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Abstract

We prove that the image of the mapping class groups by the representations arising in the sla(C)-TQFT is
infinite, provided that the genus g > 2 and the level of the theory r # 2,3,4,6 (and r # 10 for ¢ = 2). In
particular it follows that the quotient groups My /N (¢") by the normalizer of the 7*" power of a Dehn twist ¢ are
infinite if g > 3 and r > 3.
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1 Introduction

Witten [55] constructed a TQFT in dimension 3 using path integrals and afterwards several rigorous
constructions arose, like those using the quantum group approach ([44, 29]), the Temperley-Lieb algebra
([34, 35]), the theory based on the Kauffman bracket ([4, 5]) or that obtained from the mapping class
group representations and the conformal field theory ([31]).

*First version: May 18, 1997. This version: August 16, 1997. This preprint is available electronically at
http://www-fourier.ujf-grenoble.fr/"funar



Any TQFT gives rise to a tower of representations of the mapping class groups M, in all genera g
and this tower determines in fact the theory, up to the choice of the vacuum vector (see [13, 5, 53]). The
aim of this paper is to answer whether the image of the mapping class groups is finite or not under such
representations.

There is some evidence supporting the finiteness of this image group. First, in the Abelian U (1)-theory
the representations can be identified with the monodromy of a system of theta functions. The latter is
explicitly computed (see e.g. [14, 20, 40]) and it is easy to see that it factors through a finite extension
(due to the projective ambiguity) of Sp(2g,Z/rZ), where r is the level of the theory. For a general Lie
group G, the monodromy associated to the genus 1 surfaces may also be determined (see [22, 14]) using
some formulas of Kac (see [25, 26]) and again it factors through a finite extension of Sp(2g,Z/rZ), where
r is now the shifted level. This has already been suggested by the fact that the Reshetikhin-Turaev
invariant for lens spaces L, (@ < b running over the positive integers) takes only a finite number of
distinct values, namely for the cosets mod 7 of a and b (see for instance [33]). For low levels r = 4,6 the
whole tower of representations was described by Blanchet and Masbaum in [6] and by Wright ([56, 57])
and in particular the images are finite groups. On the other hand all TQFTs are associated to conformal
field theories (abb. CFT) in dimension 2 (see e.g. [13, 55]) and the finiteness question appeared also in
the context of classification of rational conformal field theories. For instance in [41] one asks whether the
algebraic CFT have finite monodromy (which is equivalent to our problem for some classes of TQFTs,
as for example the sly(C)-TQFT). Some of the irreducible representations of SL(2,Z/rZ) which admit
extensions as monodromies of some CFT in all genera were discussed in [11, 12]. Also in [28] the action of
SL(2,Z) on the conformal blocks was computed for all quantum doubles, and it could be proved that the
image is always finite. Gilmer obtained in another way (see [18]) the finiteness of the image for g = 1, in
the SU(2) theory, result which seems to be known in the conformal field theory community, and noticed
also by M.Kontsevich. Meantime Stanev and Todorov [46] have a partial answer to this question in the
case of the 4-punctured sphere, as we will explain bellow.

This is the motivation for our main result:

Theorem 1.1 The image p(M,) of the mapping class group M, under the representation p arising in
the slo(C)-TQFT (in both the BHMV and RT wversions) is infinite provided that g > 2, r # 2,3,4,6, and
if g =2 also r # 10.

To explain briefly what means the two versions BHMV and RT we recall that the slo(C)-TQFT was
constructed either using the Kauffman polynomial - and this is the BHMYV version from [5] - or else
using the Jones polynomial - and this is the RT version from [44, 29]. The invariants obtained for
closed 3-manifolds are “almost” the same, but their TQFT extensions are different. That is the reason
for considering here both of them, though as it should be very unlikely that the mapping class group
representations do not share the same properties, in the two related cases.

Before we proceed let us outline the relationship with the results from [46], where the Schwarz problem

—

is considered for the su(2) Knizhnik-Zamolodchikov equation. The authors determined whether the
image of the mapping class group of the 4-punctured sphere is finite, thereby solving a particular case
of our problem, however in a slightly different context. It would remain to identify the following two
representations of the mapping class groups (in arbitrary genus):

—

e one is that arising from the conformal field theory based on the su(2) Knizhnik-Zamolodchikov
equation. Tsuchiya, Ueno and Yamada [48] constructed this using tools from algebraic geometry,
for all Riemann surfaces.

e the other one is that arising in the RT-version of the sl2(C)-TQFT.

There are some naturally induced representations of braid groups in both approaches, which can be
proved to be the same by the explicit computations of Tsuchyia and Kanie [47].

Presumably the two representations of the mapping class groups are also equivalent, but a complete
proof of this fact does not exist, on author’s knowledge. First it should be established that the conformal
field theory extends to a TQFT in 3 dimensions, which is equivalent to know exactly the behaviour of
conformal blocks sheaves over the compactification divisor on the moduli space of curves. Observe that



a different and direct construction of the asociated TQFT can be given ([31, 32, 16]) if we assume the
conformal field theory has all the properties claimed by the physicists. Notice that a complete solution of
that problem would furnish an entirely algebraico-geometric description of the TQFT following Witten’s
prescriptions, in which the mapping class group representation is the monodromy of a projectively flat
connection on some vector bundle of non-abelian theta functions over the Teichmuller space.

Thus we cannot deduce directly from [46] the finiteness of the mapping class group representation
without assuming the previous unproved claim. Our purpose is to use instead the BHMYV approach which
has a simple and firmly established construction. Then from the mapping class groups we descend to
braid group representations using basically the monodromy of the holed spheres. The data we obtain
is similar to that obtained by all the other means, hence also to that from [46, 47]. Speciffically, the
idea of the proof of the main theorem is to identify a certain subspace of the space on which M, acts,
which is invariant to the action of a subgroup of M, the last being a quotient of a pure braid group P,
n > 3. Next we observe that the action of P,, extends naturally to an action of the whole braid group
B, and this it turns to factor through the Hecke algebra H,(q) of type A, 1 at a root of unity g. This
was inspired by the computations done by Tsuchyia and Kanie ([47], see also [46]) of the monodromy
in the conformal field theory on P!. Now the precise identification of the Hecke algebra representation
among those constructed by Wenzl in [54], and an easy modification of the Jones theorem ([24]), about
the generic infiniteness of the image of B, in Hecke algebra representations, will settle our question.

For fixing the notations, we denote by r the level, which is supposed to be in this sequel exactly the
order of the roots of unity which appear in the definition of the invariants.

The groups M, /N (t"), quotients of M, by the normalizer of a power of a Dehn twist, were previously
considered for r = 2,3 by Humphreis in [21], and it is shown these are finite groups for » = 2 and arbitrary
g, and infinite for g = 2 and r > 3. This solved the problem 28 asked by Birman in [2], p.219. We derive
a generalization of that, to all other genera g, namely:

Corollary 1.2 The quotient groups My /N (t") are infinite for g > 3, r > 4.

Proof: It is well-known (see [31]) that the image of a Dehn twist p(t), in some nice basis, is a diagonal
matrix whose entries are exp(2my/—1 (% — I=2)). This is for the RT-version of the invariant at level
r, or equivalently, for the BHMV representation at some 4r-th root of unity. It follows that p(t)%" is a
scalar matrix in this particular basis, and furthermore it is a scalar matrix in any other basis. Therefore,
the image group p(M,)(modulo multiplication by roots of unity of order 8r) is a quotient of M, /N (t*7).
For 4r > 6, and g > 3, the theorem says that image group p(M,) is infinite, and now the claim follows.O
Notice that the proof given by Humphreis used the Jones representation [23] of My which arises as follows:
the group M is a quotient of the braid group Bg, and then some Hecke algebra representation factors
through M. In general, M, has only a subgroup which is a quotient of By, so that it is complicated
to extend Jones representation to higher genus. However the sly(C)-TQFT representation seems to be
suitable for this purpose.

In the last section we consider more general representations of the braid group induced by the TQFT
in the same manner. In particular these factor through generalized Hecke algebras, which are quotients
of the group algebra of the braid group by polynomial relations. We identify those which are of finite
dimension like Coxeter [8, 9] did for the quotients of the braid groups.

It seems that not only the representations have infinite image, but the set of values taken by the
slo(C)-invariant (at a given level r) on the set of closed 3-manifolds, of fixed Heegaard genus g, is also
infinite. Our result does not imply this stronger statement, because the infinite image we found comes
from a subgroup of K C M(F) of homeomorphisms of the surface extending to the handlebody. But by
twisting the gluing map of a Heegaard splitting by an element of K yields a homeomorphic manifold.
However it is very likely that the same method could be refined to yield this stronger statement.

Acknowledgements: This work was done during author’s visit at Columbia University, whose hos-
pitality is gratefully acknowledged. We are thankful to Roland Bacher, Joan Birman, Razvan Gelca,
Patrick Gilmer, Gregor Masbaum, Jerome Los, Vlad Sergiescu, Gretchen Wright for their suggestions
and comments.



2 Preliminaries

2.1 Representations of Hecke algebras

We will outline briefly, for the sake of completeness, some basic notions concerning the representations
of Hecke algebras, following Wenzl [54].

Recall that the Hecke algebra of type A, _1 is the algebra over C generated by 1,¢1,...,9,—1 and the
following relations:

9i9i+19i = gi+19i9i+1, t = 1,2,...,n — 2,
9i9i = 9i9i, |i—J|>1,
gz2 = (q - 1)91 +QJ 1= 172a"'an_ ]-7

where ¢ € C — {0} is a complex parameter. Denote this algebra by H,(g). It is known (see e.g. [7],
p.54-55) that H,(q) is isomorphic to the group algebra CS,, of the symmetric group S,,, provided that ¢
is not a root of unity.

Notice that H,(q) is the quotient of the group algebra C'B,, of the braid group B,. The braid group
is usually presented as generated by g¢i,...,9n,—1, together with the first two relations from above. In
particular there is a natural representation of By, in H,(q).

From the quadratic relation satisfied by g; it follows that g; has at most two spectral values. For
g # —1 set e; for the spectral projection corresponding to the eigenvalue -1; then g; = ¢ — (1 + q)e;, and
another presentation of H,(gq) can be obtained in terms of the generators 1,es,...,e,—1, as follows:

eieir1ei — q(1+q)"e; = ejrreieir — q(l +q) €1, i =1,2,...,n — 2,
eie; = eje;, | i—j |> 1,
e2=e;, i=1,2,...,n— 1.
Let A = [A1, Az, ..., Ag] be a Young diagram consisting of an array with n boxes, from which A; are on
the first row, A2 are in the second row and so on. Set A,, for the set of all Young diagrams with n boxes.
For A € A, let T\ be the set of tableaux having the shape A and ST\ be the set of standard tableaux
belonging to A. The symmetric group acts on Ty, by permuting the numbers (or symbols, e.g. in [37]) in
the boxes. The transform by the transposition o; = (i,i+1) € S, of a standard tableau is again standard
if and only if ¢ and 7 + 1 are not in the same row or the same column.
Let V) (and respectively V)) be the C-vector space generated by the elements of T (respectively

ST)). Denote by ¢; s and respectively r; s the numbers for which the symbol s is contained in the ¢; ;-th
box from the left to the right (or the ¢ s-th column) and in the 7 ,-th row of the tableaux ¢. Set then:

d(ta s,m) =Cts — Ct,m T Tt,s — Tt,m-

For q # 1 denote also
aq(g) = (1 —-¢"M(A+9)'1-9) 7,
and
a(t7 S, m) = Q4(t,s,m) (Q)

We are ready now to define representations of H,(q) on V) by means of the following formula:

7T)\(ei)(vt) = Oé(t,i,i + 1)(Q)Ut + \/Oé(t,i,i + 1)04(t, i+ 172) (Q)vaita

where v; € V), is the vector corresponding to the standard tableau t € STy, o(g;) = o; = (i,i +1) € S,
is the transposition interchanging ¢ and ¢ + 1. Notice that in the case when v,,; is no more a standard
tableau, its coefficient is zero, so that 7y is well-defined.

Then one of the results of [54] states that, for n-regular q (i.e. ¢/ # 1, for j < n), 7 is an irreducible
representation of Hy(q).
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Figure 1: Skein relations
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Figure 2: Generators of the Temperley-Lieb algebra

Consider now the subset T)(\k’l) C T of tableaux ¢ such that t', which is the tableau ¢ with the box
containing n removed, belongs to T)(\fc’l), for some (k,l)-diagram X'. Here, a diagram A is a (k,[)-diagram

if it has at most k rows and Ay — Ay <1 — k. Let STik’l) =ST\nN T;\k’l), and ka’l) be the subspace of

V) spanned by the vectors v; with ¢ € STf\k’l).

Then it is shown in [54] that for ¢ a primitive root of unity of order [ the previous formula for

defines actually a representation of H,(q) into V)\(k’l). Moreover, if A is not only a (k,[)-diagram, but also

a (k + 1,1)-diagram, then the associated representations coincide and so we may denote it by .

2.2 Mapping class group representations - BHMYV version

Most of the material presented here comes from [34, 45, 38]. Let A be a fixed complex number and M
be a compact oriented 3-manifold. The skein module S(M) is the vector space generated by the isotopy
classes (rel M) of framed links, quotiented by the (skein) relations from figure 1.

For example S(S?) is one dimensional (as a module over Z[A, A~']), with basis the empty link; the
image of the framed link L C S? in S(S?) is the value of the Kauffman bracket evaluated at A.

The skein space for the 3-ball with 2n boundary (framed) points has an algebra structure, by rep-
resenting the framed link in a planar projection sitting into a rectangle, and separating the points into
two groups of n on opposite sides. The multiplication is given by the juxtaposition of diagrams, and
the algebra T'L,, thus obtained is called the Temperley-Lieb algebra. A system of generators for T'L,, is
provided by the elements 1,,e1, ...,e,_1 pictured in figure 2.

Now the Jones-Wenzl idempotents f(") € TL,, are uniquely determined by the conditions f (n)2 =f (n),
fMe; = e;f(") = 0, for i = 1,2,...,n — 1, whenever A is such that all A; = (—l)i% for
i=0,1,...,n — 1 are non-zero. This implies that f(Wx = zf™ = X\, ™ for all z, with a suitable chosen
complex number A,.

Denote in a planar diagram by a line labeled with n (in a small rectangle) the element 1,, € T'L,,
and by a line with a dash labeled n the insertion of the element f(™ € T'L,. This will give a convenient
description of elements of skein modules.

One construction for the SU(2) invariants (or slo(C)-invariants) via skein modules, was given in
[34, 35] and latter extended to a TQFT in [5], and to higher SU(n)-invariants recently in [36].

Let us outline first the construction of the conformal blocks, which are the vector spaces associated
to surfaces via the TQFT. Decompose the sphere S as the union of two handlebodies H of genus g, and



Figure 3: Vertex elements in the skein modules

H' with a small cylinder F' x I over the surface F = 0H = QH' inserted between them. There is a map
<,>:S(H) x S(H"Y — §(S%) = C,

induced by the Kauffman bracket and the union of links. In [5] it was shown that, if A is a primitive
4r-th root of unity, then
W(F)=S(H)/ker <,>

is the space associated to the surface F' by the sl,(C)-TQFT at level r. Here ker denotes the left kernel of
the bilinear form <, >. This space has however a more concrete description. If i, j, k satisfy the following
conditions:

0<6,,k<r—1,|i—j|<k<i+j, i+j+kiseven,

then we can define an element of the skein space of the 3-ball with i + j + k boundary points, given by
inserting £, (), f*) in the diagram, and therefore connecting up with no crossings (see figure 3).

Now the triple (4,7, k) is called admissible if, additionally to the previous conditions, it satisfies
0<4,j,k<r—2and i+ j+k <2(r—2). Furthermore let consider the standard 3-valent graph in H
which is the standard spine of the handlebody H, and label its edges with integers 1,12, ...,734—3, such
that all labels incident to a vertex form an admissible triple. We form an element of S(H) by inserting
idempotents (9 along the edges of the graph and triads, like we did above at vertices. It is shown in
[5, 45] that the vectors we obtain this way form a basis of the quotient space W (F).

For a 3-valent graph I, possibly with leaves and some of the edges already carrying a label, we denote
by W(T') the space generated by the set of labelings of (non labeled) edges which have the property that
all triples from incident edges are admissible. An easy extension of the arguments in [5, 45] shows that
W (T) is isomorphic to W (F), provided that T is some closed 3-valent graph of genus g.

If K and K' are the subgroups of the mapping class group M (F) of F consisting of the classes of those
homeomorphisms which extend to the handlebodies H and H' respectively, then we have natural actions
of K on S(H), and K' on S(H'). Moreover these actions descend to actions on the quotient W (F'). One
of these two actions, say that of K on H, has a simple meaning: consider an element x € S(H), which is a
representative of the class [z] € W(F), u € K, then u(z) = [p(z)] € W(F'), where ¢ is a homeomorphism
of H whose restriction at F', modulo isotopy, is u. The other action, that of K’ on W (F') can be described
in a similar manner, using the non-degenerate bilinear form <,> on W(F'). Namely, u(z), for u € K’,
x € W(F) is defined by the equality:

<uz,y >=<z,[u(y)] >,

holding for any y € W (F); on the right hand side y' € S(H') is a lift of y, and the action of K’ on S(H")
is the obvious one.

Moreover we have an induced action of the free group generated by K and K' on W(F)). It is shown
in [45, 38] that this action descends to the mapping class group M(F'). This is the representation coming
from TQFT. Actually we can build up the TQFT starting from that representation. The main idea is
that, if we cut a closed 3-manifold M along a (closed embedded) surface F' into two pieces My and Mo,
then the invariant Z (M) can be recovered from the invariants Z(M;) associated to M; (which are vectors
in the space W (F)) as follows:

Z(M) =< Z(My),Z(Ms) > .



If we want to glue back now M; to M> using an additional twist ¢ € M(F') then we can compute also
the invariant of the resulting manifold M; U, M, using the representation p : M(F) — GL(W(F)),
defined above:

Z(Ml Uy Mz) =< p((p)Z(Ml), Z(Mz) > .

This gives a simple formula for the invariant in terms of Heegaard splittings. In fact the vector Z(H) =
Z(H') € W(F), associated to the handlebody is corresponding to the graph of genus g whose labels
are all 0 (up to a normalization factor, which we skip for simplicity). Then Z(H U, H'), the invariant
of the closed manifold obtained by gluing two handlebodies along their common surface F' using the
homeomorphism ¢, is now < p(p)Z(H), Z(H') >.

2.3 Transformation rules for planar diagrams in the skein modules

In order to make explicit computations we will freely use the recipes from [39] which allows us to transform
planar diagrams representing elements in the skein module of the 3-ball (with some boundary points)
into simpler planar diagrams, eventually arriving to linear combinations of the elements of a fixed basis.
For completeness we include these rules below.

i \ i . iV
_ CoN <k>
- Ek5(k727])<i,j’k> k
X i AN
n
k
. . — 6k <k>
! J n i k>
k

— <k> k
T <i,gk>

O_k =0 for k>1

b c b b [¢
> i < a 1

N ZZ { } '
a d ¢ d J a d



@ = <a,bc>

where .
kA2k+2 _ A2k—2

A2 _ A—2 ’
8(c;a,b) = (_1)lclélz'a'flc(i+j+lc+2)7
i+ 7+ k4 1) k]!
[i +J]'[i + K)'[j + k]!

<k>=(-D*Ek+1]=(-1)

<a,bc>=(=1)Hitk [

. Here 4, j, k are the internal colors given by

Z,_b—}—c—a . _a+tc—b k_b+a—c
- 2 JJ_ 2 ) - 2 7

and [n]! = [1][2]...[n].
Consider now A,B,C,D,E,F such that (4,B,E), (B,D,F), (E,D,C), (A,C,F) are admissible

triples and make some notations: ¥ = A+ B+C+D+E+F,a; = "HQAE, as = mzﬂ, az = EJrzﬂ,
as = ALGHE 'y — B=A-F 'y _ B=B=C g — B=4-D
The tetrahedron coefficient is defined as:
A B E\ _ IL Hj[bz' - aj]! ay as as a4
D C F / [AB)C)D)E][F]! b1 by b3 ’
where

ai az as as '\ _ (=1)¢[¢ +1]!
("0 "0 ®u™)" ~ [nognea

max a; <¢(<mina;

The quantum 6j-symbol of [39] is given by the formula:

<i> Z'b">
{abi}_ j d a

c d j <i,a,d><i,b,c>"



Figure 5: The curves 7;;

3 Proof of the theorem

3.1 Outline

Consider a surface F' of genus g and let I' C H be a 3-valent graph embedded in the handlebody H.
Suppose that the graph I'" shown in figure 4 is a subgraph of I'. Then I can be viewed as the spine of
the (n + 2)-holed sphere F' C F, which is the intersection of a regular neighborhood of I (in R3) with
F. Consider a partial labeling I''(n,m)) of I as shown in the figure. Notice that the leaf with label 0
can be removed without affecting the space W (I''(n,m).

Lemma 3.1 For a suitably chosen T', of genus g > 4, there exist m > 0,n > 5, such that W (I'"(n,m)) C
W(T) and dim W(I'(n,m)) > 2. For g = 3 we have W(I'(5,1)) c W(T), and for g =2 W(I'(3,1)) C
w(T).

The proof is obvious: Consider the leaves of I'' are connected to each other, by some new edges in order
to obtain a closed graph of minimal genus. O

Fix now once for all the embedding of graphs I'' C T as in the lemma, and denote by V' C W(T') the
image of W (I''(n,m). Consider the curves ;; C F', 1 <14,j < n, drawn on the (n + 2)-holed sphere F’
which encircle the holes i and j like in the picture 5. The Dehn twists T’,; generate a subgroup S of the
mapping class group M(F).

Proposition 3.1 The subspace V.C W (F) is p(S)-invariant. Moreover the image p |v (S) C GL(V) is
an infinite group, provided that g > 3 and the level r # 2,3,4,6, or g =2 and r # 2,3,4,6, 10.

The first part of the proposition is easy to check: there is a more general fact concerning sub-surfaces
F' C F and a subgroup S of M(F) of classes of homeomorphisms which keep F’ invariant up to a isotopy,
and send each boundary component into itself. Assume we fix a labeling of the boundary components,
of F': this amounts to fix a labeling of the leaves of the subgraph I'’, the spine of F’. Then the subspace
W(I") c W(T) is invariant by the action of S on W (F). Moreover, consider now that F' may be sent
by a larger group S’ into a subsurface F" which is isotopic to F, but the boundary components may
be permuted among themselves. We claim now, that a subspace W (I"), associated to a labeling of the
boundary components, is sent by such a homeomorphism into the subspace W (I') associated to the
permuted labeling on the boundary components. In particular the space V from the proposition is not



only invariant under p(S), but also under larger groups which could permute the n boundary components
¢, 1 =1,2,...,n, since all their labels are identical.

Another observation is that the action of M(F") on the space W (I'), where I'" has one external edge
e (corresponding to the boundary component ¢, C OF") is the same as the action of M(F' U., D?) on
the space W(I'""); here F' U,, D? is the result of gluing a disk on the circle c., and T is T with the
edge e removed from it. This way we see that p(S) is the image of a pure braid group P,, acting like
M(F" U,, D?). This will help to find out the corresponding extension to the braid group.

Before we proceed in explaining this action, remark that all Dehn twists along ;; are elements from
the subgroup K C M(F) of classes of homeomorphisms extending to the handlebody H. Therefore,
according to the discussion in the previous section, the action of T',,; on V has a simple expression in
the skein module of the 3-ball with (n + 2)-boundary points: just perform the Dehn twist on the 3-ball
which is a regular neighborhood of the graph I/, viewed as part of the handlebody H, whose spine is T
This is equivalent to twist the i-th and j-th legs of the graph IV, and further to apply the skein relations,
in order to compute this element in terms of the basis of V, where the legs are straight.

1]

m B, 1

1 1]

|

1 1 |1

N
—
m p,P B 0

1 1

But now the extension of the representation of P, to B, is obvious: consider that the i-th and 7 + 1-
th legs are only half-twisted. This defines the action of the i-th generator g; of the braid group B,.
In fact, looking at the generators A;; of P, as elements of B,,, their action on V consists in twisting
the corresponding legs of I, modulo Reidemester moves in plane. On the other hand the fact that we
obtained a representation of B, is checked the same manner: the relation ¢;9;+19; = gi+19:9i+1 translates
into the third Reidemester move, which is obviously satisfied in the skein module. We continue to denote
by p the representation of B,, on V. In fact this should enter in the computation of the action of elements
in the larger group M(F), so actually is “part” of p but for bigger genus.

The main ingredient of the proof of proposition 3.1 is to establish:

Proposition 3.2 The representation
(—A)p: B, — End(V)

factors through a representation of the Hecke algebra H,(q), which is equivalent to Wenzl irreducible

representation m, associated to the (2,r)-diagram \ = [2£™ 2=Mm] and the parameter ¢ = A™*.

In order to end the proof of the proposition 3.1 it will suffice to prove that the image 7% (B;) of the braid
group B, is infinite. This was done by Jones in [24] for one value of A, but the proof extends to an
arbitrary primitive root of unity, and we state the result as:

Proposition 3.3 The image group n(By,) is infinite provided that n > 4 and r # 2,3,4,6 orn = 2,3
and r # 2,3,4,6,10, for q a primitive root of unity of order r.

This will establish the proposition 3.1, because P, is of finite index in B,,, henceforth the claim of theorem
1 follows.

3.2 Proof of proposition 3.2

The TQFT considered here is the one constructed in [5], for A a primitive 4r-th root of unity. This is
called also the SU(2)-TQFT. The same should work for the representation associated to the invariants
of [4] at a 2r-th primitive root of unity, i.e. the SO(3)-TQFT, with only minor modifications.

Lemma 3.2.1 A basis for V is provided by the labeled graphs L(p) below,

10



™R s g 0

whose labels are in one-to-one correspondence with
B(V) = {p = (p07p17 7pn);pz € Z+7p0 = Oapn = m,p; < 2r — 27 | Di —Pi+a |: 177' = 07 Jn}

Proof: It follows immediately from the admissibility conditions on the triples (p;, pi+1,1). O
Then the computation of p(g;) is reduced to that of g;L(p), in the skein module. Observe now that the
only values of the labels p; which may change when g; is applied are p;_1,p;, pi+1. This will be also seen

during the explicit computation.
1\§ 1

Actually we have to compute a b ¢ and according to the lemma it suffices to consider that
la—b|=|b—c|=1.

Lemma 3.2.2 Suppose that |a —b|=|b—c|=1 and |a—c|=2. Then

1\§1 . J_|_

a b ¢ a b ¢

Proof: Suppose for simplicity that ¢ = a+2,b = a+ 1. Then according to [39] and the appendix we have

\ 1 1
1 1
— <k> k
_A_ - Ek 6(k31a1) <1,1,k> 1 1
a atl a+42 a atl at2

Therefore the triple (1,1, k) has to be admissible, so that k € {0,2}. Also the open tetrahedron
k
1£ 1
a a+1l a+2

vanishes if (k,a,a + 2) is not admissible, so that there is only one possibility left, namely k£ = 2. We get
rid of the triangular face by the formula:

1 1

5 2 1 1 1 1
LA B a+1 a+2 a 2

a atl at2 <2,a,a+2> a a+2

We eventually perform a fusion in order to express the right hand side in terms of the the usual basis
L(p). The formula of the fusing is:

1 a 1 2 111
= 2
{1 a+2 a—l—l}

a atla+2

a 1 2

1 a+2 a+1 }, it turns out to be equal to 1, for

where the quantum 6-j symbol involved, namely {

all a. This implies that

11



2 1| 1
1 1 =

a a+tla+2
a a+l a+2

and the lemma follows. O

Lemma 3.2.3 The following identities hold:

) Z G e | Y et ot B N

a al a [2][a-+1] a al a [a-+2]+[a] a atla

D/ At A gaesew ]

a atl a a al a 2lla+1] a atla
1 1
Here is to be understood that for a = 2r — 2 we have: J—I— = 0, and for a = 0, also the
a atla
1 1
corresponding equality: J—l— = 0, holds.
a atla

Proof: We have, like in the previous lemma, the following formula:

1 1 1 1

1N\ 1 _ 0 2

4£ = ,4[2]3 LA 1 + A LA 1 =

a b a

a b a a b a

01 1 1 1 2 1 1 1 1

= 4-2\ b a a 0 + 4\ b a a 2
[2] <0,a,a> a a <2,a,a> a a

We have to perform a fusing, in order to arrive to the standard basis of V. Using the computations of
6j-symbols appearing in this particular fusing we obtain that:

1 | 1
+

a at+la

1 |1
a a a al a
1 I 1
)  la42] 1 | 1 n 1 1 | 1
- [ 2
a a [Zfe+1] a al a 2 a atla

The convention is that diagrams whose labels form non-admissible triples are vanishing. Explicit com-
putations now yield our claim. O



Lemma 3.2.4 The following numerical identities are satisfied:
[a] + [a + 2] = [2][a + 1],

[a+1)1+A47") 1 [ala+2)(0+A"") 542
[a] +[a +2] A%’ (2][a +1]2 ’

where 3% = agy10_q_1, with a defined in the first section of preliminaries.

[a+2]A~*—[a] A~*-1

2lla+1] 11— Attde’

(A% —[a+2  A*-1

Rla+1  1-A-tda

The proof is a mere computation.O

Lemma 3.2.5 Let A be the (2,r)-diagram [25™, 2= with m < r—2. Then there is a natural bijection
¢ between B(V) and ST).

Proof: Choose some p € B(V). We define recurrently the position to be assigned to the number i in the
boxes of the Young diagram A:

1. 1 sits in the first position, with ¢; =d; = 1.
2. i+ 1 sits in the first place not yet occupied from the left to the right
e in the first line, if p;41 —p; = 1.
¢ in the second line if p;11 — p; = —1.
Here ¢ ranges from 1 to n — 1.

Notice that m = (pr, — Pn—1) + Pn—1 — Pn—2) + ... + (p1 — Po), so that the number of those i with the
property that p;y1 — p; = 1, is exactly "+Tm As we have p; — pg = 1, we deduce that the tableau so
defined, say ¢(p) has the shape A, and is a standard tableau by construction. Furthermore the map
¢ : B(V) — ST) is obviously injective and therefore it is a bijection because the two sets have the same
cardinality. O

Lemma 3.2.6 The function c;; and r¢; have the following expressions:

1+ pic1 + pi
rop)i = —5 —— €{0,1},

i+ (pi — Pi—1)Pi n+m
c¢(p),i = # € {].,..., 2 },

Proof: We know that 4 sits on the first row if p; — p;_1 = 1, and on the second row, otherwise. On the

other hand, among the first ¢ — 1 occupied boxes there are FH% on the first row, and the remaining
’_1_% on the second row. Therefore, if p;—p;_1 = 1 then the position of ¢ is on the ZJrlJr%—th column;
otherwise it will sit on the lower row, on the Hrl_%—th box. Since i+1+(pi—pi_1)pi1 = i+ (Di—pi_1)pi
holds, the lemma is proved.O

Lemma 3.2.7 The action of the symmetric group S,, on tableauz can be expressed as follows:
1. if | piy1 — pi |= 2, then 0i¢(p) = ¢(p).

2. if piy1 = pi—1 then
_ _ | p ifj#i
(@:6(p)); = { ipr —pi forj =i

13



Proof: The transposition ¢; acts on the tableaux by interchanging the positions of the two numbers
and 7 4+ 1 in their respective boxes. The resulting tableau is no more standard if i and 7 4+ 1 are in the
same line (henceforth in adjacent boxes), so the associated action of g; is trivial. If ¢ and 7 + 1 are in
different rows the switch in the pair ¢, 7 + 1, corresponds to replace p; — p; 1 (and respectively p;+1 — pi)
by —(p; — pi—1) (and respectively —(p;11 — p;)). This eventually amounts to replace p; by 2p;11 — p;. O

We are able now to end the proof of proposition 3.2. We have to compare the actions of 7T§‘T) and p
which both act on V) from the previous identifications.

Let first consider p € B(V), with | p;+1 — pi—1 |= 2. From lemmas 5 and 6 we derive that

d(p),ii+1 € {—1,1},
so that
g (p) i,i+106(p) i+1,i = O-
Therefore we obtain:
P(9:)Vo(m) = Avoip) = AT (9:)Vg(p)-
Consider now an element p € B(V), with p;11 = p;—1 = a. Again from lemmas 5 and 6 we find that

do(p),ii+1 = (@ — pi)(a+1).

Therefore the representation Wf\r) acts (via lemma 7) as follows:

71_/(\7')(91) 1| |1 =1 1 |1 B IB 1 |1

T 1—qotT
a a-l a a al a a atla
() 1| | 1 1 | 1 1 | 1
T _ q—
TrA (gi) - ﬂ + 1—g—a-1
a atla a al a a atla

Set now ¢ = A~%. Then lemma 3 can be reformulated as

1 1 1 1 1 1
p(9:) A = —ATS . + 1 S
a al a a al a a atla
1 1 1 1 1 1
p(g:) i BA® - — AT .
a al a a al a a at+la

We can prove now that —Ap and wg\r) are equivalent representations. Choose for instance z,y, z,t € C
such that the following conditions be fulfilled:

y=AT2p"1y"z,
e=pAy T (1 =0y )z + AT BTN,
where

_ g-1 __aq-1
TEI gt O T 1 Z et

and ¢ satisfies
APyt =2+ (1-dy 1) = L.
Consider now the global linear transform 2 : V' — V, having the property that, on each subspace of

i |1 1 |1
type C J—l— 6 C J—l— > () acts as ( j Y ) But V is a direct sum of tensor

t
a a-l a a atla
products of such subspaces of dimension 2, and 1-dimensional subspaces spanned by elements of the type

C , with | @ — ¢ |= 2. This implies that such a global ) is well-defined globally, as a sum

a b c
of tensor products of 2-by-2 matrices and identity. Now it is a mere calculation to show that  is an
interwinner i.e. —Apo N =0o wf\r). This ends the proof of proposition 3.1.0

14



Remarks 3.2.8 1. Although they are equivalent, the representations 7T§‘T) and p are distinct under the
identification coming from lemma 5.

2. We could show from the very beginning of the proof that the representation of B, factors through
the Hecke algebra H,(q) with ¢ = A~*. Observe first that the vectors

1 1 1 1 1 1
C 0 ) C 2 ) C 2 )
a a a a a at2

and the corresponding ones with a + 2 replaced by a — 2, span all of V. Indeed using the fusing
matrices (which are invertible) we can relate this system to the standard basis L(p).

But now these are precisely the eigenvectors for g;, because we have the following relations:

N 1 1
1 1 II 1
gi X = 1 1 = 1 1 = (5(k,1, ].) X
k k

This implies that the eigenvalues are —A~3 and A, so that shifting p by a factor of —A will change
them into —1 and A™*, as in the usual presentation of H,(q) with ¢ = A™*.

3.3 Proof of proposition 3.3

In [24] a proof of proposition 3.3 is given for the case when g = exp(@), but the argument generalizes
easily to all primitive roots of unity. We outline it below, for the sake of completeness.

Define first the algebras Ag , (following the convention from [19], section 2.8), which are generated
over C by 1, fi,..., fn—1 and the relations:

fifi-i—lfl' = flfl—lfl = ﬁ_lfb 1= 1727'"7n - 27
fifi=fifo, |i—31(>1,
ff=f,i=12,...,n—1

Remark that Ag, is a quotient of the Hecke algebra H,(q), for 8 = 2+ g+ ¢~'. In fact, the image of
the projector e; generating H,,(q) (see the section 2.1) is 1 — f;.

n—m
2

Lemma 3.3.1 The representation wy of B, associated to the 2-rows tableau A = [TH‘T’”, ] factors

through Ag n, where 3=2+q+q 1.

Proof: It is known that the condition that A has at most two rows implies that the images of g} = mx(g;)
satisfy the following (S) relation:

9i9i119i + 9i9i1 + 9i19i + 9i + 9 +1=0,

according to [24], p.261. Otherwise, it can be checked explicitly by direct computation. Furthermore
from lemma 4.1., p.260 of [24], we derive from (S) that the defining relations of Ag ,, are satisfied by the
images of 1 — e;. This proves the claim. O

Therefore the restriction of my (a priori defined on B,,) to Bs yields a representation of Ags. It is
known that Ag s is semi simple and splits as Ag 3 = M>(C) @ C, for all 3 # 1 (see the theorem 2.8.5,
p.98 from [19]). It suffices now to see that the images of g1 and g, generate an infinite group.

Observe first that my(g1) and 75 (g2) do not commute each other, since the associated representation
of the Hecke algebra, is irreducible and of dimension bigger than 1. Hence there is at least one summand
in the associated Ags-module which corresponds to the simple non-trivial factor M>(C). This holds
because the abelianization of Ag 3 is the other factor. As a consequence it suffices to see what happens
with the images of these two generators, when restricted to this summand. The representation 7y is also
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unitarizable when ¢ is a root of unity according to proposition 3.2, p.257 from [24]. Thus it makes sense
to consider the images ¢(g1) and ¢(g2) in SO(3) = U(2)/C*. We have then the following decomposition
in orthogonal projectors:

u(g:) =aqfi — (1= fi),

so that the order of ¢(g;) in SO(3) is 2r if r is odd, /2 if » = 2(4) and r if r = 0(4), because ¢ is a
primitive root of unity of order r. As r # 1 these two elements cannot belong to a cyclic or dihedral
subgroup of SO(3). But no other subgroups have elements of order bigger than 5. Thus for r =5,7,8,9
or r > 11, the images of the subgroup generated by g; and g5 is infinite.

The proof for the case of By and r = 10 is the same as that given in [24], p.269: it works as long as
the associated algebra Ag 4 remains semi simple. This is equivalent to the condition 1—38"1+ 372 #0.
This will single out the case g = 2 and r = 10 in the theorem.

We may wonder whether an element of infinite order in the image can be explicitly found out. Since
we have to consider only the matrices t(B,) in SO(3), it is very likely that the element t(g'g2) has
infinite order.

Remark 3.3.2 Once we obtained the fact that the image of M is infinite at a particular primitive root
of unity, we may argue also as follows: the Galois group Gal(Q; Q) acts on the set of roots of unity, as
well as on the entries of the matrices p(x), with x € My. It suffices to prove that the two actions of
Gal(Q; Q) are compatible to each other, in order to conclude that the image group is infinite at all roots
of unity. This argument was pointed to me by Gregor Masbaum.

3.4 The RT version

Lickorish [35] established the relationship among the invariants obtained via the Temperley-Lieb algebra
(basically those from [4]) I(M, A) and the Reshetikhin-Turaev invariant 7.(M) (see [29]), for closed
oriented 3-manifolds M:

I(M,—exp

mgr——l (6 — 3r)b1(M)7r\/—_1)TT o),

) = exp( "

where b; is the first Betti number. Roughly speaking the two invariants are the same up to a normalization
factor. There are however two associated TQFTs, still very close to each other:

1. The TQFT based on the Kauffman bracket, as described in [5], which arises in a somewhat canonical
way; in fact any invariant of closed 3-manifolds extends to a TQFT via this procedure (see [5, 13]
for details. The associated mapping class group representation we denote it by p¥.

2. The TQFT based on the Jones polynomial, as described in [29] (see also [17]). The associated
mapping class group representation we denote it by p’, and may be computed using the definitions
from conformal field theory like in [42]. A derivation of this representation, and the reconstruction
of the invariant from it was first given by Kohno [31] (see also [49, 50, 15]).

The two representations are similar: the associated spaces on which they act are naturally isomorphic.
This means that in both theories W (F') has a distinguished basis given by labelings of 3-valent graphs,
with the same set of labels. Basically both theories are built up using some variants of the quantum
6j-symbols:
1. in [39] these are identified with the tetrahedron coefficients, (see also [27]); the relationship with the
usual 6j-symbol (coming from representation theory) was outlined in [43].

2. in the case of p’ the 6j-symbols are coming from the representation theory of U,(slz) and where
described in [30].

Consider now the analog subspace V' = W (I'(n,m) of W (F), as in 3.1.We have again an action of
the braid group B,, on V, but this time the interpretation is no longer related to skein modules of the
ball. Here the graph T" is considered to be embedded in the surface F, giving a rigid structure on F
[13, 53]. This means that there is a pants decomposition ¢ of F' with the property that all circles in ¢
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are transversal to I', the intersection of I' with every trinion is the suspension of 3 points (topologically,
the space underlying the figure Y). Remark that ¢ and I determine uniquely an identification of F’ with
a fixed and decomposed surface, up to an isotopy.

This time twisting the legs of the labeled graphs in L(p) may be expressed in terms of the data of
conformal field theory (see [31]). Specifically, we have:

_aXi :Zdej[Zz] aJ_|i

c d e c j e

where the matrix B is the so-called braiding matrix. The braiding matrix can be expressed in terms of
the fusing matrix F' (see [31, 42] by the following formula:

J2 s htda—ii i Js
Bij [ Jv ] = ()7 [2exp(nV=1(Aj, + Aj, — A — Aj))F [ Jo Ja ] :
where G+ 1)
JU+
A = .
J 4r
We use the same set of labels for the graphs, namely integers running from 1 to 2r — 2 as before, instead

of the traditional half-integer labels from [30, 31, 27]. Set also ¢ = exp @, and [n] = q;__qq__l i
The natural choice for the fusing matrix F is (see [31],p.213-214,[51]):

F--[jl j3]_{j1 J3 l}

Gl i = i ,

J2 J4 J2 )4 J Jkr
where {, }kr denotes the quantum 6j-symbols of Kirillov and Reshetikhin.

Using the computations from [30], and the appendix, we find that the only non-trivial braiding matrix
for a = b =1 is that with ¢ = d, and its value is therefore:

(2 1] ) )

a a _1 [a+2] 1/2 3 [a] 1/2
-7 <[2]a[a+1]) —q 7 ([2][g+1])

Notice that the braiding matrices arising in conformal field theory were previously computed by Tsuchyia
and Kanie in [47]. Their result, used however a different normalization and the matrices are not identical,
but equivalent up to a power of q. In fact, in our case, the representation ¢*/*p” is also equivalent to WE\T).
As an immediate consequence the representation p” has an infinite image, too, under the same condition

as pX. This ends the proof of the main theorem.

4 Other representations of B, coming from TQFT
4.1 The higher modules V (k)

If we are looking for invariant subspaces of conformal blocks we have some natural choices generalizing
those from the previous section.

Consider for instance the vector space V (k) (to avoid the confusions we should put also the subscripts
n and m) spanned by the labeled trees

where the labels p are subjected to the following conditions:
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1. po =0,p, = m.

2. | pit1 —pi—1 |€ {2k — 2,2k}, for all 4.

3. (k,pi,pi+1) is an admissible triple.
We have therefore:

Proposition 4.1 The space V (k) is B, -invariant, and the representation p% of B, so obtained, normal-
ized by the scalar §(2k — 2;k, k)™, factors through the Hecke algebra H,(q), with ¢ = A=*.

Proof: This follows from the fact that the span of the graphs

k k
hd
PP
i-1 i
with j € {2k — 2,2k} is isomorphic via the obvious fusion, to V (k). Likewise in the Remark 3.2.8 g;
acts diagonally on these vectors as the scalar d(j; k, k), and the claim follows. O

The next interesting case after k = 1, which was discussed above, is k£ = 3. Using the same ideas as
in the previous case we derive that:

X = Bllj_|_3 + 312j—|3—

a+4 a+l a a+4 a+1 a at+4a+3 a
3N\ 3 3 3 3 3
_L = By _|_ | + DBy J_l_
a+4 a+3 a a+4 a+la a+4 a+3 a

where the matrix B is given by

at1 -3 lats] | o lats] o 43 [o+5][a+o][3] o 49 _lat3]

( o +[ﬁ5][ J[r%]] s [6][a][a+6][ +5] Y A[ +5]{6]Ji[6?;r[g} P [([3]5[[113;][ +6] )
a+1l g—3ato]la a+1 49 [a a+1 4—3 lat+d]|a a+1 49 |a]la+5]|a
(DA g + (GO Ay (CDTT AT e + (DT AN e

Also we have:

3N\ g 3 — 5(6:3.3) 3 3

a+6 at3 a a+6at3 a

As a consequence we find another representation of the braid groups, not equivalent to the previously
considered V(1). We have a precise description of this representation. We will use the subscripts ,, ,
in order to specify that we have a representation of By, on V(k),,, and the label on the left side of the
considered graphs is m. Observe that there is an injection of V(3)n.m C V(1)p41,m—2n, given, at the
level of standard basis by the map

_ [ 3+4pia -2 ifix1
d’(p)"{o if i =0

It is easy to see that the restriction of
prt1 : By — End(V(1)ni1,m—2n)
at the subgroup By, keeps invariant the subspace ¥V (3)n,m-
Proposition 4.2 The two representations thus obtained,

piH_l |B..: Bn — End(¢¥V (3)n,m),

and
pi : B, — End(v(3)n,m)a

are equivalent.

The proof is a mere computation.
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4.2 Generalized Hecke algebras

If one tries to generalize V(1) and V (k) to allow the labels p and those associated to the external legs
to take any admissible values, we obtain a larger space W (k) on which the braid group acts. This is
no longer an irreducible representation, and also the spectral values of the g;’s run over the all possible
values of d(m; k, k), with m < 2k. Then we do not derive a representation of the Hecke algebra, but of a
more general quotient of the group algebra CB,,. Specifically set:

H(Q,n)=C < g1,92,-,9n-1 | 9i9; = 9j9i, 9i+19igi+1 = 9igi+19i, if |i—7 [>1;Q(g:) =0>
where () is a polynomial in one variable. The Hecke algebras are quotients of the group algebra of the
braid group by quadratic relations. A study of these generalized Hecke algebras was started in [15] for
the cubic case.

It is simply to check that W (k) is an image of the algebra H(Q,n), for the polynomial @ having
precisely the roots d(m;k, k). One may wonder whether these algebras H(Q,n) are finite dimensional,
semi-simple etc. We will prove below that, in general, H(Q,n) are infinite dimensional. It would be nice to
find a finite dimensional algebra H H,,, presented by generators and relations, such that the representation
of B, on W (k) factors through H H,,. One such algebra exists: the generators are 1, gy, ..., g,—1 and the
relations are those satisfied by the elements g; L(p), when viewed in the skein module. However it is very
difficult to find out explicitly the complete set of relations: they correspond to the complete set of skein
relations satisfied by the colored Jones polynomial.

Let us outline first what is known at the level of group quotient of B,,, because the generalized Hecke
algebras should be deformations of the group algebras of such quotients. It is well-known that B,,/(g?)
is the permutation group S,. Define after Coxeter [8] the factor groups

Ba(d) = Ba/(g9).

Coxeter gave an exhaustive list of those factor groups from the list B, (p) which are finite, together with
their respective description (see also [9, 10]). They are exactly those for which (d —2)(n —2) < 4. Away
from the trivial case d = 2 we have another five groups:

e n=3
— For d=3, the group B3(3) is the binary tetrahedral group < 2,3,3 > , isomorphic to SL(2,Zs),
and has order 24.
— For d=4, the group Bs(4) has order 96, and is the group < —2,3 |4 >.
— For p=5,the group B3(5) has order 600, it is isomorphic to < 2,3,5 > xZ5 = GL(2,Zs).
e For n=4, d=3, the group B4(3) has order 648, it is the central extension of the Hessian group by
Zs.
e For n=5, d=3, the group Bs(3) has order 155 520 and it is the central extension of the simple group
of order 25 920 by Zg.

Our result is the extension of the previous Coxeter finiteness theorem for these generalized Hecke
algebras:

Proposition 4.3 1. The vector spaces H(Q,n) are of finite dimension if and only if (d—2)(n—2) < 4,
in which case the dimension does not depend on the particular Q with Q(0) # 0 chosen.

2. Assume Q(0) = 0. Then the vector spaces H(Q,n) are finite dimensional if and only if (d — 2)(n —
2) = 0.

Proof: The result obviously holds generically. In fact, H(Q,n) is a deformation of the group algebra
CB(d). In the case the group B, (d) is finite its group algebra is semi-simple, and therefore a multi-matrix
algebra. Generic deformations therefore will preserve the semi-simplicity and the finite dimensionality.
Meantime the precise description of the discriminant should be difficult to obtain. Another proof of
the finiteness result is via Bergmann’s diamond lemma, as in [15]. However, the computations are
cumbersome, and a computer verification was used. We will explain this method in the simpler case,
when Q(0) =0, n = 3.
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The second part consists in proving that for (d — 2)(n — 2) > 4 the algebras are infinite dimensional.
In the corresponding group case Coxeter used a very nice trick. The group B,(d) was represented in
U(n) as a specific group of complex reflections and the image was shown to be infinite since it has no
positive definite invariant hermitian form. In our case the same approach does not apply anymore. On
the other side, the direct computational procedure used for the finiteness cannot handle all the cases.
Our strategy is to show first the following;:

Lemma 4.4 1. For Q(0) =0, we have dim H(Q, 3) = oo.
2. For Q(0) # 0, deg Q = 3, we have dim H(Q,6) = oo.
3. For Q(0) #0, deg Q = 4, we have dim H(Q,4) = co.
4. For Q(0) # 0, deg Q = 6, we have dim H(Q, 3) = oo.

Proof: In this specific cases we can still apply the method of Bergmann. Recall first what a complete
system of relations is. We have thus a system of relations, R; = S;, where all the words in the generators
are lexicographically ordered; we ask that R; > S;. Further it is asked for all relations must be obtainable
from the given system. That will provide a normal form for all the words in the generators. One way to
get such a complete system (under suitable conditions on the relations: for instance the algebra should
be the quotient of the tensor algebra on the generators) is to consider a ascending sequence of relation
systems: once R; = S1 and Ry = S5, are two relations at some level, we have to look at the possible
interactions between them. An interaction is a ambiguous word T', having two reductions; it suffices to
check what happens if T is containing R; as a prefix and R» as a suffix. Then using the two existing
relations we may reduce T to lower expressions, in two different ways as T = T, and T = T5. If the
expressions 77 and T, are not equivalent, using the already existing relations, then a new relation is to
be added: = Ty — T — x, where x is the highest monomial (word) in Ty — T>. We have to throw away
the redundant relations now from the enlarged system: these are the relations R; = S; for which there
is another relation in the system, say R, = Ss, such that R, is a sub-word in R;. We continue this
procedure until we get a complete system: all interactions give no new relations, and we say that the
ambiguities are solvable. This will provide a basis as a vector space for the algebra. The basis contains
the words in the generators, which do not contain as a sub-word any of the left hand side words R; of a
complete system of relations.
Let consider the example of H(Q,3), with Q(z) = 2°® — az? — (.
We claim that a complete system of relations presenting H(Q, 3) is given by:

Q(gl) = OJZ = 1a27

929192 = 919291,

92939291 = glgzgfgza

91929195 = Qg1929:92 + B91929;-

We proceed with 3 relations :

(1) 929192 = 919201

(2) 91 = agi + Bo

(3) 93 = ag3 + Bg:
and the system of generators S containing all words in g1 and g» without sub words appearing in the left
hand of some relation, i.e. upon now without containing a g2g192, g3, g5. We develop each ambiguity
word (i.e. which has two resolutions) by underlining the sub-word replaced in each case. Away from the
starting point the computations, even messy, became canonical, which means that the words involved
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have unique reduction, and we will write only the final result. Also if an ambiguity is solvable, so no new
relation appear we mark by a O in the final.

The interactions (2-2), (3-3), (1-2), (1-3) give only identities. Further

(1-1) 9291929192 = 92979291 and g291929192 = 91929792
S0 we obtain a new relation

(4) 92919291 = 9192979>.
Next we have an interaction

(1-4) 9293929192 = 91929195 and

9291929192 = 091929192 + 919297
and a new relation is obtained

(5) 91929193 = 91929192 + Bg19297 -

(4-2) 9291929197 = 0gig297g2 + Bg19297 92

92919293 = agigagiga + Bg19297g2- O

(1-4) 929192979291 = g7 929192 + B9 9297

929192919291 = g 929792 + Bgigagi. O

(3-4) ﬁgfgzgl = (0? + 8)91929192 + aBgi 9201

9392919291 = (0 + B)g1929792 + aBgigagr. O

(2-5) 91929195 = @91 929792 + B91 9297 + aB919297 92 + B 919297

9191929195 = @*9192919> + afgi 9297 + +aBgig29792 + > 919297 O

(4-4) 9291921919291 = &’ g1 929792 + @B g19297 92 + Bgi 9297 + B 919201

929792919201 = 0* g7 929792 + B919297 92 + aB9T gagi + 5979291 O

(3-5) 9192979592 = 091929195 + B919297 9>

91929795 = ag19297 95 + Bg19297g2- O

(4-5)1 929792919192 = 919297929195 = 919297 91929192 = 919293919291 = (& + )97 9297 + aBgigegi

929191929193 = 9297929792 + 892919297 = 0919293929192 + BI1 929392 = (0 + B) g7 9207 + Bg3 9293 -
O

and (4-5)2 comes from g2g7g291929793 where again the ambiguity is solvable. This proves our claim.

As a consequence, the infinite set (g2g2)*, k € Z is linearly independent in H((Q,3) and therefore
dim H(Q, 3) = co.

The proof is similar for the other cases. O
It follows now that H(Q,n), for n bigger than those considered in the lemma 4.4, are infinite dimensional
too. Actually we have an injection H(Q,n) — H(Q,n + 1), but the proof is somewhat laborious. Some
ad hoc arguments will suffice: for instance, assume that deg Q = 6, or deg @ = 3 and @Q(0) = 0. It is
known that there are only a finite number of conjugacy classes (at most 3) in Bs, whose associated Artin
closures, as oriented links, are the same (see [3]). If we quotient the algebra H((),3) by the Lie submodule
generated by the combinations ab — ba we get again an infinite dimensional module. It follows that the
vector space generated by links of braid index at most 3, modulo the cubic skein relation induced by @,
is still infinite dimensional. Furthermore the vector space generated by the links of braid index less than
n (n > 4), modulo the skein relations induced by @, will be also infinite dimensional. But the latter is a
quotient of H(Q,n), and the claim follows.

When we consider some arbitrary polynomial P of degree bigger than those considered in 4.4, we have
a surjection H(P,n) — H(Q,n), for any divisor @ of P. This proves the proposition. O
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