MALGRANGE'S VANISHING THEOREM IN 1-CONCAVE CR MANIFOLDS

Christine LAURENT-THIÉBAUT * and Jürgen LEITERER *

Abstract

We prove a vanishing theorem for the $\overline{\partial}_b$ -cohomology in top degree on 1-concave CR generic manifolds.

The aim of this paper is an analogous in the CR setting of Malgrange's theorem [13] for the vanishing of the $\overline{\partial}$ -cohomology in top degree in connected, non compact complex manifolds. We prove the following theorem

Theorem 0.1 If M is a connected, $C^{2+\ell}$ -smooth, $\ell \in \mathbb{N}$, non compact, 1-concave, CR generic manifold of real codimension k in a complex manifold X of complex dimension $n, n \ge 3$, then for all $p, 0 \le p \le n$,

$$H^{p,n-k}_{\ell}(M) = 0,$$

where $H^{p,n-k}_{\ell}(M)$, $0 \leq p \leq n$, denote the $\overline{\partial}_M$ -cohomology groups of top degree on M with coefficients of class \mathcal{C}^{ℓ} .

If moreover M is assumed to be C^{∞} -smooth, then

$$H^{p,n-k}_{\infty}(M) = 0.$$

We point out that this theorem holds without any global condition on M (1-concavity is a local condition, cf. Sect. 1). If, additional, certain global convexity condition is fulfilled then the vanishing of $H_{\ell}^{p,n-k}(M)$ is well-known. The first result of this type can be found in the paper [1] (th. 7.2.4) of Airapetjan and Henkin, where the vanishing of $H_{\ell}^{p,n-k}(M)$

^{*}Partially supported by HCM Research Network CHRX - CT94 - 0468 1991 Mathematics Subject Classification. 32F40-32F10 Keywords and phrases. CR manifold, tangential Cauchy-Riemann equation

is obtained under the hypothesis that M is a closed submanifold of a Stein manifold. Generalizations of this result can be found in [9] and [12].

Note that in view of the lack of the Dolbeault isomorphism in top degree on 1-concave, CR-generic manifolds, one cannot deduce the vanishing of the groups $H_{\ell}^{p,n-k}(M)$, $0 \le \ell \le \infty$, from the vanishing of one of them.

The proof of the theorem is based on some local results on the solvability of the tangential Cauchy-Riemann equation in top degree and the approximation of $\overline{\partial}_M$ -closed \mathcal{C}^ℓ -forms of top degree minus one by $\mathcal{C}^{\ell+1}$ -smooth, $\overline{\partial}_M$ -closed forms in 1-concave, CR generic manifolds, on the unique continuation of CR functions and on the Grauert bumping method.

We may notice by looking precisely to the proof that the manifold M needs not to be a 1-concave CR-generic manifold embedded into a complex manifold but that Theorem 0.1 still holds under the following assumptions:

- (i) The CR-manifold M is either locally embeddable and minimal in the sense of Tumanov [14] or abstract and 1-concave (this ensures in both cases the unique continuation of CR functions, see [14], [3]).
- (ii) One can solve locally the tangential Cauchy-Riemann equation in top degree in the \mathcal{C}^{ℓ} -class with an arbitrary small gain of regularity and approximate locally $\overline{\partial}_{M}$ -closed \mathcal{C}^{ℓ} -forms of top degree minus one by $\mathcal{C}^{\ell+1}$ -smooth, $\overline{\partial}_{M}$ -closed forms.

Note, moreover, that if E is a vector bundle over M, which locally extends as an holomorphic vector bundle, then Theorem 0.1 still holds for $H^{p,n-k}_{\ell}(M,E)$.

As a consequence of Theorem 0.1, we get a global approximation theorem.

Theorem 0.2 If M is a connected, C^{∞} -smooth, non compact, 1-concave, CR-generic manifold of real codimension k in a complex manifold X of complex dimension n, $n \geq 3$, and p an integer, $0 \leq p \leq n$, then each continuous, $\overline{\partial}_M$ -closed, (p, n-k-1)-form in M can be approximated uniformly on compact subsets of M by $\overline{\partial}_M$ -closed, (p, n-k-1)-forms of class C^{∞} in M.

Again this theorem holds without any global condition on M. In the case when M is a closed submanifold of a Stein manifold, it was proved by Airapetjan and Henkin (cf. [1], Th. 7.2.3).

1 Notations and definitions

Let X be a complex manifold of complex dimension n. If M is a $C^{2+\ell}$ -smooth real submanifold of real codimension k in X, we denote by $T_{\tau}^{\mathbb{C}}(M)$ the complex tangent space to M at $\tau \in M$.

Such a manifold M can be represented locally in the form

$$M = \{ z \in \Omega | \rho_1(z) = \dots = \rho_k(z) = 0 \}$$
 (1.1)

where the ρ_{ν} 's, $1 \leq \nu \leq k$, are real $\mathcal{C}^{2+\ell}$ functions in an open subset Ω of X. If M is \mathcal{C}^{∞} smooth the functions ρ_{ν} may be chosen of class \mathcal{C}^{∞} .

In this representation we have

$$T_{\tau}^{\mathbb{C}}(M) = \left\{ \zeta \in \mathbb{C}^n \mid \sum_{j=1}^n \frac{\partial \rho_{\nu}}{\partial z_j}(\tau)\zeta_j = 0, \quad \nu = 1, \dots, k \right\}$$
 (1.2)

and $\dim_{\mathbb{C}} T_{\tau}^{\mathbb{C}}(M) \geq n-k$, for $\tau \in M \cap \Omega$, where (z_1, \ldots, z_n) are local holomorphic coordinates in a neighborhood of τ .

Definition 1.1 The submanifold M is called CR if the number $\dim_{\mathbb{C}} T_{\tau}^{\mathbb{C}}(M)$ is independent of the point $\tau \in M$. If moreover $\dim_{\mathbb{C}} T_{\tau}^{\mathbb{C}}(M) = n - k$ for every $\tau \in M$, M is then called CR generic.

In the local representation, M is CR generic if and only if

$$\overline{\partial}\rho_1 \wedge \cdots \wedge \overline{\partial}\rho_k \neq 0$$
 on M .

Definition 1.2 Let M be a $C^{2+\ell}$ -smooth CR generic submanifold of X. M is 1-concave, if for each $\tau \in M$, each local representation of M of type (1.1) in a neighborhood of τ in X and each $x \in \mathbb{R}^k \setminus \{0\}$, the quadratic form on $T^{\mathbb{C}}_{\tau}(M)$ defined by $\sum_{\alpha,\beta} \frac{\partial^2 \rho_x}{\partial z_\alpha \partial \overline{z}_\beta}(\tau) \zeta_\alpha \overline{\zeta}_\beta$, where $\rho_x = x_1 \rho_1 + \cdots + x_k \rho_k$ and $\zeta \in T^{\mathbb{C}}_{\tau}(M)$, has at least one negative eigenvalue.

The bundle of (p,q)-forms on M, denoted by $\Lambda^{p,q}_{\ |M}$, is, by definition, the restriction of the bundle $\Lambda^{p,q}$ of (p,q)-forms in X to the submanifold M. Thus a section f of $\Lambda^{p,q}_{\ |M}$ is obtained locally from an ambiant form by restriction of the coefficients of the (p,q)-form to M. We denote by $\mathcal{C}^{\ell}_{p,q}(M)$ (resp. $\mathcal{C}^{\infty}_{p,q}(M)$, if M is \mathcal{C}^{∞} -smooth) the \mathcal{C}^{ℓ} (resp. \mathcal{C}^{∞}) sections of the bundle $\Lambda^{p,q}_{\ |M}$.

Following Kohn and Rossi [10], two forms $f, g \in \mathcal{C}^{\ell}_{p,q}(M)$ (resp. $\mathcal{C}^{\infty}_{p,q}(M)$) are said to be equal if and only if $\int_M f \wedge \varphi = \int_M g \wedge \varphi$ for every form $\varphi \in \mathcal{C}^{\infty}_{n-p,n-k-q}(X)$ with compact support.

We set on $\mathcal{C}^{\ell}_{p,q}(M)$ the topology of uniform convergence of the coefficients and all their derivatives up to order ℓ on compact subsets of M. This

topology will be called the \mathcal{C}^ℓ -topology on M. The dual space of $\mathcal{C}^\ell_{p,q}(M)$ is denoted by $\mathcal{E}'^\ell_{n-p,n-k-q}(M)$, it is the space of (n-p,n-k-q)-currents of order ℓ with compact support on M. If M is of class \mathcal{C}^∞ , then the space $\mathcal{C}^\infty_{p,q}(M)$ is provided with the topology of uniform convergence of the coefficients and all their derivatives on compact subsets of M. Its dual $\mathcal{E}'_{n-p,n-k-q}(M)$ is the space of (n-p,n-k-q)-currents with compact support on M.

We denote by $\mathcal{D}_{p,q}^{\prime\ell}(M)$ the space of (p,q)-currents of order l on M, this space is the dual of the space $\mathcal{D}_{n-p,n-k-q}^{\ell}(M)$ of \mathcal{C}^{ℓ} -smooth (n-p,n-k-q)-forms with compact support on M provided with its usual inductive limit topology. If M is of class \mathcal{C}^{∞} , $\mathcal{D}_{p,q}^{\prime}(M)$ denotes the space of (p,q)-currents on M, this space is the dual of the space $\mathcal{D}_{n-p,n-k-q}(M)$ of \mathcal{C}^{∞} -smooth (n-p,n-k-q)-forms with compact support on M provided with its usual inductive limit topology.

We denote by $\overline{\partial}_M$ the tangential Cauchy-Riemann operator on M. A current $f \in \mathcal{D}_{p,q}^{\prime\ell}(M)$ is called CR if and only if $\overline{\partial}_M f = 0$. If U is an open subset of M, then for $\ell \in \mathbb{N} \cup \{\infty\}$,

 $Z_{p,q}^{\ell}(U)$ is the Frechet space of CR (p,q)-forms of class \mathcal{C}^{ℓ} on U;

 $E_{p,q}^{\ell}(U)$ is the subspace of $Z_{p,q}^{\ell}(U)$ of the forms f such that $f = \overline{\partial}_M g$ with $g \in \mathcal{C}_{p,q-1}^{\ell}(U)$;

 $H_{\ell}^{p,q}(U)$ denotes the quotient space $Z_{p,q}^{\ell}(U)/E_{p,q}^{\ell}(U)$;

If Ω is a relatively compact open subset in M, we denote by $\mathcal{C}_{p,q-1}^{\ell}(\overline{\Omega})$ the Banach space of (p,q)-forms of class \mathcal{C}^{ℓ} on $\overline{\Omega}$ and by $\mathcal{C}_{p,q-1}^{\ell+\alpha}(\overline{\Omega})$ the Banach space of (p,q)-forms whose coefficients are of class $\mathcal{C}^{\ell+\alpha}$, $0<\alpha<1$, on $\overline{\Omega}$.

If D is a relatively compact open subset in M, we denote by germ $C^\ell_{p,q}(\overline{D})$ the space of germs of (p,q)-forms of class \mathcal{C}^ℓ in neighborhoods of \overline{D} . Then germ $Z^\ell_{p,q}(\overline{D})$ is the space of germs of CR (p,q)-forms of class \mathcal{C}^ℓ in neighborhoods of \overline{D} , germ $E^\ell_{p,q}(\overline{D}) = \operatorname{germ} Z^\ell_{p,q}(\overline{D}) \cap \overline{\partial}_M \operatorname{germ} C^\ell_{p,q-1}(\overline{D})$ and $\operatorname{germ} H^{p,q}_\ell(\overline{D}) = \operatorname{germ} Z^\ell_{p,q}(\overline{D}) / \operatorname{germ} E^\ell_{p,q}(\overline{D})$.

2 Proof of Malgrange's theorem in the \mathcal{C}^{ℓ} -case

Let X be a complex manifold of complex dimension $n, n \ge 3$, M a connected, $\mathcal{C}^{2+\ell}$ -smooth, $\ell \in \mathbb{N}$, non compact, 1-concave, CR generic submanifold of real codimension k in X, and p an integer, $0 \le p \le n$.

Local results We need first a result on the local solvability of the tangential Cauchy-Riemann equation in top degree on M.

Proposition 2.1 For every point z_0 in M, one can find a neighborhood M_0 of z_0 in M such that for each open subset $\Omega \subset\subset M_0$, there exists a continuous linear operator K_Ω from $\mathcal{C}^\ell_{p,n-k}(\overline{\Omega})$ into $\mathcal{C}^{\ell+\frac{1}{2}}_{p,n-k-1}(\overline{\Omega})$ which satisfies $\overline{\partial}_M K_\Omega f = f$ for all differential forms f in $\mathcal{C}^\ell_{p,n-k}(\overline{\Omega})$.

Proof. — This result can be easily deduced from Theorem 0.1 in [2]. Under the hypothesis $\ell > 0$, a slightly weaker result, also sufficient for our application, is given in Theorem 7.1.2 of [1].

We shall use also some approximation theorem for $\overline{\partial}_M\text{-closed}~(p,n-k-1)\text{-differential forms}.$

Definition 2.2 Let U and V be two open subsets of M such that $U \subset V$. We shall say that U has no hole with respect to V if for each compact subset K of U there exists a compact subset \widetilde{K} of U such that $K \subset \widetilde{K}$ and $V \setminus \widetilde{K}$ has no connected component which is relatively compact in V.

Proposition 2.3 For every point z_0 in M, there exists a neighborhood M_0 of z_0 in M such that for each open subset $\Omega \subset\subset M_0$ without hole with respect to M_0 the image of the restriction map

$$Z_{p,n-k-1}^{\ell}(M_0) \longrightarrow Z_{p,n-k-1}^{\ell}(\Omega)$$

is dense with respect to the uniform convergence of the coefficients and all their derivatives up to order ℓ on compact subsets of Ω .

Proof. — Let z_0 be a fixed point in M. By the Hahn-Banach theorem, it is sufficient to prove that there exists a neighborhood M_0 of z_0 in M such that for each open subset $\Omega \subset\subset M_0$ without hole with respect to M_0 , if L is a continuous linear form on $\mathcal{C}^\ell_{p,n-k-1}(\Omega)$, whose restriction to $Z^\ell_{p,n-k-1}(M_0)$ vanishes, then the restriction of L to $Z^\ell_{p,n-k-1}(\Omega)$ is identically equal to zero. Note that such a linear form L is a $\overline{\partial}_M$ -closed (n-p,1)-current of order ℓ on M_0 , with compact support in Ω . By Theorem 1' in [7] (see also Theorem 2.4 in [11]) in the case $\ell=0$ and their direct generalization, using Proposition 2.1, to the case $\ell>0$, we can find a neighborhood M_0 of z_0 in M on which we can solve the $\overline{\partial}_M$ -equation with compact support in M_0 in bidegree (n-p,1) for currents of order ℓ . We choose such an M_0 and $\Omega \subset\subset M_0$, then for $L\in\mathcal{E}'^\ell_{p,n-k-1}(\Omega)$ with $L_{|Z^\ell_{p,n-k-1}(M_0)}\equiv 0$, there exists

a (p,0)-form T with compact support in M_0 such that $\overline{\partial}_M T = L$. The (p,0)-form T is CR on $M_0 \setminus \text{supp } L$ and vanishes on an open subset of $M_0 \setminus \text{supp } L$. Since M is 1-concave, if Ω has no hole with respect to M_0 , then T vanishes on a neighbordhood of $M_0 \setminus \Omega$ by analytic extension (cf. [6]). Consequently the support of T is contained in Ω . Let $f \in Z_{p,n-k-1}^{\ell}(\Omega)$, then by the Airapetjan-Henkin Theorem 7.2.1 in [1], f can be approximated locally by $C^{\ell+1}$ -smooth $\overline{\partial}_M$ -closed (p,n-k-1)-differential forms. Let $(U_i)_{i\in I}$ be a finite open covering of the support of T by open subsets satisfying the Airapetjan-Henkin approximation theorem and for each $i \in I$, $(f_{\nu}^i)_{\nu \in \mathbb{N}}$ a sequence of C^{∞} -smooth $\overline{\partial}_M$ -closed (p,n-k-1)-differential forms in U_i , which converges to f on U_i in the C^{ℓ} -topology. If $(\chi_i)_{i\in I}$ denotes a partition of unity subordinated to the covering $(U_i)_{i\in I}$, then setting $f_{\nu} = \sum_{i\in I} \chi_i f_{\nu}^i$ we get a sequence $(f_{\nu})_{\nu \in \mathbb{N}}$ of $C^{\ell+1}$ -smooth (p,n-k-1)-differential forms which converges to f on Ω in the C^{ℓ} -topology and such that the sequence $(\overline{\partial}_M f_{\nu})_{\nu \in \mathbb{N}}$ converges to zero on Ω in the C^{ℓ} -topology. We obtain

$$L(f) = \lim_{
u o \infty} L(f_{
u}) = \lim_{
u o \infty} \langle \overline{\partial}_M T, f_{
u} \rangle = \lim_{
u o \infty} \langle T, \overline{\partial}_M f_{
u} \rangle = 0.$$

A first global consequence of the local results By standard arguments (see e.g. the proofs of Lemma 2.3.1 in [8] and Proposition 3 in Appendix 2 of [8]), it follows from Proposition 2.1 that, if D is a relatively compact open subset of M, $E_{p,n-k}^{\ell}(\overline{D})$ is closed and finite codimensional in $Z_{p,n-k}^{\ell}(\overline{D})$. Moreover we have

Proposition 2.4 Let D be a relatively compact open subset of M. There exists a continuous linear operator $A: Z_{p,n-k}^{\ell}(\overline{D}) \to \mathcal{C}_{p,n-k-1}^{\ell}(\overline{D})$ such that $\overline{\partial}_M Af = f$ for all $f \in E_{p,n-k}^{\ell}(\overline{D})$.

The bumping method

Definition 2.5 A bump in M is an ordered collection $[M_0, \Omega_1, \Omega_2]$, where M_0 , Ω_1 and Ω_2 are open subsets of M such that

- (i) M_0 is as in Propositions 2.1 and 2.3.
- (ii) Ω_1 and Ω_2 have C^2 -smooth boundary and $\Omega_1 \subset \Omega_2 \subset\subset M_0$.
- (iii) $\overline{\Omega}_1$ admits a basis of neighborhoods without hole with respect to M_0 . Note that $\Omega_1 = \emptyset$ is allowed in this definition.

Definition 2.6 An extension element in M is an ordered pair $[D_1, D_2]$, where $D_1 \subset D_2$ are open subsets with C^2 -boundary in M such that there exists a bump $[M_0, \Omega_1, \Omega_2]$ in M with the following properties:

$$D_2 = D_1 \cup \Omega_2, \quad \Omega_1 = D_1 \cap \Omega_2 \quad and \quad \overline{(D_1 \setminus \Omega_2)} \cap \overline{(\Omega_2 \setminus \Omega_1)} = \emptyset.$$

Proposition 2.7 Let $[D_1, D_2]$ be an extension element in M, then the restriction map

$$\operatorname{germ} H^{p,n-k}_{\ell}(\overline{D}_2) \longrightarrow \operatorname{germ} H^{p,n-k}_{\ell}(\overline{D}_1)$$

is injective.

Proof. — Let $U_1 \subset U_2$ be open neighborhoods of \overline{D}_1 and \overline{D}_2 in M respectively and let $f \in Z_{p,n-k}^{\ell}(U_2)$ and $u_1 \in \mathcal{C}_{p,n-k-1}^{\ell}(U_1)$ be given such that $\overline{\partial}_M u_1 = f$ on U_1 . We have to prove the existence of a neighborhood $W_2 \subset U_2$ of \overline{D}_2 in M and of a differential form $u_2 \in \mathcal{C}_{p,n-k-1}^{\ell}(W_2)$ with $\overline{\partial}_M u_2 = f$ on W_2 .

Let $[M_0,\Omega_1,\Omega_2]$ be the bump associated to the extension element $[D_1,D_2]$ and $V_2\subset U_2\cap M_0$ a neighborhood of $\overline{\Omega}_2$ in M. By Proposition 2.1, there exists $u\in \mathcal{C}^\ell_{p,n-k-1}(V_2)$ such that $\overline{\partial}_M u=f$ on V_2 . Hence we get $\overline{\partial}_M(u_1-u)=0$ on $U_1\cap V_2$. We choose a neighborhood $W_1\subset U_1\cap V_2$ of $\overline{\Omega}_1$ without hole with respect to M_0 , then by Proposition 2.3, we can find a sequence $(\omega_{\nu})_{\nu\in\mathbb{N}}\subset Z^\ell_{p,n-k-1}(M_0)$ which converges to u_1-u in the \mathcal{C}^ℓ -topology on W_1 . Let V be a neighborhood of $\overline{\Omega}_2\setminus\overline{\Omega}_1$ such that $V\subset V_2\cap M_0$ and $V\cap (\overline{D}_1\setminus\overline{\Omega}_2)=\emptyset$, and χ a $\mathcal{C}^{\ell+1}$ -smooth function with compact support in V equal to 1 on a neighborhood \widetilde{V} of $\overline{\Omega}_2\setminus\overline{\Omega}_1$. Setting $v_\nu=(1-\chi)u_1+\chi(u+w_\nu)$, we define a sequence $(v_\nu)_{\nu\in\mathbb{N}}$ in $\mathcal{C}^\ell_{p,n-k-1}(U_1\cup V)$ such that the sequence $\overline{\partial}_M v_\nu=f-\overline{\partial}_M \chi\wedge (u_1-u-w_\nu)$ converges to f in the \mathcal{C}^ℓ -topology on the neighborhood $\widetilde{U}_1\cup\widetilde{V}$ of \overline{D}_2 in M, where \widetilde{U}_1 is a neighborhood of \overline{D}_1 such that $\widetilde{U}_1\subset U_1$ and $\widetilde{U}_1\cap V=W_1\cap V$. Let $W_2\subset\subset\widetilde{U}_1\cup\widetilde{V}$ be a neighborhood of \overline{D}_2 . Then, using Proposition 2.4, we get a (p,n-k-1)-differential form u_2 of class \mathcal{C}^ℓ on W_2 such that $\overline{\partial}_M u_2=f$ on W_2 .

Proposition 2.8 Let $[D_1, D_2]$ be an extension element in M such that $D_1 \subset M$, then the restriction map

$$\operatorname{germ} Z_{p,n-k-1}^{\ell}(\overline{D}_2) \longrightarrow \operatorname{germ} Z_{p,n-k-1}^{\ell}(\overline{D}_1)$$

has dense image with respect to uniform convergence of the coefficients and their derivatives up to order ℓ on \overline{D}_1 .

Proof. — Let U_1 be an open neighborhood of \overline{D}_1 in M and $[M_0, \Omega_1, \Omega_2]$ the bump associated to the extension element $[D_1, D_2]$. Let $f \in \mathbb{Z}_{p,n-k-1}^{\ell}(U_1)$ be given and $W_1 \subset U_1$ a neighborhood of $\overline{\Omega}_1$ without hole with respect to M_0 . By Proposition 2.3, there exists a sequence $(g_{\nu})_{\nu \in \mathbb{N}} \subset Z_{p,n-k-1}^{\ell}(M_0)$ which converges to f in the \mathcal{C}^{ℓ} -topology on W_1 . Let V be a neighborhood of $\overline{\Omega_2 \setminus \Omega_1}$ such that $V \subset M_0$ and $V \cap \overline{(D_1 \setminus \Omega_2)} = \emptyset$, and χ a $\mathcal{C}^{\ell+1}$ -smooth function with compact support in V equal to 1 on a neighborhood V of $\overline{\Omega_2 \setminus \Omega_1}$. Setting $f_{\nu} = (1-\chi)f + \chi g_{\nu}$, we define a sequence $(f_{\nu})_{\nu \in \mathbb{N}}$ of forms of class \mathcal{C}^{ℓ} on the neighborhood $U_1 \cup V$ of \overline{D}_2 , which converges to f in the \mathcal{C}^{ℓ} -topology on \overline{D}_1 . Moreover, since $\overline{\partial}_M \tilde{f}_{\nu} = \overline{\partial}_M \chi \wedge (f - g_{\nu})$ the sequence $(\overline{\partial}_M \tilde{f}_{\nu})_{\nu \in \mathbb{N}}$ converges to zero in the \mathcal{C}^{ℓ} -topology on $U_2 = \widetilde{U}_1 \cup \widetilde{V}$, where \widetilde{U}_1 is a neighborhood of \overline{D}_1 such that $U_1 \subset U_1$ and $U_1 \cap V = W_1 \cap V$. As $D_1 \subset\subset M$, we can choose a relatively compact neighborhood W_2 of \overline{D}_2 in M and apply Proposition 2.4. Therefore, there exists a sequence $(u_{\nu})_{\nu \in \mathbb{N}} \subset \mathcal{C}^{\ell}_{p,n-k-1}(\overline{W}_2)$ which converges to zero in the \mathcal{C}^{ℓ} -topology on \overline{W}_2 and satisfies $\overline{\partial}_M u_{\nu} = \overline{\partial}_M \tilde{f}_{\nu}$. If $f_{\nu} = \tilde{f}_{\nu} - u_{\nu}$, we get a sequence $(f_{\nu})_{\nu \in \mathbb{N}} \subset Z_{p,n-k}^{\ell}(W_2)$ which converges to f in the \mathcal{C}^{ℓ} -topology on \overline{D}_1 .

We need now two technical lemmas about the existence of extension elements to jump from one level of an exhausting function on M to another level.

Lemma 2.9 Let φ be a function of class C^2 on M and z_0 a non degenerate critical point for φ . Suppose $\varphi(z_0) = 0$, $\varphi^{-1}(0)$ is compact and z_0 is the only critical point on $\varphi^{-1}(0)$. Then there exists a neighborhood V_0 of z_0 in M such that for all neighborhood $V \subset V_0$ of z_0 in M, we can find an extention element $[D_1, D_2]$ in M with the following properties:

(i)
$$D_1 \supset \varphi^{-1}((-\infty, 0[) \setminus V ;$$

(ii)
$$z_0 \in D_2 \setminus \overline{D}_1 \subset V$$
.

Proof. — If z_0 is a point of local minimum, we choose V_0 so small that $V_0 \cap \varphi^{-1}((-\infty, 0[) = \emptyset \text{ and } M_0 \subset V \subset V_0 \text{ a neighborhood of } z_0 \text{ satisfying Propositions 2.1 and 2.3. Taking <math>\Omega_1 = \emptyset$, $\Omega_2 \subset\subset M_0$ a neighborhood of z_0 and setting $D_1 = \varphi^{-1}((-\infty, 0[) \text{ and } D_2 = D_1 \cup \Omega_2)$, we get the required extension element.

Assume now that z_0 is not a point of local minimum. By the Morse lemma, there exist local real coordinates (x_1,\ldots,x_{2n}) around z_0 in X such that $\varphi=x_1^2+\cdots+x_s^2-x_{s+1}^2-\cdots-x_{2n-k}^2$. Let V_0 be a neighborhood of z_0 on which we are in the above situation and $M_0\subset\subset V\subset V_0$ the intersection

of M with a small ball centered in z_0 in holomorphic coordinates around z_0 as in Propositions 2.1 and 2.3. Let B be a ball centered in z_0 with respect to the Morse coordinates (x_1, \ldots, x_{2n-k}) such that $B \subset M_0$, and U a small neighborhood of z_0 relatively compact in B. Let ε be equal to $\frac{1}{2}\min_{z\in\overline{U}}|\varphi(z)|$. We choose $\theta\in\mathcal{D}(U)$ such that $0<\theta(z)<\varepsilon$, if $z\in U$, and we set $\Omega_1=\left\{z\in B\mid \varphi(z)+\theta(z)<0\right\}$ and $\Omega_2=\left\{z\in B\mid \varphi(z)-\theta(z)<0\right\}$. Then it is clear that Ω_1 has no hole with respect to B (it is sufficient to look at the picture in the Morse coordinates) and as the boundary of B is connected and M_0 has no compact connected component then Ω_1 has also no hole with respect to M_0 . Smoothing the boundary of Ω_1 and Ω_2 we get a bump $[M_0,\Omega_1,\Omega_2]$ in M such that $D_2=\varphi^{-1}((-\infty,0[)\cup\Omega_2)$ and $D_1=D_2\setminus(\overline{\Omega_2}\setminus\Omega_1)$ have the required properties.

From Lemma 2.9, one easily obtains the following lemma (cp. the proof of Theorem 7.10 in [12]).

Lemma 2.10 Let φ be a function of class C^2 on M all critical points of which are non degenerate such that the following conditions are fulfilled:

- (i) no critical point of φ lies on $\varphi^{-1}(\{0,1\})$;
- (ii) $\varphi^{-1}([0,1])$ is compact;
- (iii) φ has no point of local maximum in $\varphi^{-1}(]0,1[)$.

Then there exists a finite number of extension elements $[D_j, D_{j+1}]$, $j = 0, \ldots, N$, such that $D_0 = \varphi^{-1}((-\infty, 0[) \text{ and } D_{N+1} = \varphi^{-1}((-\infty, 1[).$

As an easy consequence of Propositions 2.7 and 2.8 and Lemma 2.10, we obtain the following result:

Proposition 2.11 Let φ be a real exhausting function of class \mathcal{C}^2 on M without local maximum and such that all critical points of φ are non degenerate. Let $\alpha, \beta \in \varphi(M)$ with $\alpha < \beta$ and such that no critical point of φ lies on $\varphi^{-1}(\{\alpha,\beta\})$ and set $D_{\alpha} = \varphi^{-1}((-\infty,\alpha[)$ and $D_{\beta} = \varphi^{-1}((-\infty,\beta[)$.

(i) The restriction map

$$\operatorname{germ} H^{p,n-k}_{\ell}(\overline{D}_{\beta}) \longrightarrow \operatorname{germ} H^{p,n-k}_{\ell}(\overline{D}_{\alpha})$$

is injective

(ii) The restriction map

$$\operatorname{germ} Z_{p,n-k-1}^{\ell}(\overline{D}_{\beta}) \longrightarrow \operatorname{germ} Z_{p,n-k-1}^{\ell}(\overline{D}_{\alpha})$$

has dense image with respect to uniform convergence of the coefficients and their derivatives up to order ℓ on \overline{D}_{α} .

Proof of the first assertion of Theorem 0.1 We may now conclude the proof of our Malgrange type theorem in non compact, 1-concave CR manifolds in the C^{ℓ} case, $\ell \in \mathbb{N}$.

Since M is connected and not compact, by a theorem of Green and Wu [4], M admits a real exhausting function φ of class \mathcal{C}^2 without local maximum and we may assume that all critical points of φ are non degenerate (cp. e.g. [5]). Let z_0 be a point where φ takes its minimum value. By Proposition 2.1, there exists a neighborhood Ω_0 of z_0 such that $H_\ell^{p,n-k}(D) = 0$ for all $D \subset\subset \Omega_0$. As φ is an exhausting function on M, it admits only a finite number of points where φ takes its minimum value. We denote by Ω the union of the previous neighborhoods associated to these points and we choose $\alpha_0 \in \varphi(M)$ such that $\varphi^{-1}((-\infty, \alpha_0[))$ is not empty and contained in Ω and $(\alpha_j)_{j\geq 1} \subset \varphi(M)$ such that no critical point of φ lies on $\varphi^{-1}(\alpha_j)$, $j\geq 0$, and if $D_j = \varphi^{-1}((-\infty, \alpha_j[), D_j \subset D_{j+1}$ for $j\geq 0$ and $M = \bigcup_{j\geq 0} D_j$. We deduce from Proposition 2.11 (i) and from the choice of D_0 that, for all $j\geq 0$,

$$\operatorname{germ} H_{\ell}^{p,n-k}(\overline{D}_j) = 0.$$

Let $f \in Z_{p,n-k}^{\ell}(M)$ be given. Then from Proposition 2.11 (ii) we obtain a sequence $(u_j)_{j \in \mathbb{N}}$ such that $u_j \in \operatorname{germ} \mathcal{C}_{p,n-k}^{\ell}(\overline{D}_j), \ \overline{\partial}_M u_j = f$ on a neighborhood of \overline{D}_j and $\|u_{j+1} - u_j\|_{\ell,\overline{D}_j} \leq \frac{1}{2^j}$. Hence $u = \lim_{j \to \infty} u_j$ exists, belongs to $\mathcal{C}_{p,n-k-1}^{\ell}(M)$, and solves the equation $\overline{\partial}_M u = f$ on M.

3 Malgrange's theorem in the \mathcal{C}^{∞} case

We shall first prove an approximation theorem in 1-concave CR manifolds, which is a direct consequence of Malgrange's theorem in the \mathcal{C}^{ℓ} -case. Then we shall use this theorem to get Malgrange's theorem in the \mathcal{C}^{∞} -case.

Let X be a complex manifold of complex dimension $n, n \ge 3$, M a connected, $C^{2+\ell+1}$ -smooth, $\ell \in \mathbb{N}$, non compact, 1-concave, CR generic submanifold of real codimension k in X and p an integer, $0 \le p \le n$.

Theorem 3.1 The space $Z_{p,n-k-1}^{\ell+1}(M)$ is dense in the space $Z_{p,n-k-1}^{\ell}(M)$ for the topology of uniform convergence of the coefficients and their derivatives up to order ℓ on each compact subset of M.

Proof. — By the Hahn-Banach theorem, it is sufficient to prove that for any $T \in \mathcal{E}'^{\ell}_{n-p,1}(M)$ such that $\langle T, \varphi \rangle = 0$ for all $\varphi \in Z^{\ell+1}_{p,n-k-1}(M)$ we have $\langle T, \psi \rangle = 0$ for all $\psi \in Z^{\ell}_{p,n-k-1}(M)$. Note that the hypothesis on T implies that T is $\overline{\partial}_M$ -closed. We shall prove that T is $\overline{\partial}_M$ -exact on M.

We define a linear form L on $\mathcal{C}_{p,n-k}^{\ell+1}(M)$ by setting $L(\varphi) = \langle T, \psi \rangle$ for $\varphi \in \mathcal{C}_{p,n-k}^{\ell+1}(M)$, where $\overline{\partial}_M \Psi = \varphi$. The application L is well defined since first $H_{\ell+1}^{p,n-k}(M) = 0$ and consequently all $\varphi \in \mathcal{C}_{p,n-k}^{\ell+1}(M)$ can be written in the form $\varphi = \overline{\partial}_M \psi$ with $\psi \in \mathcal{C}_{p,n-k-1}^{\ell+1}(M)$ and second $\langle T, \psi \rangle$ is independent of the choice of ψ satisfying $\overline{\partial}_M \psi = \varphi$ because $T_{|Z_{p,n-k-1}^{\ell+1}(M)} = 0$.

Moreover $\overline{\partial}_M$ is a closed operator between $\mathcal{C}_{p,n-k-1}^{\ell+1}(M)$ and $\mathcal{C}_{p,n-k}^{\ell+1}(M)$

Moreover $\overline{\partial}_M$ is a closed operator between $\mathcal{C}_{p,n-k-1}^{\ell+1}(M)$ and $\mathcal{C}_{p,n-k}^{\ell+1}(M)$ which is surjective since $H_{\ell+1}^{p,n-k}(M)=0$, consequently by the open mapping theorem this implies the continuity of L. It follows that L can be represented by a current $S \in \mathcal{E}_{n-p,0}^{\ell+1}$ which satisfies

$$\langle \overline{\partial}_M S, \varphi \rangle = \langle S, \overline{\partial}_M \varphi \rangle = \langle T, \varphi \rangle$$

for all $\varphi \in \mathcal{C}^{\infty}_{p,n-k-1}(M)$, i.e. $\overline{\partial}_M S = T$. By regularity of $\overline{\partial}_M$ in bidegree (n-p,1), the (n-p,0)-current S is of order ℓ since T is of order ℓ .

It remains to prove that $\langle T, \psi \rangle = 0$ for all $\psi \in Z_{p,n-k-1}^{\ell}(M)$. Let $\psi \in Z_{p,n-k-1}^{\ell}(M)$. In the same way as at the end of the proof of Proposition 2.3, we can construct a sequence $(\psi_{\nu})_{\nu \in \mathbb{N}}$ of $\mathcal{C}^{\ell+1}$ -smooth (p, n-k-1)-differential forms which converges to ψ on M in the \mathcal{C}^{ℓ} -topology and such that the sequence $(\overline{\partial}_M \psi_{\nu})_{\nu \in \mathbb{N}}$ converges to zero on M in the \mathcal{C}^{ℓ} -topology. It follows that

$$\langle T, \psi \rangle = \lim_{\nu \to \infty} \langle T, \psi_{\nu} \rangle = \lim_{\nu \to \infty} \langle \overline{\partial}_{M} S, \psi_{\nu} \rangle = \lim_{\nu \to \infty} \langle S, \overline{\partial}_{M} \psi_{\nu} \rangle = 0.$$

Assume now that M is \mathcal{C}^{∞} -smooth, we shall prove that $H^{p,n-k}_{\infty}(M)=0$. Proof of Malgrange's theorem in the \mathcal{C}^{∞} -case. — Since M is connected and not compact, by a theorem of Green and Wu [4], M admits a real exhausting function φ of class \mathcal{C}^{∞} without local maximum and we may assume that all critical points of φ are non degenerate. Following the proof of the \mathcal{C}^{ℓ} -case we can construct a sequence $(D_j)_{j\in\mathbb{N}}$ of open subsets of M such that $D_j \subset D_{j+1}$ and $M = \bigcup_{j>0} D_j$ and satisfying the following two conditions:

- (i) germ $H_j^{p,n-k}(\overline{D}_j) = 0$.
- (ii) The restriction map

$$\operatorname{germ} Z_{p,n-k-1}^j(\overline{D}_{j+1}) \longrightarrow \operatorname{germ} Z_{p,n-k-1}^j(\overline{D}_j)$$

has dense image with respect to the C^{j} -topology.

Let $f \in Z_{p,n-k}^{\infty}(M)$ and $\varepsilon > 0$ be given. Then we can construct a sequence $(u_j)_{j \in \mathbb{N}}$ such that $u_j \in \operatorname{germ} \mathcal{C}_{p,n-k-1}^j(\overline{D}_j)$, $\overline{\partial}_M u_j = f$ on a neighborhood of \overline{D}_j and $\|u_{j+1} - u_j\|_{\overline{D}_j,j} < \frac{\varepsilon}{2^j}$. By (i) there exists $u_0 \in \operatorname{germ} \mathcal{C}_{p,n-k-1}^0(\overline{D}_0)$ such that $\overline{\partial}_M u_0 = f$ on a neighborhood of \overline{D}_0 . Assume now that we have already constructed $(u_j)_{0 \leq j \leq j_0}$. By (i) there exists $\tilde{u}_{j_0+1} \in \operatorname{germ} \mathcal{C}_{p,n-k-1}^{j_0+1}(\overline{D}_{j_0+1})$ such that $\overline{\partial}_M \tilde{u}_{j_0+1} = f$ on a neighborhood of \overline{D}_{j_0+1} . Then $\tilde{u}_{j_0+1} - u_{j_0} \in \operatorname{germ} Z_{p,n-k-1}^{j_0}(\overline{D}_{j_0+1})$ and by (ii) we can find $v_{j_0+1} \in \operatorname{germ} Z_{p,n-k-1}^{j_0}(\overline{D}_{j_0+1})$ such that $\|\tilde{u}_{j_0+1} - u_{j_0} - v_{j_0+1}\|_{\overline{D}_{j_0,j_0}} < \frac{1}{2} \frac{\varepsilon}{2^{j_0}}$. Moreover by Theorem 3.1, we choose $\tilde{v}_{j_0+1} \in \operatorname{germ} Z_{p,n-k-1}^{j_0+1}(\overline{D}_{j_0+1})$ with $\|\tilde{v}_{j_0+1} - v_{j_0+1}\|_{\overline{D}_{j_0+1},j_0} < \frac{1}{2} \frac{\varepsilon}{2^{j_0}}$. Setting $u_{j_0+1} = \tilde{u}_{j_0+1} - \tilde{v}_{j_0+1}$, then u_{j_0+1} has the required properties. It follows from the properties of the forms u_j that the sequence $(u_j)_{j\in\mathbb{N}}$ converges to a form u uniformly on each compact subset of M and moreover $u \in \mathcal{C}_{p,n-k-1}^\infty(M)$ and $\overline{\partial}_M u = f$ on M.

As a consequence of Malgrange's theorem, we get an approximation theorem which generalizes Theorem 7.2.3 in [1].

Theorem 3.2 Let M be a connected, C^{∞} -smooth, non compact, 1 concave, CR generic submanifold of real codimension k in a complex manifold of complex dimension n, and p an integer, $0 \le p \le n$, then the space $Z_{p,n-k-1}^{\infty}(M)$ is dense in the space $Z_{p,n-k-1}^{0}(M)$ with respect to uniform convergence on compact subsets of M.

Proof. — The proof is analogous to the proof of Theorem 3.1, we have only to use that $H^{p,n-k}_{\infty}(M)$ vanishes instead of $H^{p,n-k}_{\ell+1}(M)$ and replace ℓ by zero and $\ell+1$ by ∞ .

References

[1] AIRAPETJAN R.A., HENKIN G.M. — Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Survey, **39** (1984), 41–118.

- [2] BARKATOU M.Y. Optimal regularity for $\overline{\partial}_b$ on CR manifolds, Prépublication de l'Institut Fourier, **374**, 1997.
- [3] DE CARLI L., NACINOVICH M. Unique continuation in abstract pseudoconcave CR-manifolds, Preprint Dipartimento di Matematica, Pisa 1. 177. 1028, April 1997.
- [4] Green R.E., Wu H. Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), 25 (1975), 215-235.
- [5] Guillemin V., Pollack A.. Differential Topology, Prentice-Hall, 1974.
- [6] HENKIN G.M. Solution des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math.292 (1981), 27-30.
- [7] HENKIN G.M. The Hartogs-Bochner effect on CR manifolds, Soviet. Math. Dokl. 29 (1984), 78–82.
- [8] HENKIN G.M., LEITERER J. Theory of functions on complex manifolds, Birkhaüser Verlag, 1984.
- [9] HILL C.D., NACINOVICH M. Pseudoconcave CR manifolds, Complex Analysis and Geometry, Lecture Notes in Pure and Appl. Math. 173, Marcel Dekker, New York (1996), 275–297.
- [10] KOHN J.-J., ROSSI H. On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81 (1965), 451-472.
- [11] LAURENT-THIÉBAUT CH. Résolution du $\overline{\partial}_b$ à support compact et phénomène de Hartogs-Bochner dans les variétés CR, Proc. of Symp. in Pure Math. **52** (1991), 239–249.
- [12] LAURENT-THIÉBAUT CH., LEITERER J. Andreotti-Grauert theory on real hypersurfaces, Quaderni della Scuola Normale Superiore di Pisa, 1995.
- [13] MALGRANGE B. Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. de France 85 (1957), 231–237.
- [14] TUMANOV A.E. Extension of CR functions into a wedge from a manifold of finite type, Math. USSR - Sb - 64 (1989), 129-140.

Institut Fourier

UMR 5582 CNRS-UJF

Laboratoire de Mathématiques

Université de Grenoble I

B.P. 74

F-38402 St-Martin d'Hères Cedex

Institut für Mathematik Humboldt-Universität

Ziegelstrasse 13 A D-10117 Berlin (Allemagne)