative is not viable.
Claim 1: We can get rid of the bicolored biangles using bubble moves which do not increase ns.

We can again suppose we have a bicolored biangle which is minimal, with respect to the inclusion of
the associated disks. Also, using some b; bubble moves we can assume the cubulation C' is standard. Let
¢ and K the two arcs intersecting in a and 3, which are also in different components. Consider the arc
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Figure 11: Destructive moves getting rid of transversals

u which is, like before, the normal inward arc u from the first cell near the cell « sitting on {. Then the
arc u is forced to exit by cutting first the arc K, otherwise it should define a smaller bicolored biangle.
Let v be this new intersection point,and § the first intersection point, between v and (. The length of
the sub-arc ay C K is defined as one plus the number of cells between the cells a and «. The area of a
triangle like ad~y is defined as the number of cells contained.

Claim2: Using some bz moves we can reduce the area of the triangle ady and the length of a-y, preserving
the length of ad (supposed to be 1 unit).

Let consider the trace of all other components of the dual graph on the triangle ad~y. Then we have
some other arcs which, from minimality, they cut only the arcs u and K. They may however intersect
each other. This gives a partition into smaller polygonal domains. A triangle cannot be partitioned into
polygonal domains each of them having more than 3 edges. Thus we find a smaller triangle inside, and we
continue until we obtain a triangle 7', whose edge length are all 1 unit. Moreover, since this partition is
dual to a partition in squares (the original cells) there exists such a T' on the boundary. This means that,
either one vertex is +, or else one edge is on dv. A b3 move acts like the Reidemester move on the dual
graph (see picture 5), so assume we apply it on this triangle T'. Then either the length of -y diminish in
the former case, or else the area of the triangle ady decreases, because the role of the b3 move is to push
up the arc §v. This proves the second claim. O

This procedure stops when the triangle ad~ has all its edges of length 1. One more bsz-move as before,
will push the transversal u outside the biangle. By the way the area of the biangle decreased and we can
continue with the next transversal v’ near a. We stop when the biangle has only one transversal u, of
length 1, and then a move by destroys the biangle.

This proves the claim 1. O

Notice that ns is not affected by these transformations, because the considered biangle is bicolored.

Now, exactly the same procedure permits to get rid of monocolor biangles. Unlike the previous case
the application of the last move b, ! drops the index ns by 2.

We need now some preparations in order to attack the proof the theorem. The previous proposition
shows that the analogy with Reidemester moves can be pursued outside of a local picture. In what
concerns the third Reidemester move this is even simpler, since we have no constraints. The idea now is
to establish a recipe for dealing with smashed biangles. The possible configurations of smashed biangles
can be rather complicated, even if the cubulation is simple. We are looking first to a local picture with a
single disk D embedded in the plane which is in general position with respect to X. Here X is the union
of two orthogonal segments in the plane, which are the midsections of a square. We suppose then that D
is contained in the interior of the square. The square is divided by X into 4 sectors. Consider two points
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