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Abstract

We prove a vanishing theorem for the 8j-cohomology in top degree
on 1-concave C'R generic manifolds.

The aim of this paper is an analogous in the CR setting of Malgrange’s
theorem [13] for the vanishing of the d-cohomology in top degree in con-
nected, non compact complex manifolds. We prove the following theorem

Theorem 0.1 If M is a connected, C*>T-smooth, ¢ € N, non compact, 1-
concave, CR generic manifold of real codimension k in a complex manifold
X of complex dimension n, n>3, then for allp, 0 <p < n,

Hy" (M) =0,

where Hg’n_k(M), 0 < p < n, denote the Opr-cohomology groups of top
degree on M with coefficients of class C.
If moreover M 1is assumed to be C*°-smooth, then

HPVF(M) =0 .

We point out that this theorem holds without any global condition on
M (1-concavity is a local condition, cf. Sect. 1). If, additional, certain
global convexity condition is fulfilled then the vanishing of H} "R (M) is
well-known. The first result of this type can be found in the paper [1]
(th. 7.2.4) of Airapetjan and Henkin, where the vanishing of ch’,nfk(M)
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is obtained under the hypothesis that M is a closed submanifold of a Stein
manifold. Generalizations of this result can be found in [9] and [12].

Note that in view of the lack of the Dolbeault isomorphism in top degree
on 1-concave, C R-generic manifolds, one cannot deduce the vanishing of the
groups HJ "=F(M), 0 < £ < 0o, from the vanishing of one of them.

The proof of the theorem is based on some local results on the solvability
of the tangential Cauchy-Riemann equation in top degree and the approxi-
mation of 9xs-closed Cl-forms of top degree minus one by C¢*'-smooth, da-
closed forms in 1-concave, C R generic manifolds, on the unique continuation
of C'R functions and on the Grauert bumping method.

We may notice by looking precisely to the proof that the manifold M
needs not to be a 1-concave C R-generic manifold embedded into a complex
manifold but that Theorem 0.1 still holds under the following assumptions :

(i) The C R-manifold M is either locally embeddable and minimal in the
sense of Tumanov [14] or abstract and 1-concave (this ensures in both cases
the unique continuation of CR functions, see [14], [3]).

(ii) One can solve locally the tangential Cauchy-Riemann equation in
top degree in the C’class with an arbitrary small gain of regularity and
approximate locally dps-closed C-forms of top degree minus one by C¢t!-
smooth, dps-closed forms.

Note, moreover, that if E is a vector bundle over M, which locally ex-
tends as an holomorphic vector bundle, then Theorem (.1 still holds for
HY" F(M, E).

As a consequence of Theorem 0.1, we get a global approximation theorem.

Theorem 0.2 If M is a connected, C*°-smooth, non compact, 1-concave,
C R-generic manifold of real codimension k in a complex manifold X of com-
plex dimension n, n > 3, and p an integer, 0 < p < n, then each continuous,
Onr-closed, (p,n—k—1)-form in M can be approzimated uniformly on com-
pact subsets of M by Onr-closed, (p,n—k—1)-forms of class C* in M.

Again this theorem holds without any global condition on M. In the
case when M is a closed submanifold of a Stein manifold, it was proved by
Airapetjan and Henkin (cf. [1], Th. 7.2.3).

1 Notations and definitions

Let X be a complex manifold of complex dimension n. If M is a C2T¢-
smooth real submanifold of real codimension k in X, we denote by T.°(M)
the complex tangent space to M at 7 € M.



Such a manifold M can be represented locally in the form
M ={z€Qlpi(z) =--- = pp(z) = 0} (1.1)

where the p,’s, 1 < v < k, are real C>** functions in an open subset € of X.
If M is C*° smooth the functions p, may be chosen of class C*.
In this representation we have

n
dpy
T;.C(M):{ge@| ap.(r)cjzo, uzl,...,k} (1.2)
j=1 %%
and dimc TS(M)>n — k, for 7 € M N Q, where (z1,... , z,) are local holo-

morphic coordinates in a neighborhood of 7.

Definition 1.1 The submanifold M is called CR if the number dimg T.C (M)
is independent of the point T € M. If moreover dimg TC(M) = n — k for
every T € M, M 1is then called CR generic.

In the local representation, M is C'R generic if and only if
OpL A ---NOpy #0 on M.

Definition 1.2 Let M be a C*t-smooth CR generic submanifold of X. M
is 1-concave, if for each T € M, each local representation of M of type (1.1)
in a neighborhood of T in X and each = € R* < {0}, the quadratic form

on TS(M) defined by 5. a?jg (T)CaZﬁ, where py = x1p1 + -+ + TEpr and
a,

28
¢ € TS(M), has at least one negative eigenvalue.

The bundle of (p,q)-forms on M, denoted by Ap’q‘ A 15 by definition,

the restriction of the bundle AP of (p,q)-forms in X to the submanifold

M. Thus a section f of A”’q| is obtained locally from an ambiant form by
M

restriction of the coefficients of the (p, g)-form to M. We denote by Cﬁ’q(M )

(resp. Cpo (M), if M is C*°-smooth) the Ct (resp. C*) sections of the bundle
APsd
M

Following Kohn and Reossi [10], two forms f, g € Cﬁyq(M) (resp. Cpoy(M))
are said to be equal if and only if [,, f Ay = [,,9 A ¢ for every form

(e}

¢ € Cp ), nk—qg(X) with compact support.

We set on Cﬁ,q(M ) the topology of uniform convergence of the coeffi-
cients and all their derivatives up to order £ on compact subsets of M. This



topology will be called the C%-topology on M. The dual space of Cf;,q(M ) is
denoted by E;ffp,nfqu(M), it is the space of (n—p, n—k—q)-currents of order
¢ with compact support on M. If M is of class C*°, then the space C,5,(M)
is provided with the topology of uniform convergence of the coefficients and
all their derivatives on compact subsets of M. Its dual E;prynf P q(M ) is the
space of (n — p,n — k — g)-currents with compact support on M.

We denote by D]'f’q(M ) the space of (p, q)-currents of order [ on M, this
space is the dual of the space be_p,n_k_q(M) of Ct-smooth (n—p,n—k—q)-
forms with compact support on M provided with its usual inductive limit
topology. If M is of class C*°, D, ,(M) denotes the space of (p,q)-currents
on M, this space is the dual of the space Dp_pn—k—q(M) of C®-smooth
(n—p,n—k—gq)-forms with compact support on M provided with its usual
inductive limit topology.

We denote by 0y the tangential Cauchy-Riemann operator on M.

A current f € D)f (M) is called CR if and only if duf = 0.

If U is an open subset of M, then for £ € NU {oo},

Z;iq(U) is the Frechet space of CR (p, q)-forms of class C* on U;

2 : 4 _ 9
E, ,(U) is the subspace of Z, ,(U) of the forms f such that f = dumg
with g € Cf;,q_l(U);

HYY(U) denotes the quotient space Zﬁyq(U)/Eﬁ’q(U);

If €2 is a relatively compact open subset in M, we denote by Cﬁ,qfl(ﬁ) the
Banach space of (p, q)-forms of class C¢ on Q and by Cﬁ;‘fl(ﬁ) the Banach
space of (p, q)-forms whose coefficients are of class C“*®, 0 < o < 1, on Q.

If D is a relatively compact open subset in M, we denote by germ
Cﬁyq(ﬁ) the space of germs of (p,q)-forms of class C’ in neighborhoods of
D. Then germ Z[ (D) is the space of germs of CR (p, q)-forms of class C*
in neighborhoods of D, germ Ef (D) = germ Z{ ,(D) N 9 germ Cﬁ’q_l(ﬁ)
and germ HY!(D) = germ Z! (D)/ germ Ef (D).

2 Proof of Malgrange’s theorem in the C’-case

Let X be a complex manifold of complex dimension n, n>3, M a connected,
C?**tt-smooth, ¢ € N, non compact, 1-concave, CR generic submanifold of
real codimension k£ in X, and p an integer, 0 < p < n.



Local results We need first a result on the local solvability of the tangen-
tial Cauchy-Riemann equation in top degree on M.

Proposition 2.1 For every point zg in M, one can find a neighborhood M
of zo in M such that for each open subset Q CC My, there exists a con-

_ 1
() into Cﬁ;’ikil(Q) which satisfies
().

tinuous linear operator Kq from Cp’n_,c

OmKaf = f for all differential forms f in Cf;

n—k

Proof. — This result can be easily deduced from Theorem 0.1 in [2].
Under the hypothesis £ > 0, a slightly weaker result, also sufficient for our
application, is given in Theorem 7.1.2 of [1]. O

We shall use also some approximation theorem for d3-closed (p, n—k—1)-
differential forms.

Definition 2.2 Let U and V be two open subsets of M such that U C V.
We shall say that U has no hole with respect to V' if for each compact subset
K of U there exists a compact subset K of U such that K C KandV~K
has no connected component which is relatively compact in V.

Proposition 2.3 For every point zg in M, there exists a neighborhood M
of zo in M such that for each open subset Q CC My without hole with respect
to My the image of the restriction map
0 0
Zp,n—k—l (MO) — Zp,n—k—l(Q)

is dense with respect to the uniform convergence of the coefficients and all
their derivatives up to order £ on compact subsets of €.

Proof. — Let zg be a fixed point in M. By the Hahn-Banach theorem,
it is sufficient to prove that there exists a neighborhood My of zp in M such
that for each open subset 2 CC My without hole with respect to My, if L is
a continuous linear form on Cﬁ’nfkfl(Q), whose restriction to Zﬁ,nfkfl(MO)

vanishes, then the restriction of L to Zﬁ’n_k_l(ﬂ) is identically equal to

zero. Note that such a linear form L is a 0p-closed (n — p,1)-current of
order £ on My, with compact support in 2. By Theorem 1’ in [7] (see also
Theorem 2.4 in [11]) in the case £ = 0 and their direct generalization, using
Proposition 2.1, to the case £ > 0, we can find a neighborhood My of zg
in M on which we can solve the 0y-equation with compact support in M
in bidegree (n — p,1) for currents of order £. We choose such an My and

Q CC My, then for L € S;fn_k_l(Q) with L 20 (Mo) = 0, there exists



a (p,0)-form T with compact support in My such that Oy T = L. The
(p,0)-form T is CR on My \ supp L and vanishes on an open subset of
My \ supp L. Since M is 1-concave, if 2 has no hole with respect to Mj,
then T' vanishes on a neighbordhood of Mj \ Q by analytic extension (cf.
[6]). Consequently the support of T is contained in Q. Let f € Zﬁ,nfkil(Q),
then by the Airapetjan-Henkin Theorem 7.2.1 in [1], f can be approximated
locally by C**'-smooth 0s-closed (p, n—k—1)-differential forms. Let (U;)icr
be a finite open covering of the support of T' by open subsets satisfying the
Airapetjan-Henkin approximation theorem and for each i € I, (f!),en a
sequence of C*®-smooth dj-closed (p,n — k — 1)-differential forms in U;,
which converges to f on U; in the C%-topology. If (x;)icr denotes a partition
of unity subordinated to the covering (U;)icr, then setting f, = Y ;c; xife
we get a sequence (f,)yen of C¥l-smooth (p,n — k — 1)-differential forms
which converges to f on Q in the Cf-topology and such that the sequence
(Onfv)ven converges to zero on  in the C-topology.We obtain

L(f) = lim L(f,) = lim @uT, f,) = lim (7,30 f,) = 0.

0

A first global consequence of the local results By standard arguments
(see e.g. the proofs of Lemma 2.3.1 in [8] and Proposition 3 in Appendix 2
of [8]), it follows from Proposition 2.1 that, if D is a relatively compact open
subset of M, Eﬁ,nfk(D) is closed and finite codimensional in Zﬁ,nik(D).
Moreover we have

Proposition 2.4 Let D be a relatively compact open subset of M. There
exists a continuous linear operator A : Zﬁ (D) — Cg,n_k_l(D) such that

OMmAf =f forall f € Eﬁ,n_k(ﬁ).

n—=k

The bumping method

Definition 2.5 A bump in M is an ordered collection [My, 21,$s], where
My, Q1 and Qo are open subsets of M such that

(1) My is as in Propositions 2.1 and 2.3.
(i) Q1 and Qo have C%-smooth boundary and Q1 C Qo CC M.
(iii) Q1 admits a basis of neighborhoods without hole with respect to M.

Note that Q; = 0 is allowed in this definition.



Definition 2.6 An extension element in M is an ordered pair [D1,Ds],
where D1 C Dy are open subsets with C2-boundary in M such that there
erists a bump [My, Q1, Q] in M with the following properties:

Dy =D1UQs, Q9 =D1NQs and (Dl\Qz)ﬂ(QQ\Q1)=®.

Proposition 2.7 Let [D1, D3] be an extension element in M, then the re-
striction map

germ Hf’"_k(ﬁg) — germ Hf’n_k(ﬁl)
18 injective.

Proof. — Let Uy C U2 be open neighborhoods of D; and Dy in M re-
spectively and let f € Z p ni(U2) and u; € Cﬁ,n—k—l(Ul) be given such that
Opui = f on U;. We have to prove the existence of a neighborhood Wy C Us
of Dy in M and of a differential form ug € Cf,,_,_,(Ws) with dyuz = f on
Wa.

Let [My, €1, Q2] be the bump associated to the extension element [Dy, Ds]
and Vo CC Uy N My a neighborhood of Qy in M. By Proposition 2.1, there
exists u € Cﬁ’nikfl(Vg) such that dpru = f on Va. Hence we get Oy (u1—u) =
0 on U; N V,. We choose a neighborhood W1 C Uy N Vs of 4 without
hole with respect to My, then by Proposition 2.3, we can find a sequence
(wy)ven C an _1(Mp) which converges to u; — u in the C%topology on
Wi. Let V be a neighborhood of 25 \ 3 such that V C Vo N My and
VN (Dy N~ Q) =0, and x a C*'-smooth function with compact support in
V equal to 1 on a neighborhood Vof Oy ~ Q1. Setting v, = (1—x)u1 +x(u+
w, ), we define a sequence (v,),¢n in C pn—k—1(U1UV) such that the sequence
Opvy, = f — BMX A (u1 — u — wy) converges to f in the C*-topology on the
neighborhood U1 UV of Dy in M, where U1 is a neighborhood of D; such
that U; C Uy and U1 NV =W;NV. Let Wo CC U1 UV be a neighborhood
of Dy. Then, using Proposition 2.4, we get a (p,n—k—1)-differential form
us of class Cf on W such that dpyue = f on Wa. O

Proposition 2.8 Let [D1, Ds] be an extension element in M such that D1 C
C M, then the restriction map

germZ nk-1(D2) —)germZ nk-1(D1)

has dense image with respect to uniform convergence of the coefficients and
their derivatives up to order £ on D.



Proof. — Let Uy be an open neighborhood of D1 in M and [My, 1, Qo]
the bump associated to the extension element [D1, Ds]. Let f € Zﬁ,nfkfl(Ul)

be given and W, C U; a neighborhood of Q; without hole with respect to M.
By Proposition 2.3, there exists a sequence (g, )yen C Zﬁ,nfkfl(MO) which
converges to f in the C¢-topology on W. Let V be aneighborhood of Qy ~ €
such that V.C My and VN (D1 N\ Q) =0, and x a C“’i—smooth function
with compact support in V equal to 1 on a neighborhood V of Q5 \ Q5. Set-
ting f, = (1 — x)f + xgv, we define a sequence (f,)yen of forms of class C’
on the neighborhood U; UV of Dy, which converges to f in the C*-topology
on D;. Moreover, since dpf, = Ourx A (f — g,) the sequence (EMf,,),,eN
converges to zero in the C*-topology on Uy = U, UV, where U, is a neighbor-
hood of D; such that fjl C Uy and [7'1 NV =WiNV. As Dy CC M, we can
choose a relatively compact neighborhood W5 of Dy in M and apply Propo-
sition 2.4. Therefore, there exists a sequence (uy)ven C Cﬁ,n—k—l(WQ) which

converges to zero in the Ct-topology on Wy and satisfies Opruy, = O f,,. If
fv = f, —uy, we get a sequence (fu)ven C Zﬁ,n—k(WQ) which converges to
f in the C*-topology on D;. O

We need now two technical lemmas about the existence of extension
elements to jump from one level of an exhausting function on M to another

level.

Lemma 2.9 Let ¢ be a function of class C*> on M and zy a non degenerate
critical point for . Suppose p(z0) = 0, ¢ 1(0) is compact and zg is the only
critical point on ¢ 1(0). Then there exists a neighborhood Vo of zy in M
such that for all neighborhood V. CC Vy of zg in M, we can find an extention
element (D1, Ds| in M with the following properties:

(i) D12 ¢~ ((—o0,0) NV ;
(ii) 20 € Do \51 cV.

Proof. — If z; is a point of local minimum, we choose V| so small that
Vo N ((—00,0[) = 0 and My C V C Vp a neighborhood of 2 satisfying
Propositions 2.1 and 2.3. Taking Q; = 0, Q3 CC M, a neighborhood of
2o and setting D1 = ¢~ !((—00,0[) and Dy = D1 U Qa, we get the required
extension element.

Assume now that zy is not a point of local minimum. By the Morse
lemma, there exist local real coordinates (x1,... ,%2,) around z in X such
that ¢ =¥ +---+22—22  —-.-—23 . Let V; be a neighborhood of z
on which we are in the above situation and My CC V C V, the intersection



of M with a small ball centered in zp in holomorphic coordinates around

2o as in Propositions 2.1 and 2.3. Let B be a ball centered in z; with

respect to the Morse coordinates (z1,... ,%2,_k) such that B C My, and

U a small neighborhood of zy relatively compact in B. Let € be equal to

%m%1|go(z)| We choose 6§ € D(U) such that 0 < 6(z) < ¢, if z € U, and we
€

z

set 9 = {z € B | p(z) +0(z) <0} and Qs = {2z € B| ¢p(z) — 0(z) < 0}.
Then it is clear that €7 has no hole with respect to B (it is sufficient to
look at the picture in the Morse coordinates) and as the boundary of B
is connected and M, has no compact connected component then €; has
also no hole with respect to My. Smoothing the boundary of ;i and Q9
we get a bump [My,21,s] in M such that Dy = ¢~ !((—00,0[) U Q2 and
D1 = Dy . (Q3 \ Q1) have the required properties. O

From Lemma 2.9, one easily obtains the following lemma (cp. the proof
of Theorem 7.10 in [12]).

Lemma 2.10 Let ¢ be a function of class C*> on M all critical points of
which are non degenerate such that the following conditions are fulfilled:

(i) no critical point of ¢ lies on ¢ ({0,1});
(ii) ©~1([0,1]) is compact;
(iii) ¢ has no point of local mazimum in ©~1(]0,1]).

Then there ezxists a finite number of extension elements [Dj, Dji1], j =
0,...,N, such that Do = ¢~ '((—00,0[) and Dy, 1 = o~ ((—00, 1]).

As an easy consequence of Propositions 2.7 and 2.8 and Lemma 2.10, we
obtain the following result:

Proposition 2.11 Let ¢ be a real evhausting function of class C* on M
without local mazximum and such that all critical points of ¢ are non degen-
erate. Let o, 8 € (M) with a < B and such that no critical point of ¢ lies

on ¢~ ({e, B}) and set Do = ¢~ ((—00,0[) and Dg = ¢~ *((—00, B]).
(i) The restriction map
germ Hf’n_k(ﬁg) — germ Hf’"_k(ﬁa)

18 1njective



(ii) The restriction map
germ Zy ,_y,_1(Dg) — germ Z, .1 (Da)

has dense image with respect to uniform convergence of the coefficients
and their derivatives up to order £ on D,.

Proof of the first assertion of Theorem 0.1 We may now conclude
the proof of our Malgrange type theorem in non compact, 1-concave CR
manifolds in the C¢ case, £ € N.

Since M is connected and not compact, by a theorem of Green and
Wu [4], M admits a real exhausting function ¢ of class C? without local
maximum and we may assume that all critical points of ¢ are non degenerate
(cp. e.g. [5]). Let zp be a point where ¢ takes its minimum value. By
Proposition 2.1, there exists a neighborhood Qg of zg such that H?"*(D) =
0 for all D CcC Q. As @ is an exhausting function on M, it admits only
a finite number of points where ¢ takes its minimum value. We denote by
Q the union of the previous neighborhoods associated to these points and
we choose o € (M) such that ¢ !((—o0, ag|) is not empty and contained
in Q and (a);>1 C (M) such that no critical point of ¢ lies on ¢~ (a;),

§>0, and if D; = o' ((—o00,q;[), D; C Dj4 for j>0 and M = |J D;. We
J>0
deduce from Proposition 2.11 (i) and from the choice of Dq that, for all >0,

germ Hf’n_k (D;) =0.

Let f € Zﬁ,n—k(M) be given. Then from Pr(Eositi_on 2.11 (ii) we obtain
a sequence (u;);jen such that u; € germe;,nfk(Dj), Omuj = f on a neigh-

borhood of D; and ||ujt11 — u]-||¢5j < 5. Hence u = lim u; exists, belongs
’ j—o0

to Cﬁ,nfkﬂ(M), and solves the equation dpru = f on M. =

3 Malgrange’s theorem in the C* case

We shall first prove an approximation theorem in 1-concave C'R manifolds,
which is a direct consequence of Malgrange’s theorem in the C¢-case. Then
we shall use this theorem to get Malgrange’s theorem in the C*°-case.

Let X be a complex manifold of complex dimension n, n>3, M a con-
nected, C>T*+1-smooth, £ € N, non compact, 1-concave, C'R generic subman-
ifold of real codimension k£ in X and p an integer, 0 < p < n.

10



Theorem 3.1 The space Zﬁj;lfkfl(M) is dense in the space Zﬁ’n_k_l(M)
for the topology of uniform convergence of the coefficients and their deriva-

tives up to order £ on each compact subset of M.

Proof. — By the Hahn-Banach theorem, it is sufficient to prove that for

any T € £}, (M) such that (T, ) = 0 for all p € Z. "1, (M) we have

(T,v) =0 for all ¥ € Zﬁ,n_k_l(M). Note that the hypothesis on T" implies
that T is Ops-closed. We shall prove that T is 0ps-exact on M.
We define a linear form L on Cf;j;ll_k(M ) by setting L(p) = (T',1) for

Y € C:ﬁleik(M ), where 0¥ = . The application L is well defined since

first Hé’_’i_nfk(M ) = 0 and consequently all ¢ € Cf;j;ll_ x(M) can be written in

the form ¢ = 09 with 9 € Cﬁ}:{k%(M ) and second (T, 1)) is independent

of the choice of v satisfying a1 = ¢ because T| _,,, =0.
Zp,n—k—l(M)

Moreover 9y is a closed operator between Cf;:';ll_k_l(M ) and Cf;;l_ (M)

which is surjective since Hf_’i_”fk (M) = 0, consequently by the open mapping
theorem this implies the continuity of L. It follows that L can be represented
by a current S € £/} which satisfies

(OmS, ) = (8,0mp) = (T, )

for all ¢ € €9, (M), ie. OuS = T. By regularity of 0js in bidegree
(n —p,1), the (n — p,0)-current S is of order £ since T is of order £.
It remains to prove that (T,%) = 0 for all ¥ € Z:ﬁ’nikil(M). Let ¢ €
0
Zp,n—k—l
2.3, we can construct a sequence (¢, ),en of C¢Fl-smooth (p,n — k — 1)-
differential forms which converges to 1 on M in the Ct-topology and such
that the sequence (011, )ven converges to zero on M in the C’-topology. It

follows that

(T,9) = lm (T,4h,) = lim (OprS,4p,) = lim (S, Onrthy) = 0.

(M).In the same way as at the end of the proof of Proposition

O
Assume now that M is C*®-smooth, we shall prove that HZ" (M) = 0.
Proof of Malgrange’s theorem in the C*°-case. — Since M is connected

and not compact, by a theorem of Green and Wu [4], M admits a real ex-

hausting function ¢ of class C* without local maximum and we may assume

that all critical points of ¢ are non degenerate. Following the proof of the

Ct-case we can construct a sequence (Dj)jen of open subsets of M such that

D; C Djy1 and M = |J D; and satisfying the following two conditions:
J=0

11



(i) germ HY"*(Dj) = 0.

(ii) The restriction map

(Dj41) — germ Vi

J
germ Z, k1

pn—k—1 (EJ)

has dense image with respect to the C’-topology.

Let f € Z35 (M) and € > 0 be given. Then we can construct a sequence
(uj)jen such that u; € germ C; w_i_1(Dj), Omu; = f on a neighborhood of
D; arid ||u]-+1—u]-||5j,j < 5. By (i) thge exists ug € germ Cg,n_k_l(ﬁo) such
that dpug = f on a neighborhood of Dy. Assume now that we have already
constructe(i (uj)o<j<jo- By (i) there exists ﬂjoil € germcg?:_lk_l(DjOH)
such that Opj,+1 = f on a neighborhood of Dj,1. Then.ﬂjoﬂ — uj, €

germ Zg?ﬂ_k_l(DjOH) and by (ii) we can find vj,41 € germ Zi)?n—k—l(DjO‘f'l)
~ 1
such that ||@jo4+1 — uj, — vj0+1||5j0,j0 < 5575+ Moreover by Theorem 3.1, we

7 jotl (. i 51— s |l 1e
choose Djo11 € germ Z0 "y 1 (Djo+1) with [[T41 1)]0+1||Dj0+1,j0 < 357

Setting ujo+1 = Ujo+1 — Vjo+1, then uj 41 has the required properties. It
follows from the properties of the forms u; that the sequence (u;);en con-
verges to a form w uniformly on each compact subset of M and moreover
u € Cz??nfkfl(M) and Opu = f on M. O

As a consequence of Malgrange’s theorem, we get an approximation the-
orem which generalizes Theorem 7.2.3 in [1].

Theorem 3.2 Let M be a connected, C*°-smooth, non compact, 1 concave,
CR generic submanifold of real codimension k in a complexr manifold of com-
plex dimension n, and p an integer, 0 < p < n, then the space ngn_k_l(M)
is dense in the space Z° (M) with respect to uniform convergence on

pn—k—1
compact subsets of M.

Proof. — The proof is analogous to the proof of Theorem 3.1, we have
only to use that H2" *(M) vanishes instead of H?"*(M) and replace £ by

+1
zero and £ + 1 by oo. O
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