SOME NEW SEPARATION THEOREMS
FOR THE DOLBEAULT COHOMOLOGY

C. LAURENT-THIEBAUT AND J. LEITERER

0. INTRODUCTION AND STATEMENT OF THE RESULTS

If X is an n-dimensional complex manifold and E a holomorphic vector bundle
over X, then we denote by CE’T(X , E) the Fréchet space of continuous E-valued
(s,r)-forms on X, by Zg,,,(X , E) the subspace of d-closed forms, and by ESJ(X ,E)
the subspace of 8-exact forms (EQ (X, E) := {0}). As usual, the factor space

H*"(X,E):= 7% (X, E)/EQ (X, E).

will be considered as topological vector space endowed with the factor topology.
Recall that this topology is separated if and only if Eg,T(X , E) is closed with respect
to the topology of CS,T(X ,E). If E is the trivial line bundle, then we write also
C? .(X) instead of C} (X, E) etc.

0.1. Definition. Let X be an n-dimensional complex manifold and let ¢, ¢* be
integers with 1 < g <mn —1and 0 < ¢* <n. X will be called g-concave-g*-convex
if there exists a real C? function p on X such that, if inf p := infcex p(¢) and
sup p := sup¢cx p((), then infp < p(¢) for all ¢ € X, the sets {a < p < B},
inf p < a < B < sup p, are compact, and the following two conditions are fulfilled:

(i) There exists a €]inf p, sup p[ such that the Levi form of p has at least n—qg+1
positive eigenvalues everywhere on {p < a}.

(i) If ¢* = 0, then, for all @ €]inf p,sup p[, the set {p > a} is compact (and
hence sup p = maxp), i.e. X is g-concave in the sense of Andreotti-Grauert. If
1 < ¢* < n —1, then there exists 8 €]inf p,sup p[ such that the Levi form of p
has at least n — ¢* + 1 positive eigenvalues everywhere on {p > [} (and hence
sup p > p(¢) for all ¢ € X).

The following separation theorem is well known:
0.2. Theorem. Let X be an n-dimensional complex manifold which is q-concave-
q*-convex, where1 < qg<n-—1and0 < g* <n-—q—1. Then, for any holomorphic
vector bundle E over X, HO" 4(X, E) is separated.
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For ¢* = 0 this theorem was proved by Andreotti and Vesentini [A-V]. The
general case is contained in Theorem 2 of [R] of J.P. Ramis, where the more gen-
eral situation of sheaves over complex spaces is studied. A simple direct proof of
Theorem 0.2 is given in [La-L].

Consider the case
¢=n-¢q, 1<¢<n-1

First note that then it may happen that H*"~9(X, E) is not separated. This follows
from an example of Rossi [Ros] and Theorem 23.3 in [H-L] (for the details cp. the
introduction of [La-L]). The example of Rossi is a 2-dimensional 1-concave-1-convex
manifold such that H%!(X) is not separated.

However, in [H-L] it was proved that if ¢ the g-convex hole can be repaired’,
then nevertheless HO"~9(X, E) is separated. More precisely, the following theorem
holds:

0.3. Theorem. (cp. Theorem 19.1’ in [H-L]) Let X be an n-dimensional complex
manifold which is q-concave-(n — q)-conver, 1 < g < n—1, such that additional the
following condition is fulfilled:

(A) There exists a complex manifold Y with a relatively compact open subset H
such that: X is an open subset of Y, Y = X U H and if p is as in Definition 0.1,
then, for certain v with inf p < v <supp, X N H = {p <~v}.

Then, for any holomorphic vector bundle E over Y, H*"~4(X, E) is separated.

The proof of Theorem 0.3 given in [H-L] is rather long and difficult and uses
many estimates for integral operators of the Grauert-Henkin-Lieb type (not only
the well known Hoélder estimates). In Sect. 3 of the present paper we give a simple
proof of Theorem 0.3 using only Andreotti-Grauert finiteness theorems and Serre
duality.

In Sect. 4 we prove a finiteness and separation theorem for certain special families
of support (compact with respect to a part of the boundary and arbitrary with
respect to the other part).

Then in Sect. 5, using this result from Sect.4 and the arguments of Sect. 3, we
prove that the conclusion of Thorem 0.3 remains valid also without condition (A)
if ¢ <n/2,i.e. we prove the following

0.4. Theorem. Let X be an n-dimensional complex manifold, n > 3, which is
g-concave-(n — q)-conver, 1 < ¢ <n-1. If

n
q<§7

then, for any holomorphic vector bundle E over X, H*" (X, E) is separated.

Note that for ¢ = 1 the assertion of this theorem follows already from Theorem
0.3, because then, by a theorem of Rossi [Ros], the 1-concave ‘hole’ can be repaired.

INote that there is a misprint in the formulation of Theorem 2 in [R] - by this formulation
HO!(X) should be separated also for the Rossi example.
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In Sect.6 we show that the arguments of Sect.3 can be applied also to the
situation considered in [Mi]. We prove the following theorem (see Corollary 6.3):

0.5 Theorem. Let Y be a compact complex space of dimension n whose singular
part S consists of a finite number of points. Set X =Y \ S, let some subset Sy of
S be fized and denote by ® the family of all closed subsets C of X such thatY \ C
is a neighborhood of Sy.

Then, for any holomorphic vector bundle E over X, Hg’"_l(X, E) is separated.

In [Mi] this result was proved under the additional hypothesis that the bundle
Ky' ® E is extendable to Sy as a holomorphic vector bundle. Note also that in
the present paper the more general situation is admitted when the manifold X has
arbitrary 1-convex ‘holes’ which, possibly, cannot be filled in by complex spaces.

In Sect.7 we give some further applications of the separation theorem from
Sect. 4. First we prove a version of Malgrange’s vanishing theorem for the cohomol-
ogy in top degree [M] (see also [O]) for forms vanishing around an ‘(n — 1)-convex
hole’ (Theorem 7.2). Then we apply this to the Hartogs-Bochner extension problem
(Theorem 7.3).

The basic tool of the present paper is Serre duality. Although Serre duality is
well known [S,A-K,C-S], we could not find in the literature satisfactory proofs for
all details which we need (cp., e.g., Problem 2.10). Therefore we begin the paper
(Sects. 1 and 2) with a self contained presentation of this theory from our point of
view, repeating also well known things, for the sake of completeness.

1. FAMILIES OF SUPPORTS AND ALGEBRAIC RELATIONS
BETWEEN CORRESPONDING DOLBEAULT GROUPS

In this section X is an n-dimensional complex manifold countable at infinity.

By a family of supports in X we mean a collection ® of closed subsets of X such
that the following conditions are fulfilled (cf. [S]):

(S1) if C € ®, then each closed subset of C belongs to ;
(Sz) if C1,C5 € @, then C; U Cs € &;
(S3) for each C € X there exists an open neighborhood U of C with U € ®.

If @ is a family of supports in X and &' C ® is a subfamily which is also a family
of supports in X, then we denote by ® * ® the family of open sets U C X such
that C\ U € @' for all C € .

It is easy to see that every finite intersection of sets of ® x ®' is in ® x &', and,
unless ® = @', the empty set never belongs to ® x ®'. Furthermore, it is clear that
X\C" e &% if C' € ®'. However it is not true in general that X \ U € &' if
U € ®xd' (cf. Example II below).

1.2. Lemma-Definition. Let ® C ® be two families of supports in X. Then the
follwing conditions are equivalent;:

(i) There exists Cy € ® with C \ Cy € @' for all C € .
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(ii) There exists U € ® x ' with U € ®.
(iii) For each U € ® * &’ there exists V € ® x &' such that V C U and V € .
If these equivalent conditions are fulfilled, then ® will be called complete in ®.

Proof. (ii) = (i): Assume U is as in (ii). Set Cy = U and consider C' € ®. Then,
by definition of ® x &', C'\ U € &, and hence

C\Co=C\TUCC\Ue€d.

(i) = (ii): Let Cqy be as is (i). By condition (S3) in the definition of a family
of supports, there is an open neighborhood U of Cy with U € ®. Then C \ U C
C\Coed forall C € ®. HenceU € & x @'

(ii) = (iil)): Let U € ® x &' be given. By (ii), we have Uy € ® x &' with
Up€® Set W=UnNUy. Then W € ® « ® and W € ®. Hence the boundary
OW = W \ W belongs to ®'. Take an open neighborhood W' of 8W with W’ € &'.
Then X \ W' € ® * & and hence

V=W\W=WnX\W)eexd.

Moreover it is clear that VCW CU. Since W € & and V C W, we have also that
Ve ad.

(iii) = (ii) is trivial. O

It is easy to see that in each of the following examples, &' C & are families of
supports in X, where ®' is complete in ®.

Ezample I Let ® be the family of all closed subsets of X, and @' the family of
the compact subsets of X. Then ® &' consists of all complements of compact sets.

Ezample IT: Let K be a fixed compact subset of X, ® the family of the compact
subsets of X, and ®' the family of all C € & with KN C = (. Then & % &' is the
family of neighborhoods of K.

Ezample III (cf. [Mi]): Let X = X\S where X is a compact complex space whose
singular points are isolated and S is the set of all singular points of X. Assume
that S is divided into two non-empty subsets S; and S;. Let & be the family of
all closed subsets of X, and ®' the family of all ! € ® such that C'NU = 0 for
some neighborhood U of S; in X. Then ® % ®' is the family of open subsets U of
X which are of the form U = U \ S; where U is a neighborhood of S; in X.

Ezxample IV: Let X be an open subset of C*, K a closed subset of the boundary
of X in C", ® the family of all subsets of X which are closed in X, and &' the
family of all C" € ® such that C' NU = § for some C"-open neighborhood U of K.
Then ® * &' consits of all sets of the form U N X where U ranges over the C"-open
neighborhoods of K.

In the forthcoming, let E be a holomorphic vector bundle over X.

We denote by C9 (X, E) the space of E-valued continuous (s, r)-forms on X,
by Z2 (X, E) the subspace of C? (X, E) of d-closed forms, and by E (X, E) the
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subspace of Z2 (X, E) of §-exact forms (E? (X, E) := {0} if r = 0). As usual,

H*"(X,E):=Z{ .(X,E)/E} .(X,E).

If @ is a family of supports in X, then we use the following notations:

- C?,(9; X, E) is the space of all E-valued continuous (s,r)-forms f on X with
suppf € .

0 (®;X,E) is the subspace of all d-closed forms in C? (®; X, E).

-EO, (8; X, E) := C? (& X,E)nC°,_,($;X,E) ifr>1;
- EO (®; X, E) = {O} ifr=0;

- H;;T(XJ E) = Z.?,r(¢7 XJ E)/Eg,r(q)7 XJ E)
Note that Hy"(X,E) = H*>"(X,E) if ® consists of all closed subsets of X. As
usual, we write

H>"(X,E):=H3;"(X,E)

if ® consists of the compact subsets of X.

Now let ® C ® be two families of supports in X. Then we use the following
notations:

Two forms f € C? (U, E), g € C},.(V,E) where U,V € ® x ', will be called
equivalent if there is an open W C U NV with f|W = g|W. The corresponding
space of equivalence classes of the disjoint union of all CY (U, E), U € ® * &', will
be denoted by C? .(®+®', E). Z (2%, E) denotes the subspace of CY . (®%9’, E)
defined by 8-closed forms, and E . (®x®', E) denotes the subspace of Z2 ,(®x®’, E)
defined by d-exact forms.

We set
HS”’(<I>*<I>',E):Z0 ®xd' FE / (P xd E).

Furthermore, we denote by Z2 .(®;X, E)|® % @ the image of Z3.(®; X,E) in
79 .(® x ®', E) under the restriction map, and set

H*"(®+®',E)=20,(2+ ¥, E)/[2,(2; X,E)| 2+ 2'].
Finally we introduce the spaces
B, (®  ®; X, E) := B, (& X, E) N C0,.(¥'; X, E)
which are of special interest for our purpose.

1.3.Lemma. If ® C & are two families of supports in X such that ®' is complete
in D, then:

(i) For all s, with 0 < s,r < n, we have the relation

(1.1) E° (®+®;X,E)C Z0,(3; X,E)|®+ @
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and therefore the inequality
(1.2) dim H*"(® + &, E) < dim H*>"(® « &', E).
(i) For all s, with 0 < s <n and 1 <r < n, we have a natural isomorphism
(1.3) §:E) (2 — ®;X,E)/E (¥;X,E) — H*" &+ 3, E),
and hence the equality

(1.4) dim [E,(® — &'; X, E)/E2,(3'; X, E)] = dim H*" (& &', E).

(i1i) For all s,r with 0 < s < n and 1 < r < n, we have a natural linear
epimorphism

(1.5) §:Ej (- ®;X,E)/E],(9;X,E) — H*" (& %9, E),
and hence the inequality

(1.6) dim [Ej (® — ®; X,E)/E? (®'; X,E)] <dimH*" '(® x @', E).

Proof. (i): Let f € EQ,(® % ®'; X, E) be given. If r = 0, then f = 0 and hence
f€Z2,(®X,E)|®x%'. If r > 1, then there exists U € ®x®' and p € C?,_, (U, E)
with continuous d¢ such that f is defined by dp. By condition (iii) in 1.2, after
shrinking U, we may assume that U € ®, and, by the same argument, we can find
V € ® x® with V C U. Take a real C*®-function y on X with suppyx C U and
x=1onV. Let ¢ € Z] (X, E) be the form defined by

Y =0(xp) = 0x A p+ x9p

on U and ) = 0 outside U. Since U € ®, then 1) € Zgr((I);X, E). Since 1) = 0y on
V and therefore the germ f is defined by ¢|V, this implies that f € Zgr((I); X, E) |<I>*
P’.

(ii): Let f € EJ,.(® — ®;X,E). Take u € C*"'(®; X, E) with du = f.
Then u|(x\supp ) € Zo,_1(X \ supp f, E). Therefore, since X \ supp f € & * &',
u|(x\supp f) defines an element in H*™1(® %« &, E). Denote this element by 5f.
This element does not depend on the choice of u, for if & € C*"~1(®; X, E) is
another form with 8@ = f, then u — @ € Z° _,(®; X, E). Hence a linear map

s,r—1
§:E2 (& — ¥ X,E) — H*" /(3% ', E)

is well defined. Tt remains to show that § is surjective and

(1.7) kerd = E? (' X, E).
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Proof of the surjectivity: Let F € }AI”*I(@ x ®' F) be given. Take U € & x &’
and f € Z2, (U, E) such that F is defined by f. By condition (iii) in 1.2, we
can find open sets V,I/W € &« ® such that V C W, W C U and W € ®. Take
a real C*®-function x on X with suppx C W and x = 1 on V and let g be the
form on X defined by g = d(xf) on W and by zero outside W. Since W € @, then
g € B, (®;X,E). Since g = 0 outside W\ V and W\ V € &, we see that even
g€ E;{T(<1> — ®; X, E). As (xf)|v = f|v defines F, we see that bg = F.

Proof of (1.7): First let f € EJ (®';X,E) be given. Then there exists u €
(X, E) with du = f and suppu € ®'. Since (X \ suppu) € ® * &', then, by
definition of 5, ) [ is defined by the form u|(x\suppw) Which is zero.

ZO

s,r—1

Now let f € kerd be given, i.e. f = Ou where v is a form from Y, 1(®; X, E)
such that, for certain v € Z%, | (®; X, E) and some U € ® * ®', u = v on U. Then

s,r—1

supp (u —v) € ® and O(u —v) = f,ie. f€ E27r(<1>’;X, E).
(iii) follows from (i) and (ii). O

1.4. Corollary. If &' C ® are two families of supports in X such that ® is com-
plete in @, then

(1.8) dim H}'(X,E) < dim H}" (X, E) + dim H*>"'(® x &', E)
for all s,r with0<s<nand1l<r <n.
Proof. From
EJ,(®;X,E)C E] (® - ®;X,E) C Z) (¥; X, E)
it follows that
dim Hy (®'; X, E) = dim [E? .(® - ®'; X,E) /E] (?'; X, E)]
+dim [Z? (®; X,E) /E] (® — ¥'; X, E)].

In view of Lemma 1.3 (iii) and the obvious inequality

dim Z] (®'; X,E)/E? (® - ®'; X, E) < dim Hy" (X, E),

this implies (1.8). O

2. SERRE DUALITY

In this section X is an n-dimensional complex manifold countable at infinity.
2.1. The topology of C?,(®;X,E) and Hy"(X,E). Let E be a holomorphic
vector bundle over X, and ® a family of supports in X.

As usual, we consider Cf (X, E) as Fréchet space with the topology of uniform
convergence on the compact subsets of X. If C is a closed subset of X, then we
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denote by C? .(C; X, E) the subspace of C§ (X, E) of the forms f with supp f C C,
which we also consider as Fréchet space (with the topology induced by C? (X, E)).

C? .(®; X, E) will be provided with the inductive limit topology of the Fréchet
spaces CS,T(C;X ,E), C € ®, i.e. the finest locally convex topology such that, for
each C' € ®, the natural injection of C? (C; X, E) in Cf .(®; X, E) is continuous.

To ensure nice properties of this topology, we have to restrict ourselves to so-
called cofinal families of supports (cf. [C-S]):

Definition: A family of supports ® in X will be called cofinal if there exists a
sequence (C;);en of sets C; € ® such that each C' € ® is contained in certain C;. In
view of condition (S3) in the definition of a family of supports, then this sequence
always can be chosen so that each Cj is contained in the interior of Cj4;.

If ® is a cofinal family of supports in X, then CS,T(Q; X, E) is an LF-space, i.e.
a countable strict inductive limit of Fréchet spaces (cf., e.g., Chapter 13 in [T]) - if
(C;) is a sequence as in the definition above such that each C; is contained in the
interior of Cj11, then the sequence of Fréchet spaces CS,T(C]-;X , E) may serve as
defining sequence.

It is easy to see that all families of supports considered in Examples I - IV of
Sect. 1 are cofinal.

We provide Z2,.(®; X, E) and EY .(®; X, E) with the topology of C? .(®; X, E),
and Hy" (X, E) with the corresponding factor topology. The space of continuous
linear forms on HJ"(X,E) will be denoted by (H3"(X,E))". Recall that the
topology of Hgy"(X, E) is separated if and only if E? (®;X,E) is topologically
closed in C? .(®; X, E).

2.2. The dual family ®*. If ® is a family of supports in X, then we denote by ®*
the family of all closed subsets C* of X such that, for all C' € ®, the intersection
C* N C is compact. ®* will be called the dual family of ®.

If & is a family of supports in X, then, obviously, conditions (S;) and (S2) in
the definition of a family of supports are also fulfilled for ®*. However, condition
(Ss) is not fulfilled in general for ®*. We thank Lee STOUT for submitting us by
e-mail the following counterexample:

Let Ry be the nonnegative part of the real axis in C. Denote by ® the family
of all closed subsets C of C for which C' N Ry is compact. Then ® is a family for
supports in C, but the dual family ®* does not satisfy condition (S3). (Ry € ®*,
but there is no neighborhood U of Ry with U € ®*.)

It is easy to see that the family @ in the example of STOUT is not cofinal. This
is consistent with the following lemma.

2.3. Lemma. If ® is a cofinal family of supports in X, then ®* is a family of
supports in X.

Proof. Let C* € ®* be given. We have to find a neighborhood V' of C* such that
V € ®*. Since ® is cofinal we have a sequence C; € ®, j = 1,2,... such that each
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C € @ is contained in some C; and if Uj is the interior of C}, then C; C Uj41. Set
Cf=C*NCpand Cf = C*N(C;\Uj1) if j > 2. Then all C} are compact and
CiNCj_s = 0 if j > 3. Take for each j > 1 a relatively compact open set V; with

CJ*QVJ and VjﬂCJ;z:@ if 7>3

Then
V= V.
7j=1

has the required properties. O

It is not true in general that the dual family of a cofinal family of supports is
again cofinal. For example, the dual of the family ®' in Example IV, Sect. 1, is not
cofinal.

2.4. The properties (Cly) - (Cl4) of EE,T(<I>; X, E). Let ® be a family of supports
in X, E a holomorphic vector bundle on X, 0 < s <nand 1 <r <n. We shall
meet the following 4 conditions:

(Cly): For each C' € ® there exists a finite dimensional linear subspace F of
C?.(C; X, E) such that F + (C?,.(C; X, E) N E2 .(®; X, E)) is topologically closed
in C?,(C; X, E) (with respect to uniform convergence on the compact subsets of
C).

(Cly): For each C € &, C?,(C; X,E) N EY .(®; X, E) is topologically closed in
C? . (C;X,E).

(Cls): E,(®; X, E) is topologically closed in C7 (®; X, E).

(Cla): EQ, (%X, E) =

{fezg{r(@;X,E) ‘/Xf/\g:o for all gezgs,nr(@*;X,E*)}.

It is clear that (Cly) = (Cl3) = (Cl;) = (Cly). Under certain
additional conditions on ® (see Theorem 2.9 below) these 4 conditions are even
equivalent, but we do not know whether this is true in general.

2.5.Lemma. Let ® be a family of supports in X such that | J® = X. Further, let
E be a holomorphic vector bundle over X and 0 < s,r < mn. Then supp f € ®* for
all continuous linear forms f on C’gm(@; , X, E).

Proof. Take a sequence K; (j = 1,2,...) of compact subsets of X such that each
K is contained in the interior of K;;; and

‘3

K; = X.

7j=1
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Assume now that, for certain C' € ®, the intersection C' N supp f is not compact.
Then we can find a sequence z; (j = 1,2,...) of points z; € C' Nsupp f such that

(2.1) z; € X\ K; for all j.

Since z; € C for all j and C € ®, and ® is a family of supports, there exists a
neighborhood U of {z1,22,...} with U € ®. By (2.1), for each j, we can find a
neighborhood U; C U of z; so small that

(2.2) U; CX\K; for all j.

Set

- (0)

Then Cy C U and therefore Cy € ®. Since z; € supp f for all j, we can find forms
@ € C? (X, E) with supp ¢; CC U; and

(2.3) flpj) =1 for all j.

This sequence belongs to CgiT(CO; X, E) and, by (2.2), it converges to zero uniformly
on the compact subsets of Cy. This contradicts (2.3), for Cy € ® and therefore f
is continuous on C9 (Co; X, E). O

2.6.Lemma. Let ® be a family of supports in X such that |[J® = X and ®* is
also a family of supports. Further, let E be a holomorphic vector bundle over X
and E* the dual of E. Then, for all integers s,r with 0 < s,r < n, there is a
natural linear epimorphism

(2.4) W, Hy " "(X,E*) — (Hy" (X, E))’'

which is an isomophism if and only if the space ES ®*; X, E*) satisfies con-

dition (Cly), i.e.

7&n7r(

(2.5) E? (®*; X, E*) =

n—s,n—r

{rez,, @xm) ‘/ngzo forall g€ 28,®X.)}.
X

Proof. Since, for C' € ® and C* € ®*, the intersection C'N C* is compact, for each
f€Z0_,, (8% X,E"), setting

f'(9) :=/Xf/\g for geZ),.(9;X,E),

we can define a continuous linear functional f’ on Z7 ,(®; X, E), where, by Stokes’
theorem, f'(g) =0if f € ES (®*; X, E*) or g € E (®; X, E). Hence in this

—s,n—r
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way we get a linear map from Hg. *" (X, E*) to (H§" (X, E))' which we denote
by hj .-

Obviously, this map is injective if and only if (2.5) holds. Thus the only non-
trivial assertion of the lemma is the surjectivity of Ay ,..

To prove this, we consider an arbitrary functional F € (HS" (X, E))". Let
p:Z (% X,E) — Hy"(X,E)

be the canonical projection. We have to find f € Z9 (®*; X, E*) with

(2.6) / fAg=(Fop)g) forall ge ZS’T(Q;X, E).
b's

First, by the Hahn-Banach theorem, we can find a continuous linear functional F
on CY,.(®;X,E) with F = Fop on Z?,.(®;X,E). Since |J® = X, all compact
subsets of X belong to ®. Therefore, the continuity of F on CE’T(@;X, E) in
particular means that F' is an E*-valued current of bidegree (n — s,n —r) on X.
Since F vanishes on EQ . (% X,E), F is -closed, and it follows from Lemma 2.4
that supp F € &*.

If » = n, by regularity of 0, there exists f € Z275,0(<I>*;X, E*) (f is even
holomorphic) such that

/X fAg=F(g)=(Fop)g) forall ge Z°,(®;X,E),

i.e. such that (2.6) is fulfilled.

Now let r <n — 1. Since ®* is a family of supports, by means of the Dolbeault
isomorphism (see, e.g., Corollary 2.15 (i) in [H-L]), we can find a current S on X
with supp S € ®* such that the current F' — 85 is defined by a continuous form
with support in ®*, i.e., we have a form f € Z0 (®*; X, E*) such that

—s,n—r

27) [ 1re=F -39
for all E-valued C7-forms ¢ with compact support on X. It remains to prove
(2.6).

First consider a form go, € Z3 .(®; X, E) which is of class C*. Since

(supp S U supp f U supp F') N supp goo

is compact, then it follows from (2.7) that

(2.8) /X £ A oo = (F = 35)(goo) = F(geo).
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Now let g € Z2 .(®; X, E) be arbitrary. If r = 0, then g is holomorphic and (2.6)
follows from (2.8). Therefore we may assume that » > 1. Then, using that @ is

a family of supports, as above, again by means of the Dolbeault isomorphism, we
can find a C*°-form go, € Z72,(®; X, E) and a form ¢ € C?, ;(®; X, E) such that

9= goo + 0.

It follows from Stokes’ theorem and (2.8) that

/ng—/ngoo+/fA6¢ /ngoo—Fgoo)

Since g — goo = OY € E27r(<I>;X, E) and therefore F(g.,) = F(g), this implies
(2.6). O

2.7.Lemma. Let ® be a cofinal family of supports in X. Further, let E a holo-
morphic vector bundle over X, C € &, 0 < s <n and1 < r < n. Suppose there
erists o finite dimensional linear subspace F of CS’T(C;X , E) such that the linear
space

F+(C;,(C;X,E)NE} (®; X, E))

is topologically closed in CJ,.(C; X, E). Then also C? (C; X,E)NE} (®; X, E) is
topologically closed in C’g’T(C;X ,E) and, moreover, there exists Cy € ® with

(29)  C%,(C;X,E)nEY,(&X,E) = C2,(C; X, E)n 3CY,_, (Co; X, B).

Proof. Set
H= CS’T(C; X, E)n ES’T(Q;X, E).

Since @ is cofinal, we can find a sequence C; € ® such that each C' € ® is contained
in some C;. Then

F+H= U <F+ (C?,.(C; X, E) mgcg,r—l(cj;XJE))>'

j=1
Since F' + H is a Fréchet space, this implies that for certain jg, the space
(2.10) F+(C;,(C; X, E)n3C; ,_1(Cjo; X, E))

is of second Baire categorie in F + H. Let Dg be the linear subspace of all ¢ €
C?, 1(Cjy; X, E) with 8¢ € C? (C; X, E), and let 1r @ do be the linear operator

Jo>

with domain of definition F@Do between the Fréchet spaces F®CY,_(Cjy; X, E)
and F + H defined by (1r ® 0o)(f,¢) = f + 0 for (f,) € F & Dy. Since
this operator is closed, and its image (which is equal to (2.10)) is of second Baire
categorie in F' + H, it follows by the open mapping theorem that this operator is
onto and open. Hence

(2.11) (1r ®0o)(F ® Do) = F + H,
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and _ _
(Do) = (1r ® 00)({0} ® Do)

is finite codimensional in the topologically closed space F + H. Since 8 (with Dy as
domain of definition) is closed, it follows by the open mapping theorem that 9(Dg)
is moreover topologically closed in F' + H. Finally, since

(D)) CHCF+H,

we see that H is topologically closed. (2.9) follows from (2.11) repeating the first
part of the proof with F' = {0}. O

2.8.Lemma. Let X be an n-dimensional complex manifold and ® a cofinal family
of supports in X such that |J® = X. Further, let E be a holomorphic vector bundle
over X, E* the dual bundle of E, 0 <s<mnand1<r<n.

Then (by Lemma 2.3) ®* is a family of supports and the following conclusion
holds: If EY .(®; X, E) satisfies condition (Cly), then ES__ . .. ,(®*; X, E*) satis-
fies condition (Cly).

Proof. Since the“C”-part of condition (Cl4) holds always by Stokes’ theorem, we
only have to prove that any f € Z)__ . ,.,(®* X, E*) with

(2.12) / fAg=0 forall geZz] ,(®X,E)
X

belongs to EY .(®*; X, E*). Let such f be given. Define a linear map
a:E) . (%X,E)—C
(®; X, E) with ¢ = 0¢

as follows: If ¢ € EQ (®; X, E), then we take a ¢ € C7,_,
and set

ﬂ(s@)z/Xf/\w-

By (2.12) this definition is independent of the choice of .

Now we show that @ is continuous with respect to the topology of CY (®; X, E).
For this it is sufficient to prove that, for each C' € ®, the restriction of @ to the
space

He = C%,(C; X, E) N E2,(®; X, E)

is continuous with respect to the topology of uniform convergence on the compact
subsets of C'.

Let C' € @ be given, and let (p;)32;, be a sequence in H¢ converging to zero
uniformly on the compact subsets of C. Since condition (Cly) is fulfilled for @, it
follows from Lemma 2.7 that Hc¢ is closed in this topology. Applying again Lemma
2.7 (with F' = {0}) we obtain a set Cp € ® with

He =C°,(C; X, E)nac?

s,r—1

(COQXa E)
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Since 9 is closed as an operator between the Fréchet spaces Cg,,_l(Co; X, E) and
He, this implies by the open mapping theorem that this operator is open. Hence
we can find a sequence ¢; € CF, _,(Co; X, E) which converges to zero uniformly
on the compact subsets of Cj such that 5¢j = ; for all j, and it follows from the
definition of @ that also @(y;) converges to zero.

Hence it is proved that @ is continuous in the topology of C7 ,.(®; X, E). There-
fore, by the Hahn-Banach theorem, there is a continuous linear functional u on
C?.(®; X, E) with u = @ on Ej (®; X, E). Since |J® = X, it follows from condi-
tion (S3) in the definition of a family of supports, that all compact subsets of X
belong to ®. Therefore the continuity of v on C?,(®; X, E) in particular implies
that u is an E*-valued current of bidegree (n — s,n —r) on X, where by definition

of 4 and Stokes’ theorem, _
Ou = =£f.

From Lemma 2.5 it follows that suppu € ®*. Since also ®* has property (S3), in
view of the regularity properties of & which follow from the Dolbeault isomorphism
(cf, e.g., Corollary 2.15 (ii) in [H-L]), this implies the existence of a form wug €
CS_yn (@ X, E*) with duo = f. O

2.9. Theorem. Let ® be a cofinal family of supports in X such that the dual family
®* (which is a family of supports, by Lemma 2.8) is also cofinal, and ®** = P.
Further suppose E is a holomorphic vector bundle over X and E* is the dual bundle
of E. Then, for all integers s,r with 0 < s < n and 1 < r < n, the following
statements hold:

(i) The 8 conditions which consist of conditions (Cly) - (Cly) for EQ .(®; X, E)
and the same conditions for E) . .., (®*; X, E*) are equivalent.

(i) If EQ,.(®;X,E) is topologically closed in C?,.(®;X,E) and, moreover,
E}_ o r(®* X, E*) is topologically closed in C) ®*; X, E*), then we have
naturael isomorphisms

—s,n—r(

HIT*™"(X,E*) = (HY"(X,E)) and HY'(X,E) = (HF *""(X,E%)".
In particular, then

dim HZ*™ (X, B*) = dim H2" (X, E).

Proof. (i): From Lemma 2.8 we obtain the two conclusions

(Cly) holds for E (®;X,E) = (Cly) holds for E; (®*; X, E*)

—s,n—r+1
and
(Cl) holds for EY_, , ..,(®*X,E*) = (Cly) holds for E (®; X, E).

Since the conclusions (Cly) = (Cl3) = (Cly) = (Cly) are always true, this
shows the equivalence of all 8 conditions.

(ii): This follows immediately from Lemma 2.6. O
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2.10. Problem. Let ® be a cofinal family of supports in X. Under the addi-
tional hypothesis that ®* is also cofinal and ®** = &, Theorem 2.9 contains the
equivalence of conditions (Cl;) and (Cl3). In particular then, for each holomorphic
vector bundle E over X and for all integers s,r with 0 < s <n and 1 <r < n, the
following two conditions are equivalent:

(i) For each C' € ® the intersection EY .(®; X, E)NC? (C; X, E) is topologically
closed in C} (C; X, E);

(ii) EY,.(®; X, E) is topologically closed in C? .(®; X, E).

We do not know whether these conditions are equivalent also without this addi-
tional hypothesis.

3. A SIMPLE PROOF OF THEOREM 0.3

By Serre duality [S] (see also Theorem 2.9 (i) above), Theorem 0.3 is equivalent
to the following

3.1. Theorem. Let the hypothesis of Theorem 0.3 be fulfilled. Then, for any holo-
morphic vector bundle E over Y, H»%1 (X, E) is separated.

Proof of Theorem 8.1. Denote by @y and ® x the families of compact subsets of X
resp. Y. Then ®x is complete in &y and therefore, by Lemma 1.3,

(3.1) dim [ES 1 (®y = x;Y, E)/ES 111 (®x;Y, E)] < dim H*I(®y * &, E).

Let p be as in Definion 0.1 and let ag €]inf p,sup p[ such that the Levi form of
p has at least n — ¢ + 1 positive eigenvalues on {p < ag}. Then the manifolds
Uy = Y \X)U{p < a},infp < a < ap, are g-convex in the sense of Andreotti-
Grauert and hence, by the Andreotti-Grauert finiteness theorem [A-G],

dim H*(U,, E) < oo, if infp<a<ag.

Since U, € ®y * &x for all o €]inf p, ag] and, conversely, for each U € ®y x ®x,
we can find « €]inf p, ap] with U, C U, it follows that

dim H%9(®y * ®x; E) < .
In view of (3.1) this implies that
dim [E 41 (@y — ®x;Y, B)/EY 41 (@x;Y, E)] < oo,
ie.
(3.2) dim [E9 41 (®y — &x; X, E)/ES .11 (3x; X, E)] < o0

where Ej , . (®y = ®x; X, E) denotes the image of E§ ,,,(®y — ®x;Y, E) under
the restriction map from Y to X. Since Y is (n — ¢)-convex, it follows from the
Andreotti-Grauert finiteness theorem that

dim H™"~ (Y, E*) < oo
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where E* denotes the dual of E. Hence, by Serre duality [S] (see also Theorem 2.9
(i) above), EQ ,,1(®y;Y, E) is topologically closed in C3 ,,(®y;Y, E). Since the
map ‘extending by zero’

0,441 (8x; X, E) — Cg 01 (Py; Y, E)

is continuous and Ej ., (®y — ®x; X, E) is the preimage of Ef ,,(®y;Y, E) with
respect to this map, it follows that Ej ., (®y — ®x; X, E) is topologically closed
in C§ ., 1(®x; X, E). In view of (3.2) and since, by Theorem 2.9 (i), conditions (Cl;)
and (Cl3) are equivalent for EJ ,,(®x; X, E), this implies that E§ ., ,(®x; X, E)
is toologically closed in Cg’qﬂ(tﬁx; X,E), ie. Hg’gﬂ(X, E) is separated. O

4. A FINITENESS AND SEPARATION THEOREM ON q-CONCAVE-¢*-CONVEX
MANIFOLDS FOR PARTIALLY COMPACT FAMILIES OF SUPPORTS

In this section X is an n-dimensional complex manifold which is ¢-concave-¢*-
convex where 1 < ¢ <n—1and 1 < ¢* <n. Further we suppose that p, inf p and
sup p are as in Definition 0.1, and E is a holomorphic vector bundle over X.

Let ® be the family of all closed subsets C of X such that the sets C'N{p < a},
inf p < a < sup p, are compact. P is a cofinal family of supports in X. The dual
family ®* of ® consists of all closed subsets C of X such that the sets CN{p > a},
inf p < a < sup p, are compact. ®* is also a cofinal family of supports in X, and
®** = @ (hence the hypotheses of Theorem 2.9 are fulfilled).

4.1.Theorem. (i) If max(q+ 1,¢*) <r < n, then dim Hy" (X, E) < oo.
(i) If 0 < r < min (n — ¢ — 1,n — ¢*), then dim HY (X, E) < oco.
(ii) If r = min (n — q,n — ¢* + 1), then Hy! (X, E) is separated.
By Serre duality (Theorem 2.9), parts (ii) and (iii) of this theorem follow from

part (i). The remainder of this section is devoted to the proof of Theorem 4.1 (i).

Ifinfp < a < B < supp and dp(¢) # 0 for all { € X with p(¢) = 3, then we
denote by C’g,r(p > a;p < B, E) the Banach space of continuous E-valued (0,7)-
forms f on {p < B} with supp f C {p > a} endowed with the topology of uniform
convergence, and by Zgﬁ,,(p > a;p < B3, E) then we denote the subspace of d-closed
forms in C9 .(p > a; p < B, E) endowed with the same topology.

Further, we fix some numbers g, 8y with inf p < ag < By < sup p such that the
Levi form of p has at least n — ¢ + 1 positive eigenvalues on {p < ap}, and at least
n — ¢* + 1 positive eigenvalues on {p > By}. We may assume that dp(¢) # 0 for all

¢ € X with p(¢) = fo.

4.2.Lemma. If max(q+ 1,q*) <r < n, then, for each ¢ > 0, the space
Co(p> ao;p < B0, E) N 8Cy,_i(p> a0 —&;p < fo, E)

is of finite codimension and topologically closed in ZS’T(p > ag;p < fo, E).
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Proof. If infp < v < fy, then we denote by Cé’/il(p > v;p < Bo, E) the Ba-
nach space of forms in Cg’r_l(p > v;p < Bo, E) which are Holder continuous with
exponent 1/2 on {y < p < fo}. We shall prove that even the space

C.(p > ao;p < Bo, B) N 8Cy/21(p> a0 —e;p < fho, )

is of finite codimension and topologically closed in Zg .(p > ao;p < fo, E). By
Ascoli’s theorem and Fredholm theory, for this it is sufficient to construct continuous
linear operators

A:Z8.(p> a0ip < Po,B) — Col 1 (p > a0 — €5 p < fho, E)

and

K :70.(p > ag;p < fo, B) — Cé,/il(l) > ag; p < Po, E)

such that
QAf=f+Kf on {p<po}
for all f € Z§ ,.(p > ao; p < Bo, E).

Take § > 0 so small that ag +6d < Sy and the Levi form of p has at least n —qg+1
positive eigenvalues on {p < ag+9d}. Since r > g+ 1, then by Lemma 1.2 in [La-L],
there exists a continuous linear operator

Ao : Z8,(p > ao;p < fo, B) — Co/Z1(p > a0 — &;p < fo, E)
such that A¢f = f on {p < ag + 6} for all f € Z§ .(p > ao;p < Po, E). Since
r > ¢* and the boundary {p = By} is smooth, we can use the local integral operators
of Fischer and Lieb [F-Li] (see also Sects. 7 and 9 in [H-L]) and obtain open sets
Ui,..., Uy CC X with
{ag+d<p< B} CULU...UUN C{p>ao}
as well as continuous linear operators
Aj : 28,(p> aoip < Bo, E) — Coi(p > ao; p < fo, E)

such that dA;f = f on U; N{p < Bo} for all f € Z§,.(p > ao;p < B0, E), j =
1,...,N. Take real C*°-functions o, ... ,xn; on X with supp xo CC {p < ap+4},

suppx; CCU; if 1 <j< N,and xo+...+xnv =1on {a —e < p<fo}. Then
the operators

N N
A= ZXjAj and K := ngj NA;
7=0 7=0

have the required property. O
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Lemma 4.3. Let max(¢+1,¢*) <7 <n and e > 0. Then the space
(4.1) Z3,(p>ag; X,E) N CY,_1(p > ag — & X, E)
is the preimage of
(4.2) Z3 . (p> ao;p < B0, B) N 8CY,_1(p > a0 — &5p < fo, E)
with respect to the restriction map from Zg’r(p > ap; X,E) to Zg’r(p > ag;p <
Bo, E).
Proof. Since by Lemma 4.2, the space
Zo +(p > ao;p < Bo, E) N ICY,_1(p > a0 — & p < o, B)

is topologiclally closed in Zg’T(p > ag; p < Bo, E), this can be proved in the same
way as Theorem 12.13 (ii) in [H-L]. (The domain D in Theorem 12.13 in [H-L] is
assumed to be relatively compact, but in the proof of Theorem 12.13 (ii) only the
consequence is used that then Z9 (D, E)N9CY,._, (D, E) is topologically closed in
73,(D.E)) O

End of the proof of Theorem 4.1 (i). By definition of ®, for each C' € ®, there
exists -y €]inf p, sup p[ with C' C {p > v}. Therefore it follows from Lemma 1.2 (i)
in [La-L] that

(4.3) Z3,.(®; X, E) = By .(%; X,E) + Z3,.(p > ao; X, E).

By Lemma 4.2, the space (4.2) is of finite codimension in Zg,r (p > ag; p < fo, E).
Therefore it follows from Lemma 4.3 that the space (4.1) is of finite codimen-
sion in Z§,(p > ao;X,E). Since (4.1) is a subspace of Ej,.(®; X, E), it fol-
lows that 7§ ,.(p > ao; X, E) N EY .(®; X, E) is of finite codimension in Zg .(p >
ag; X, E). In view of (4.3), this implies that EJ ,.(®; X, E) is of finite codimension
in Z0,.(3; X, E), i.e. dim H*"(®;X,E) < co. 0]

5. PROOF oF THEOREM 0.4

By Serre duality [S] (see also Theorem 2.9), Theorem 0.4 is equivalent to the
following theorem:

5.1. Theorem. Let X be an n-dimensional complex manifold, n > 3, which is
g-concave-(n — q)-conver, 1 < ¢ <n—1. If

n
q<§;

then, for any holomorphic vector bundle E over X, H>" (X, E) is separated.

Proof. Let p be as in Definition 0.1 and let ® be the family of closed subsets C' of
X such that the sets C N {p > a}, inf p < a < sup p, are compact. Denote by ®x
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the family of all compact subsets of X. Then ®x is complete in ® and it follows
from Lemma 1.3 that

(5.1) dim [ES,,,(® = ®x; X, E)/E} ,,(3x; X, E)] <dim H*(® * x, E).

Take ag €]inf p, sup p[ such that the Levi form of p has at least n — ¢ + 1 positive
eigenvalues on {p < ag}. Then, by the Andreotti-Grauert finiteness theorem,

dim H"({p<a},E) <o if g<r<n—q—1 and infp<a<a.
Since ¢ < n/2 and hence ¢ < n — ¢ — 1, it follows that
dim H*({p < a},E) < 00 if infp<a<a.

Since, for each U € ® x ®x, there exists a €]inf p,ap] with {p < a} C U, this
implies that
dim H*%(® « ®x; X, E) < 00

and hence, by (5.1),
(5.2) dim [EQ 41 (@ = &x; X, E)/ES, 11 (3x; X, E)] < oo

Furthermore, the hypothesis ¢ < n/2 implies that ¢+1 < min(n—g¢,n—g*+1) with
q* := n—q. Therefore it follows from Theorem 4.1 (i) and (iii) that E§ ,, (®; X, E)
is topologically closed in C§ ., (®; X, E). Since the embedding map

C(()),q-l—l (CI))(,X, E) — C(()),q—i-l((P;X; E)

is continuous and Eg ,,,(® — ®x; X, E) is the preimage of Ef ,,,(®; X, E) with
respect to this map, it follows that Fg ,,,(® — ®x; X, E) is topologically closed
in 087(1 +1(®x; X, E). Hence, by (5.2), there is a finite dimensional linear subspace
F of C§ 441 (®x; X, E) such that

F + Eg,q+l(¢X;Xa E)

is topologically closed in C§ , 1, (®x; X, E). Since, by Theorem 2.9, conditions (Cl;)
and (Cl3) are equivalent for ® x, this means that Eg, 4+1(®x; X, E) is topologically
closed in C§ ., (®x; X, E), i.e. H*(®x; X, E) is separated. O

6. PROOF OF THEOREM 0.5 (AND SOME GENERALIZATION)

In this section we assume that X is a connected n-dimensional complex manifold
which is ¢g-concave in the sense of Andreotti-Grauert, 1 < g < n, i.e. we have a real
C? function p on X such that

(i) for all @ > inf p := infeex p((), the set {p > a} := {( € X | p(¢) > a} is
compact;
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(ii) outside some compact set, the Levi form of p has at least n — ¢ + 1 positive
eigenvalues.

Moreover we assume that, for certain ag > inf p, two open subsets H' and H of
X are given such that

HNH=0 and H'UH={p< a}.

Denote by ® the family of all closed subsets C of X such that C NH is compact. ¢
is a cofinal family of supports in X. The dual family &* of ® consists of all closed
sets C' C X such that C' N H is compact. ®* is also a cofinal family of supports in
X and ®** = ® (i.e. the hypothesis of Theorem 2.9 are fulfilled).

6.1. Theorem. If g =n — 1, then, for each holomorphic vector bundle E over X,
HY'(X,E) is separated.

Proof. It H is compact, then the theorem coincides with the classical Andreotti-

—!
Vesentini theorem (Theorem 0.2 with ¢* = 0). We therefore assume that H is non
compact.

By Theorem 2.9, conditions (Cl;) and (Cl3) are equivalent for EJ | (®; X, E).
Therefore it is sufficient to prove that, for all C' € ®, the space 0871(C;X ,E)N
EQ 1 (®; X, E) is closed in C3,(C; X, E).

Let Co € @ be fixed and let f; € C9,(Co; X, E) N EQ 1 (®; X, E) be a sequence
converging to some f € Cg,l(CO;X, E) in the topology of CS’I(CO;X, E), i.e. uni-
formly on the compact subsets of Cy. We have to prove that f € E8,1(<I>; X, E).Set

H,:=Hn{p<a} for a>infp.

Since Cyg N T is compact, then we can find oy with inf p < a3 < ag such that
CoN F;l = . Denote by H the union of H \ H/,, with all connected components
of H' \ H/,, which are relatively compact in H'. Then H is compact, H!, L \ H #0,
and no connected component of H], \ H is relatively compact in H'.

Since X is (n — 1)-concave, it follows from the classical Andreotti-Vesentini
theorem (Theorem 0.2 with ¢* = 0), that Ef,(X,E) is topologically closed in
Cg,l(X , E). Since the sequence f; converges to f also with respect to the topology
of 03 (X, E), it follows that f € EJ | (X, E), i.e.

Ou=f for some w € CS,O(X, E).

Moreover, by the open mapping theorem, we can find a sequence u; € CS’O(X , E)
which converges to u in C§ o(X, E) such that

g’LLj = fj for all ]
On the other hand, since f; € E871(tI>; X, E), we can solve the equations

;= f;
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also with v; € 0870(@; X, E). Consider the sequence of holomorphic sections
0
W = Uj —V; € Z070(X, E)

and set .
U= H('l1 \H.

Since supp f; C Co and Co N H,, = 0, then f; =0 on U for all j. Hence each v; is
holomorphic on U. Since no connected component of U is relatively compact, but
suppv; € ®, it follows that v; = 0 on U for all j. Hence the restricted sequence
wjlu converges to u|y with respect to the topology of Zg (U, E). Since the space
7§ o(X, E) is finite dimensional (X is (n — 1)-concave) and the restriction map

ZS’O(X, E) — Zg,o(Ua E)
is injective (by uniqueness of holomorphic functions), it follows that

h:= lim w;
j—oo

exists in Z( (X, E), where h = u on U. Set @& = u — h. Then dii=fand u=0on
U=H, \H. Hence f € E§,(®; X,E). O

6.2. Theorem. If ¢ <n —q—1, then, for each holomorphic vector bundle E over
X, Hg;"fq(X, E) is separated. If moreover q <mn —q — 2, then

(6.1) dim HY"(X,E) < oo if q+1<r<n—q—1.
Proof. Set H, = H' N {p < a} and take a; with infp < a1 < ag such that the
Levi form of p has at least n — ¢ + 1 positive eigenvalues on H/, . Then, by the

Andreotti-Grauert finiteness theorem [A-G],

(6.2) dimH®"(H!,E)<o ifinfp<a<a > andg<r<n-qg-1.

Let ¥ be the family of all closed subsets of X. Then ¥ % & consists of all open
sets U C H' such that H \ U is compact, and ® is complete in ¥. Therefore, by
Lemma 1.3 (iii),

dim [ES (T — &; X, E)/EQ .(®; X, E)] < dim H*"~!(¥ x &; E)
for all r > 1. Together with (6.2) this implies that
(6.3) dim [EQ (¥ — & X,E)/E) (% X,E)] <o if g+1<r<n-—g.

By the classical Andreotti-Vesentini theorem, Eg’n_q(X , E) is topologically closed
in C3 ,,_,(X, E). Since the topology of C3,, ,(®; X, E) is stronger than the topol-
ogyof C§,, (X,E)and EY (¥ = & X,E) = Ej (X,E)NCY,, ,(®;X,E),it

O,qu O,qu O,qu
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follows that E§,,_ (¥ — &; X, E) is topologically closed in C3 ,,_,(®; X, E). Since,
by (6.3), there is a finite dimensional linear subspace F of C3 ,, ,(®; X, E) with

F+ E((]),n—q((p;Xv E) = E((]),n—q(lI; - <I>;X, E):

this implies that condition (Cly) in Sect. 2 is fullfilled for s = 0 and r = n — q.
Hence by Theorem 2.9, also condition (Cl3) is fulfilled, i.e. H%" 4(®; X, E) is
separated.

To prove (6.1), we observe that, by the Andreotti-Grauert finiteness theorem
[A-G], dim H®"(X,E) < 00 if 0 <7 < n — g — 1 and therefore, in particular,
dim [Z (®; X, E)/E} (¥ — & X,E)] <oo if 0<r<n—-q-1.
Together with (6.3) this implies (6.1). O

6.3. Corollary. If ¢ = 1, then, for each holomorphic vector bundle E over X,
HY" (X, E) is separated.

Proof. This follows from Theorem 6.1 if n = 2, and Theorem 6.2 if n > 3. O

MALGRANGE’S VANISHING THEOREM FOR FORMS VANISHING
AROUND (n — 1)-CONVEX HOLES AND AN APPLICATION
TO THE HARTOGS-BOCHNER EXTENSION PHENOMENON

The classical vanishing theorem of Malgrange for the cohomology in top degree
[M] (see also [O]) says that, for any non compact connected complex manifold X of
complex dimension n and each holomorphic vector bundle E over X, the equation
du = f can be solved for any E-valued (0,n)-form f on X. In this section we
prove that if the form f vanishes around an ‘(n — 1)-convex hole‘ of X, then also
the solution u can be chosen vanishing around this hole.

7.1. Definition. Let X be a complex manifold. An open subset H of X will be
called an (n — 1)-concave end of X (or a neighborhood of an (n — 1)-convex hole) if

(i) OH is compact, but H is not compact,
and there exists a real C2-function p on X such that

(ii) H={p <0} and 0H = {p =0},

(ii) inf p < p(z) for all z € X,

(iv) the sets {a < p < 0}, inf p < a < 0, are compact,

(v) the Levi form of p has at least 2 positive eigenvalues everywhere on H.
Theorem 7.2 (Malgrange’s theorem for forms vanishing around (n — 1)-
convex holes). Let X be a connected complex manifold and let H be an (n —1)-
concave end of X such that also X \ H is not relatively compact in X. Denote by ®

the family of supports in X which consists of all closed subsets C such that C N H
is compact. Then, for any holomorphic vector bundle E over X,

HY"(X,E) =0 where n = dimcX.
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Proof. First note that ® is cofinal and the dual family ®* of & is also cofinal and
®** = &, i.e. we may apply Theorem 2.9.

Now recall that, by a theorem of Green and Wu [G-W] (see also [O]), any non-
compact connected complex manifold of complex dimension n admits an exhausting
function whose Levi form has at least one positive eigenvalue everywhere on the
manifold. Since X \ H is noncompact, this implies that the function p in Definition
7.1 can be chosen so that, moreover, sup p = oo and the Levi form of p has at least
one positive eigenvalue everywhere on {p > 1}.

Therefore X is (n— 1)-concave-n-convex and it follows from Theorem 4.1 (i) that
dim HY™(X, E) < .

Hence, by Theorem 2.9 (i), Eg ,,(®; X, E) is topologically closed in C3 ,,(®; X, E).

Since X \ H is noncompact and belongs to ®, we have X \ C' # 0 for all C' €
®*. Since X is connected, this implies by uniqueness of holomorphic functions
that Hg;o (X, E*) = 0. Since Eg’n(Q;X , E) is topologically closed this implies by
Theorem 2.9 (ii) that

dim HY™(X, E) = dim H}(X,E*) =0. O

Using ideas of Lupacciolu [Lu] and Chirka-Stout (see Theorem 3.3.1 and its proof
in [C-S]), Theorem 7.2 gives the following result on Hartogs-Bochner extension:

7.3. Theorem. Let X be a connected n-dimensional compler manifold with an
(n—1)-concave end H such that X \ H is noncompact, and let D be an open subset
of X with C*-boundary such that (X \ H) N D is compact and X \ D has no more
than a finite number of connected components U such that (X \ H)NU is compact.

Then for any holomorphic vector bundle E over X and each CR-section f :
0D — E the following two conditions are equivalent:

(i) There exists a continuous section F : D — E which is holomorphic over D
such that F|0D = f.

(i) [op Fo = 0 for any C*-smooth, O-closed (n,n — 1)-form ¢ with values in
E*, the dual bundle of E, defined in a neighborhood of D such that supp ¢ N AD is
compact.

Proof. The conclusion (i)=-(ii) follows from Stokes’ theorem. Assume that condi-
tion (ii) is fulfilled.

Let Uy, ... ,Un be the connected components U of X \ D such that (X \ H)NU is
compact. Take points z; € (X \H)NU;, 1 < j < N, and set X = X\{z1,---,2n}
Then D C X and, for each connected component U of X \ D, (X \ H) N T is
noncompact.

Let p be the function from Definition 7.1 for H. Take a € [inf p, 0] so small that
p>aonU;U...UUy and set Hy = {p < a}. Then H, is an (n — 1)-concave end
of X. Denote by ® the family of supports in X which consists of all closed subsets
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C of X such that C N H, is compact, and let ®* be the dual family of ®. Then
oD € ®*.

By Theorem 7.2, Hp"™(X, E*) = 0. This implies by Theorem 2.9 (i) that
(7.1) EQ,.(®%X,E) =

{1p € 29,(* X, E) ‘ / YAp=0 forall ¢¢€ Z,Ol,n_l(d);X',E*)} )
X
Consider the E-valued (0, 1)-current [i, f]°' on X defined by

([ /1% 0) = /8 tv

for all E*-valued C%, _;-forms ¢ with compact support in X. Then supp [ixf]O! =
dD € ®* and, since f is CR, O[i.f]®! = 0. Therefore, by regularity of d (see,
e.g., Corollary 2.15 (i) in [H-L]) and property (S3) in the definition of a family of

supports, we can find an E-valued current S of X with
suppS € ®*  and  [i.f]>' - 8S € Z3,(2% X, E) N C§5 (X, E).
0 n_1(®; X, E*) is of the form ¢ = da+ 3

where « is continuous and g of class C, it follows from condition (ii) of the theorem
that

Since (again by regularity of 9) any ¢ € Z0

/~ (i f1"' =3S)Ap =0 forall ¢e Zg,nfl(@;X,E*).
X

Therefore it follows from (7.1) that

[i. f1*' = 3S € E§, (2% X,E).
Hence there exists an E-valued (0,0)-current F on X with supp F € ®* and
(7.2) OF = [i.f]>'.

Since F € ®*, (X \ H,) Nsupp F is compact. On the other hand, any connected
component of X \ D has a noncompact intersection with X \ H,. Since F is
holomorphic outside supp F, it follows that F' = 0 outside D.

Hence F is a function on X which is holomorphic over D and zero outside D.
Together with (7.2) this implies by standard arguments (using local properties of
the Bocher-Martinelli transform - see, e.g., the proof of Theorem 5.1 in [La]) that F
extends continuously from D to D and that this extension is equal to f of 8D. O
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