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1 Introduction

Exotic algebraic structures on the affine spaces appeared in the general framework of the
Affine Algebraic Geometry. Within the traditional algebraic geometry of (quasi)projective

varieties, the affine geometry occupies a special place, being known as a source of highly

difficult problems. Let us recall the most famous ones'.

1. The Zariski Cancellation Problem:

Is it true that an isomorphism X x C" ~ C"** s only possible if X ~ CF ?

2. The structure of the Automorphism Group:

Given a polynomial automorphism of C™ , can it be presented as a product of linear and

triangular ones?

3. The Linearization Problem:

Is any regular C* -action on C"™ conjugate with a linear one?

4. The Embedding Problem (Abhyankar, Sathaye):

Is any reqular embedding C* — C™ equivalent to a linear one?

5. The Jacobian Problem:

Given a regular mapping C™ — C™ with a constant non-zero Jacobian, is it necessarily

an automorphism of C™ ¢

To clarify the present day situation, some commentaries are in order.

1. The affirmative answer to (1) for k£ = 2 was the result of a series of papers by Miaynishi,
Sugie and Fujita [MiySu, Fu 1] (see also [Kam 1]). In higher dimensions k > 3, there is
no significant progress.

In the birational setting, the analog of the Zariski Cancellation Problem was answered
in negative by Beauville, Colliot-Thelene, Sansuc and Swinnerton-Dyer [BCTSSD].

As for the following more general Cancellation Problem (see e.g. [AEH, EH, Ho|):

Given an isomorphism of polynomial rings A[x] ~ Blx] over two rings A and B, does
it follow that A~ B ?
its geometric counterpart is also answered in negative (Danielewski [Dan]; see also Fieseler

[Fi], tom Dieck [tD 3]). In the corresponding example of Danielewski, A and B are the

Hereafter we restrict the consideration to the varieties defined over C .



rings of regular functions on any two of the smooth affine surfaces {z"y + 2% = 1} C
C?, neN.

2. The structure of the automorphism group Aut C" for n = 2 is classically known
(Jung [Ju], van der Kulk [vdK]). Starting with n = 3, it is completely mysterious (see
e.g. [AAS, Na)).

3. To answer to (2), it would be rather useful to describe the one-parameter subgroups
of the automorphism group Aut C"; that is, the regular C, -actions and C* -actions
on C", where C, resp. C* denotes the additive resp. the multiplicative group of the
complex number field. It was natural to expect that any C, -action resp. any C* -action
on C" is conjugate with a triangular one resp. with a linear one. The former one was
shown to be false starting with n = 3 (Bass [Ba]), while it is true for n =2 (Rentschler
[Re]). It is worthwhile noticing that giving a C, -action on an affine variety X is the
same as giving a locally nilpotent derivation (LND for short) of the algebra C[X] of
regular functions on X [Re].

As for the latter one, i.e. for the Linearization Problem, the positive answer is known
for n = 2 (Gutwirth [Gut]). Being answered in affirmative at least for n = 3, this
would lead to linearization of any connected, reductive group action on the affine space
(Kraft, Popov [KrPo, Po]). An example of a non-linearizable action of a semi-direct
product of C* and Z/2Z on C* was constructed by G. Schwarz [Sch]. Tt is known
that a certain restricted form of the Linearization Problem is equivalent to the Zariski
Cancellation Problem (Kambayashi-Russell [KamRu]; cf. also Bass-Haboush [BaHal).
Below we say more about the recent positive solution for n = 3 and the role of exotic C3 -
s in this solution (see Koras—Russell [KoRu 2, KoRu 3], Makar-Limanov [ML], Kaliman
and Makar-Limanov [KaML 3|, Kaliman, Koras, Makar-Limanov, Russell [KaKoMLRu)).

4. Whereas any regular embedding C < C? is equivalent to a linear one (Abhyankar-
Moh, Suzuki [AM, Suz 1]), this is unknown already for the embeddings C <+ C? and
C? — C?. But the embeddings C* < C" are linearizable as soon as n > 2(k + 1)
(Jelonek [Je], Kaliman [Ka 4, Ka 5], Nori, Srinivas [Sr]).

5. There is a number of equivalent reductions of the Jacobian Problem and partial results;
see e.g. [An, AAS, BCW, Dr, Kam 2, Or 1]. It is also famous for a lot of false proofs,
which appear regularly. Definitely, this certifies its difficulty.

At the last decade, new unusual objects in the Affine Algebraic Geometry appeared
and attracted some attention. They were called exotic C™. These are smooth affine

varieties diffeomorphic, but non-isomorphic to the affine spaces. Their existence alluded
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to (as a remark) in a deep paper of Ramanujam [Ram|, where the non-existence of exotic
C? was proven. Later on, many exotic C™ -s for all n > 3 were constructed (Choudary—
Dimca [ChoDi|, Dimca [Di 1], Kaliman [Ka 1, Ka 2], Koras-Russell [KoRu 2], Petrie-tom
Dieck [PtD 2], Russell [Ru 1], tom Dieck [tD 1, tD 2], the author [Za 2, Za 3, Za 4], e.a.).

In the work of Koras and Russell on the Linearization Problem (see [KoRu 1, KoRu 2])
it was reduced, in the particular case of n = 3, to classification problems for a certain
series of smooth contractible threefolds X C C* (the Koras—Russell threefolds) and for
a certain series of affine singular quotient surfaces. As for the latter one, it was recently
settled completely [KoRu 3].

As for the former one, it consists of to clarify whether or not all the Koras-Russel
threefolds X C C* are exotic C®-s. The first partial results were obtained by Kaliman
and Russell [Ka 1, Ru 1], who succeeded to show that the logarithmic Kodaira dimension
is non-negative for at least some of these threefolds.

A methods invented by Kaliman and Makar-Limanov [KaML 1] allowed them to en-
large this class. Namely, it was shown that, under certain restrictions on X , there is no
dominant regular mapping C* — X .

But all the above methods failed to distinguish from C? a certain subseries of the
Koras-Russel threefolds. The Russell cubic threefold X c C*, given by the equation
x4+ 2%y + 22 +t3 = 0, is one of them. It looks especially simple, but in fact, it is this
one the most difficult to analyze. Its geometric structure can be described as follows. It
contains ‘the book-surface’ B := {z = 0} C X isomorphic to the product C x I'y 3,
where T'y 3 C C? is the affine cuspidal cubic 2? +¢* = 0. The complement X \ B is
isomorphic to C* x C?. Thus, X is obtained from C?® after replacing C? C C® by the
book-surface B ; notice also that there exists a dominant morphism C® — X . Using the
fact that B 1is contractible, one can show that X is contractible, too. It follows from
the Smale h-Cobordism Theorem that, actually, X is diffeomorphic to R .

Finally, Makar-Limanov [ML] succeeded to prove that the Russell cubic is an exotic
C3 . Soon after, Kaliman and Makar-Limanov [KaML 3], along the same approach, com-
pleted the classification of the Koras-Russel threefolds, showing, in particular, that all of
them are exotic. Thus, the Linearization Problem was answered in positive, at least for
C? [KoRu 2, KoRu 3].

The proof of Makar-Limanov [ML] is based on the use of locally nilpotent derivations
(LND), - the idea that was (tentatively) known to the specialists. The principal new
ingredients suggested in [ML] provide powerful tools to work with LND-s. The kern of



this approach consists in

* using jacobian derivations; in particular,

*

reducing the study of general LND-s to study of jacobian LND-s;

*

introducing and systematically using generalized degree functions;

*x reducing the study of the LND-s of a filtered ring to those of the associated graded

ring.

In section 9 below we present a simplified proof of the Makar-Limanov Theorem due to
Derksen [De]. In sections 2 and 3 we deal with contractible and, more generally, acyclic
surfaces; they serve as a base for constructing exotic C" —s, but certainly merit being
studied on their own right. Sections 4-8 are devoted to several known constructions
which lead to exotic C™ —s. Besides, in section 8 some computations of the logarithmic
Kodaira dimension are done.

We have tried to simplify presentation as much as possible, restricting it to particularly
interesting examples. We do not touch at all, or say very little on some related subjects,
such as analytically exotic structures (see e.g. [Ka 2, Za 3, Za 5]), deformations of exotic
structures (see [Fl1Za 1, Za 5]), Q -acyclic surfaces (see e.g. [F1Za 1, Fu 2, Miy 2, Or 2|),
the positive characteristic case, etc. Whereas, we provide a rather extended list of liter-
ature, although by no means complete. The interested reader can find certain additional
information and some open questions in [OPOV, Za 5].

It is my pleasure to thank Profs. Drs. H. Flenner and G. Schumacher, who suggested to
give a lecture course on exotic structures at the Graduiertenkolleg of the Ruhr-Universitét-
Bochum, 03-07.02.1997, as well as the organizers of the mini-school ”Structures exotiques
de C™7” at the Université Paul Sabatier, Toulouse, 08-12.01.1996, and especially, Mme
Laurence Fourrier, for an analogous suggestion. The author is grateful to Shulim Kali-
man and Yuli Rudyak, who looked through the text and made many useful remarks; to

Konstantin Sonin for his help in editing and typing these notes.

2 Acyclic surfaces (an introduction)

By the Hironaka Resolution of Singularities Theorem, any smooth quasiprojective vari-
ety X admits a smooth projective completion V' by a divisor D with simple normal
crossings X =V \ D. We call (V,D) an SNC-completion of X (or an SNC-pair). A
variety X is acyclicif H.(X,Z) ~ Z.



Lemma 2.1. (Fujita [Fu 2]) Let X be a surface. If X is acyclic, then it is affine.

Proof. Assume that X is acyclic. Let V be a smooth completion of X by
a reduced divisor D (not necessarily SNC). Let D = Y% | D;, where each D; is an
irreducible component of X. We will show that there exists an effective ample divisor
A=Y" a;D; supported by D, i.e. such that a; >0Vi=1,..., k. Thus, mA for m
large enough is a hyperplane section (for the embedding @ |,,4| : V < P ). Hence,

X =V \D=V\supp (mA) = P¥\H~C"

is affine. By the Nakai-MoiSezon criterion, it suffices to choose any A as above such that
A? >0 and AC > 0 for any irreducible curve C in V.

In view of acyclicity of X , from the standard topological dualities (see the proof of
Proposition 2.1 below) it follows that the natural homomorphism Hy(D) — Hy(V) is
surjective, and D is connected?. Set ¥ = {A = Y;c;a;D; | a; >0 Vi € I[,AD; >
0 Viel}, I C{l,...,k}. First, we show that Y is non-empty. Indeed, let H €
Div V' be any ample divisor. The classes of D;, i = 1,...,k, (which we denote by
the same letters) generate the group Hy(V,Z), and so H = X8 h;D; = Y 0:D; —
Yjesa;D; = Ay — By, where I,J C {1,....k}, I #0, INJ =0,and a; >0 Vie€
ITU J. For any irreducible curve C' in V, we have AqC — ByC = HC > 0, whence
AoC > ByC. Given C = D;, i€ I, thisimplies AqC > ByC > 0. Therefore, Ag € 3.

Suppose that A € 3, supp A # D, D; does not lie in supp A, and D;A > 0.
Then mjA+D; € Y for some m; > 0. Indeed, (m;A+D;)D; > 0 forall D; C supp A4,
and (mjA+ D;)D; >0 when m; > —D?/D;A.

Recall that D is connected. Therefore, starting with A, and applying the procedure
as above, in a finite number of steps one can find a divisor A € Y. with supp A= D.
Clearly, A% >0, AD; > 0 forall i = 1,...,k, and AC > DC for any irreducible
curve C' such that C is not contained in D. Since AqC > HC > 0, we have DC > 0,
whence also AC > 0. Thus, A is ample, and supp A=D. O

Remark. In higher dimensions the analogous statement is not true, in general, as an
example of Winkelmann [Win| shows. In this example X = @\ E is a contractible non-
affine (and even non-Stein) quasi-affine variety, where @ is a smooth projective quadric

of dimension 4, and E C @ is a codimension 2 smooth subvariety.

2in fact, to prove that X is affine we use only these two conditions. It is well known that the boundary

of an irreducible affine variety is connected, so, the second one is necessary.



Proposition 2.1. Let X =V \ D, where V is a smooth projective surface, and D
1s a curve in V. Then X s acyclic if and only if the following conditions hold:

(1) mo(D)=m(V)=m(D)=1.

(77) i : Hy(D,Z) — Ho(V,Z) is an isomorphism.

Proof. By the Lefschetz duality,® we have

H'(V,D)~ H,_i(X), Hy(V,D)~H"X), i=0,...,4.

)

Assume that X is acyclic; then the above groups are zero for 7 = 0,...,3. From the

standard exact sequences of a pair (all the homology groups have coefficients in Z ):

H,(V H(V)
N N
0 o
H.(V,D) H.(D), H*(V,D) H*(D) ,
where deg i, = degi* = degr, = degr* = 0, degd = —1, and deg 0* = 1, it

follows that H;(D) ~ H;(V), H'(D) ~ H(V) for all 4, 0 < 4 < 3. In particular,
Hy(D) ~ Hy(V'), which proves (ii). Also, H*(V) ~ H?(D) = 0. By the Poincaré duality,
H,(V)~ Hy(D) =0, whence m(D)=1. Since Hy(D)~ Hy(V)~Z, m(D)=1.

The proof of Lemma 2.1 shows that D is a hyperplane section. By the Lefschetz
Theorem on hyperplane sections [Lef, AF], [Mil 2, Thm. 7.4], i, : m (D) — 7 (V) is a
surjection. This implies that 71(V) =1, as claimed.

Conversely, assume that the conditions (i) and (ii) are satisfied. Then Hy(V) =
H,(D) = 0, whence H3(V) = 0, by the Poincaré duality. Furthermore, the group
Hy(V) ~ H*(V) ~ H*(D) ~ Z% is free (here d stands for the number of irreducible
components of D). Since Tors H? = Tors H;_;, H'(V) is also a free group. Hence
HY V)~ H;(V)=0, and so H3(V)=0. Then H;(D)~ H;(V), i=0,...,3, whence
H;(V,D)=0, i=0,...,3. Also, we have the same equalities for cohomologies.

By the Lefschetz duality, 0 = HY(V,D) = H,_;(X), i =0,...,3. Therefore, X is

acyclic. O

Corollary 2.1. All the irreducible components of D are rational curves without

self-intersections, and are arranged as a tree.

Definition 2.1. Let D = Zle D; be an SNC-curve on a projective surface V. The
dual graph T'p of D is the graph which possesses the irreducible components {D;} of

3 As for a reference book on algebraic topology, we address e.g. to Dold [Do].
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D as vertices, and [D;, D;| (i # j)is an edge of I'p iff D;D; > 0. Each vertex D, of
['p is weighted by D?.
If X =V \D is acyclic, then, by Proposition 2.1, I'p is a tree.

Theorem 2.1. (Gurjar-Schastri [GuShal) Every acyclic surface is rational.

Corollary 2.2. An SNC-pair (V, D) is a completion of an acyclic surface X =V \D
iff D is a rational tree on a smooth rational surface V such that the Picard group

Pic V ~ G(D) ~ Z% is freely generated over Z by the irreducible components of D.

Proof. Indeed, in the case of a rational surface V, we have Pic V ~ Hy(V). O

Definition 2.2. An SNC-pair (V,D) is called minimal if no contraction of a com-
ponent of D leads to a new SNC-pair. (Equivalently, I'p has neither linear nor end

vertices weighted by —1; recall the Castelnuovo criterion.)

Theorem 2.2. (Ramanujam [Ram]) (a) Assume that (V,D) is a minimal SNC-
completion of a smooth acyclic surface X =V \ D. Then X ~ C? iff the dual graph
I'p s linear.

(b) Furthermore, a smooth contractible surface X is isomorphic to C? iff it is simply

connected at infinity*.

Example 2.1. A Hirzebruch surface ¥, is a P'— bundle over P': Y 25 P!
such that there exists a section E, C Y, with E2 = —n (n > 0). If F, is a fiber
over the point oo = (1:0) € P!, then ¥, \(E,UFy) =~ C?, and the dual graph of this
completion of X = C? looks like

-n 0

O——0

Note that the standard completion (P% P!) of C? has the dual graph

1
@]
Example 2.2. The Ramanujam surface [Ram|. There exists an arrangement of a
smooth conic C, and a cuspidal cubic C;, {zz? —y> = 0} say, in P? such that
(C1C5)a =1, and (C1Cy)p =5, where A, B are the smooth intersection points.

Yie. 79°(S) =1, where 7%°(9) := li_r)n7rﬂS \ K) is the direct limit over the system of all compacts

K C S . In fact, the latter condition is equivalent to the former one of linearity of T'p .

10



Let 0, : V — P2 be the blow-up of P2 at A with the exceptional (-1)-curve
E CV, and let C7,C5 CV be the proper transforms of Cy,Cs. Set D = C;JCy. We
have Hy(V) ~Pic V ~ZH' +ZFE , where H' is the proper transform of a generic line
H in P2 Since C; ~3H, and Cy ~ 2H in Pic P? ~Z, we get (C},C}) =T(H',E),
where 7' is the unimodular matrix
3 2
(52)

Thus, Ho(V') ~ H(D), and so it follows from Proposition 2.1 that the surface X = V\D
is acyclic. By Fujita’s Lemma 2.1, X is affine. The resolution graph of D C V' looks as

follows:
-2 -2

-3 -1 3 -1 2 -2 2 2

O O O O O O O O

This graph is minimal and non-linear, so the Ramanujam Theorem 2.2(a) yields that X

is not isomorphic to C2.

Exercises (2.1) Show that m(X) =1, and so X is contractible.
(2.2) The boundary S of a (*tubular’) neighborhood of D in V (= an attached
boundary of X ) is not simply connected (what is® 7;(S)? ), and so X is not homeo-

morphic to R*.

Next we give some more examples of contractible surfaces, following [Za 1, Za 4].

Example 2.3. Let T be a matrix of non-negative integers of the form

meg 0 ng O

o | Mo 0 0 mnygp

0 me net O

0 muu 0 ngy
Consider the lines /;; ~ P! in Q :=P' x P!, [;; = {iz+ (1 -4y = j}tij-01 (Le
z =0,1, y=0,1). Blow up over the points z;; = (,5), 4,7 = 0,1, until the four

functions
(x — g)™i

~——, 4,J=0,1,
(y—g)m

®see e.g. [Mu, Hir] for an algorithm of computing 1 (S) .
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become regular; denote the resulting surface by Ve — Q. Set Dy = eqUe; U{li;} C Q,
where ey = {y = o0}, e1 = {z = 00} C Q (see Figure 1).

€0

201 211 I
01

200 210 I
00

lo 1 e

Figure 1

Set 7~(Dgy) = Dy U{vi;} , where v;; are the only (—1) curves in the exceptional divisor
of m. Then Dr is a rational tree (deleting wv;; is called ’cutting cycles’ by Petrie and
tom Dieck [PtD 1, PtD 3|). The proper transforms ef, €] of ep,e; and the components
of the exceptional divisor of 7 form a natural basis in Pic Vi = Ho(Vy, Z), a new one

given by the components of Dr , assuming that the decomposition matrix

(+7)

is unimodular, i.e. that 7" is unimodular. Now Proposition 2.1 asserts that X := Vp\Dr

is an acyclic surface iff det T'= +1.

Remark. Petrie and tom Dieck [PtD 1, PtD 3] found all the basic line arrangements
in P? that lead to acyclic surfaces in a process as above; there are seven of them. The first
one depends on discrete and continuous parameters (see Figure 2; cf. the Classification

Theorem 3.3(d) below); the other six are projectively rigid.

ls—|—1

Figure 2

Lemma 2.2. If T is unimodular, then Xt is a contractible surface.
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Proof. We should check that det 7= +1 implies that m;(X) = 1. Denote

Xo =X\ {vi;} >Q\ {6 lines}.

Choose four generators a;, b; € m1(Xp), i,j = 0,1, which are 'vanishing loops’ ® of the

lines /; ; under the embedding Xy < @, and so
m(Xo) = Fo x Fy =< ag, a1,b0,b1 | [ai, ;] =1, 4,7 =0,1>.
We will see in Lemma 2.3 below that m (X) = m1(Xo)/N , where
N =<<a;"b;7 |4,j=0,1>>

is the minimal normal subgroup generated by the four products. Thus, we have the
following relations in 71 (X) : ag®bg® =1, ai"bg® = 1, and so ay®"™° = af"°".

Also,  af® b7 =1, a0y =1, and hence qy™""* = af""'"". It follows that

MOEON10M11M01 — 70111171210 7200
aO - a’O ’

whence ad®t 7 =1, that is ap = 1. In the same way we obtain a; = by = b; = 1, and
therefore m (X)=1. O

Lemma 2.3. (Fujita [Fu 2|) (a) Let D be a closed hypersurface in a complex manifold
M, dimM > 2. Then the group Ker {i, : m(M \ D) — m (M)} is generated by the
vanishing loops ” of D . In particular, if D is irreducible, this kernel is generated, as a
normal subgroup, by any of these loops.

(b) Let M be a surface, Dy, Dy be two curves in M, and p be an intersection point
which is an ordinary double point of DyUDy . Let o, : M' — M be the blow-up at
p. Then (the class of) a vanishing loop ap of the exceptional (—1)— curve E C M’
of op in the group m (M \ (DU Dy)) =m(M'\ (EU D UD4)) can be represented as
ap = apiap, , where apr, ap, are vanishing loops of the proper transforms D! of D,
i=1,2.

(c) In the notation as in (b), let o : M —s M be a sequence of blow-ups over p such
that Dt =mE + ..., Dy=nE+ ... for E being the exceptional (—1)— curve of the

last blow-up. Then we have ap = o oy .

6see the next footnote.
"By a vanishing loop of D at a smooth point e € D we mean any loop § in M\ D consisting of a

path « which joins a base point ey € M \ D with a point €' € w\ D of a small complex disc w C M
transversal to D at e, and a simple loop (3 in positive direction in w\ D with the base point €' (i.e.

e is in the interior of 8 in w).
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Proof. (a)Denote A the unitdiscin C. Let v:90A =S! — M\ D. Observe that
v+ € Keri, iff there exists 7 : A — M such that 7 | 5o = 7. After a small deformation,

we may assume that J(A) meets D transversally at smooth points pi,...,pg; let
qi,---,qr be the corresponding disc points.
Choose disjoint vanishing loops of ¢i,...,q; in A, and contract the circle S' = 0A

onto their union. Being composed with 4 this yields a desired homotopy of v to a
product of vanishing loops of D.

(b) Let D; = {z; = 0},4 = 1,2, in a local chart (z1, 22) in M centered at p.
Representing ap,ap, on the torus |z | =1, |22| =1 as its diagonal section, after
blowing up this loop becomes a vanishing one .

(¢) Apply induction on the number of blow-ups. O

Exercises (2.3) (after Fujita [Fu 2]) Let X be an acyclic (resp. contractible) surface,
and let ' C X be an irreducible simply connected curve. Consider the blow-up o, :
X — X at a smooth point p € C, and set X' = 5(\\0' , where C' C X is the proper
transform of C. Show that X' is also acyclic (contractible).

(2.4) Draw the dual graph I'p, , where Dr is as in Example 2.3 above. Deduce that

in many cases Xr is not isomorphic to C?2.

3 Elements of classification: the logarithmic Kodaira

dimension

Definition 3.1. Let L — V be a line bundle over a smooth projective variety V,
and let HO(V,L) be the space of its regular sections. By the Cartan-Serre Theorem,
h®(V,L) = dim H°(V,L) < oo. Suppose that h°(V,L) > 0, and fix a basis sq,...,s,

of HY(V,L), where n = h®(V,L) — 1. Set Z = {z € V | 50(2) = ... = s,(2) = 0};
7 is a proper subvariety of V. For z € V' \ Z, fix an affine structure in the fiber
L, =2 C; then the point ®;(z) := (so(2) : ... : sn(2)) € P" is well-defined, and the

rational map ®p : V — P" isregularin V \ Z. L is called very ample if &, is an
embedding (assuming Z = (); ample if mL is very ample for some m > 0; big if®
L —dim (V) := lim,,_edim ®,,;, = dim ¢V. Put L —dim (V) = —oco if h®(mL) = 0
Vm.

8In section 8.2 below we also use the notation k(V, L) := L — dim (V).
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Theorem 3.1. (Serre-Siegel-Kodaira; see e.g. [li 3, Thm. 10.2]) For some mg > 0

we have h°(mmgyL) ~m' , where | =L — dim (V).

Definition 3.2. If L = Ky is the canonical line bundle (ie. Ky = A"T*V |
where n = dim ¢V ), then k(V):= K —dim V is called the Kodaira dimension of V
k(V) € {—00,0,1,...,dim V}. If £&(V)=dim V, then V is said to be of general type.

Thus, V is of general type if K is big, i.e. for some m > 0, ®,x:V — P" isa

birational embedding.

Exercise (3.1) A smooth irreducible projective curve V is of general type (i.e.
K(V) = 1) iff g(V) > 2, k(V) =0 iff g(V) =1, ie if V = Ty := C/A is an
elliptic curve, where A = Z 4+ 7Z C C is a lattice; k(V) = —o0 iff g(V) =0, i.e. if

V =~ P! is a rational curve.

Definition 3.3. For an SNC-completion (V, D) of a smooth quasi-projective variety
X = V\ D, its log-Kodaira dimension is k(X) := L —dim (V) , where L = K + D
(Tlitaka [li 1]). X is said to be of log-general type if k(X) = dim X.

Sometimes K + D is called the log-canonical divisor; the sections of O(K + D)

correspond to the meromorphic forms regular in X, which can be written as

dz; dz;
aZZi A L Ndzi N Az,
Ziy Zik
in local coordinates in V, where D = {z, =... =z, = 0}.
Theorem 3.2. (litaka [Ii 1], [Ii 3, Ch. 11]) k(X) is an invariant of X which does
not depend on the choice of an SNC-completion (V,D) of X.
Exercise (3.2) If X isasmooth irreducible quasi-projective curve, then k(X) = —oo

if X=Co X=PY kEX)=0if X =T, or X =C*:=C\{0}; k(X)=1

otherwise.

Proposition 3.1. (a) ([li 1], [li 3, Thm. 11.3]) k(X xY) = k(X) + k(Y).
(b) ([Li 1], [Li 3, Prop. 11.5]) If Y s a Zariski open subset of X, then k(Y) > k(X),
and k(Y) =k(X) if codim x(X\Y) > 2.
(¢) (the litaka Easy Addition Theorem [li 1, Thm. 4], [li 3, Thm. 11.9)) If 7: Y — X

1S a surjective morphism of smooth quasi-projective varieties with a connected generic fiber
F, then k(Y) < k(F)+dim X .

15



(d) (the Kawamata-Viehweg Addition Theorem [Kaw 1, Vie]) If, in addition, dim F =1,
then k(Y) > k(F)+k(X) .
(e) (i1, Thm. 3], [Ii 3, Thm. 11.10]) If f:Y — X is an étale (i.e. non-ramified)
covering, then k(Y) = k(X).
(f) (the Logarithmic Ramification Formula) [li 1], [Ii 3, Thm. 11.3]) Let dim X =
dimY, and let f:Y — X be a dominant morphism®. By the Hironaka Resolution
of Singularities Theorem, f can be extended to a morphism f : Vy — Vx , where
(Vx,Dx) (resp. Vi, Dy) )is an appropriate SNC-completion of X (resp. of Y ). Then
there exists an effective divisor Ry C Vy (which is called the logarithmic ramification
divisor) such that

Ky, + Dy, = f (Ky, + Dvy) + Ry. (R)

In particular,
HO(VXa m(KVX + DVX)) — HO(Vy,T*m(KVX + DVX)) -

HO(VYamT*(KVx + DVX) + me) = HO(VY:m(KVY + DVY))'

Therefore, k(X) < k(Y).

(9) ([Ii 1, Prop. 1, Thm. 3|, [li 3, Thms. 10.5, 11.10]) If, in addition, f is either
a proper birational morphism, or an étale covering, then we may assume Ry being an
f— exceptional divisor, i.e. codim f(Rf) > 2, and we have k(Y) = k(X) .

Classification Theorem 3.3. Let X be an acyclic surface. Then
a) (Miyanishi-Sugie-Fujita [MiySu, Fu 1]) k(X) = —oco iff X ~ C2
b) (Fujita [Fu 2]) If X is non-isomorphic to C?, then k(X) > 1.
(¢) (litaka-Kawamata [li 1, Thm. 5], [Kaw 2]) If k(X) = 1, then there exists a morphism

X — T onto a smooth curve T with generic fibers isomorphic to C* = C\ {0} (called
a C*— fibration)'?,

(d) (Gurjar-Miyanishi [GuMiy 1]; cf. also [PtD 1, FlZa 1]) There exists a complete list

of acyclic surfaces with k(X) = 1. Any such surface can be obtained from a Petrie—tom

(
(

Dieck line configuration in P? of the first kind (see Figure 2 above) by blowing up over
the points py,...,ps to get, as o '(p;), i = 1,...,s, a linear chain of rational curves

with only one (—1)— curve, and leaving this last exceptional (—1)— curve of each chain

%.e. f(Y) contains a Zariski open subset of X .

10 Actually, any (not necessarily acyclic) affine surface X with k(X) =1 possesses a C*— fibration.
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in the affine part''. For each i = 1,...,s, we fiz a rational number ’:—:, the numbers
(mi, n;)i=1,.. s must satisfy a diophantine equation of unimodularity. The blow-up process
over p; is done according to the data (m;,n;); this means that locally at p; it resolves
the point of indeterminacy of the rational function x™ [y, i=1,...,s.

In particular, for s =2 and ming+mon,—mime = 1, m; > n;, 1t = 1,2, we obtain
in this way all the contractible surfaces with k(X) = 1. Their minimal dual graphs look

as follows:

bl

The choice of the centers of blow-ups over py (besides the first one), and the positions of
the points ps,...,ps on lsi1 (once the first three intersection points on lg,1 are fized)

give rise to the deformation parameters [F1Za 1].

Theorem 3.4. [AM, LiZa, GuMiy 2, Suz 1, Za 1] Let X be a smooth acyclic surface,
and let T be an irreducible simply connected curve in X . Then either
* (X, 1)~ (C% T,), where Ty :={aF —¢y' =0} CcC? k>1>1, (k,1)=1, or
* k(X) =1 and T = E\D ~ C, where E C V s the last (—1)— curve over
the point py in the reconstruction process as in Theorem 3.3(d) above, and D is the

boundary divisor of the corresponding SNC-completion of X .

This theorem shows, in particular, that, up to automorphisms of the affine plane, there
is only a sequence (namely, {T';;}) of irreducible simply connected curves in C? ; each
smooth acyclic surface of logarithmic Kodaira dimension 1 contains exactly one such
curve, and this curve is smooth; at last, there is no simply connected curves at all on

acyclic surfaces of log-general type.

Example 3.1. (Petrie, tom Dieck [PtD 2]) The surface Xj; C C* given by the

1Tn addition, all the blow ups over py are outer, i.e. each of them is done at a smooth point of the
total transform of Iy , whereas under the cutting cycle procedure over p;, i =1,...,s, the blow ups are

inner, i.e. they are done at double points only.

17



equation

(rz +1)* — (yz + 1) _

’
z

where k > 1> 2, (k, 1) =1, is asmooth contractible one with k(Xj ;) =1 (see Example
6.1 below). The only simply connected curve in Xy ; is given by the equation z=0.

In a similar way, any smooth contractible surface with & = 1 can be realized in C3?
(Kaliman, Makar-Limanov [KaML 2]).

Example 3.2. It can be shown (see [Za 3, Za 4]) that k(X7) =1 for a surface Xy
as in Example 2.3, iff m;; = n;; = 1 for a pair of diagonal points from the square vertices
(zij = (4, 7))i, j=0,1 (see Figure 1 above). If so, then the only simply connected curve in
X7 is the proper transform of the corresponding diagonal line. Otherwise, k(X7) = 2,

i.e. Xp is of log-general type.

Remark. There is a number of examples of acyclic or even contractible surfaces of log-
general type (see e.g. [tD 2, F1Za 1, GuMiy 1, Sug]), but no classification is known. While
acyclic surfaces of log-Kodaira dimension 1 admit deformations (see the Classification
Theorem 3.3(d)), those of log-general type are rigid in all known examples [F1Za 1, Fl1Za 2].
So, the problem arises whether or not all of them are rigid (on this and other problems

on acyclic surfaces, see e.g. the problem list [OPOV]).

4 Exotic product structures

We begin this section by recalling

The Zariski Cancellation Problem. Given an isomorphism X x C* 2 C"** does
it follow that X ~ C™ ¢

Take C" generic in C"*  and combine ® with the first projection. This yields a
surjective morphism C™ — X. Thus, by Proposition 3.1.(f), k(X) = —oo. Also, X is
homotopically trivial; in particular, for n =2 X is an acyclic surface. By the Miyanishi-
Sugie-Fujita Theorem 2.3.(a), X ~ C?. This provides the positive answer to the Zariski

Cancellation Problem for n =1,2. For n > 3 the problem is open.

Iitaka-Fujita Strong Cancellation Theorem 4.1. [liFu| Let X,Y be smooth
quasi-projective varieties of the same dimension, and let & : Y x C" — X x C" be an

isomorphism. Assume that k(X) > 0. Then there is a commutative diagram
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Y x Ck X x Ck
pr pr
2
Y - X

where ¢ 1s an isomorphism.
We use below the following well known corollary of the Smale h-cobordism Theorem.

Proposition 4.1. (see [Mil 1, §9]) Let D™ be a smooth simply connected manifold of
(real) dimension n > 5 with a simply connected boundary. Then the following conditions
are equivalent:

1) D™ is diffeomorphic to the closed unit n— ball B".

2) D" is homeomorphic to B".
3) D™ is contractible.
)

4) D" is acyclic.

Theorem 4.2. (Dimca-Ramanujam [Di 1, Ram]) Let X be a contractible smooth
affine algebraic variety. If dimc X =n > 3, then X is diffeomorphic to R*™ .

Proof. '? Fix a closed embedding X < C¥ such that the smooth function
¢ :=||z||*| X on X is a Morse function, i.e. it has only non-degenerate critical points
(see [Mil 2, Thm. 6.6]). Since ¢ : X — R is proper and has only finite number of
critical values, for R > 0 large enough X is diffeomorphic to Xz := {¢ < R} . Denote
Sr = 0Xg ; that is, Xy is a smooth manifold with the boundary Sy . By the Morse
Theory applied to the Morse function ¢ := R — ¢ on X , the manifold X can be
obtained, starting with the boundary Sg , by successively gluing handles of indices equal
to those of the critical points of ¥ on Xpg.

If p € Xg is a critical point of %, then ind 20 = 2n—ind . But ind o < n
[Mil 2, the proof of Thm. 7.2]. Hence, ind ;30 > n > 3. Therefore, Xp is obtained
from Sp = 0Xgi by attaching handles of indices at least 3. Consequently, Xp is
homotopically equivalent to a cell complex obtained from Sk by successively attaching
cells of dimension at least 3. It follows that the first two relative homotopy groups

m;(Xg, Sr), 1 =1, 2, are trivial. Since Xg is contractible, applying the exact homotopy

12(f. the proof of the Lefschetz Hyperplane Section Theorem in [Mil 2].
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sequence of a pair
1= m(Xg, Sg) 2 m(Sk) > m(Xr) = 1
we conclude that 7;(Sg) =1 . Now the theorem follows from Proposition 4.1. O

Remark. In section 2 above we have seen examples of contractible smooth affine
surfaces S with non-simply connected attached boundaries 0S (in other words, S is
non-simply connected at infinity: 79°(S) # 1 ). Therefore, these contractible surfaces are
not homeomorphic to R*. This shows that the restriction 7 > 3 in the above theorem

is crucial.

Corollary 4.1. Let X be a smooth contractible surface. Then X x C 1is diffeomor-
phic to C* ~ RS and so X x CF is diffeomorphic to R¥*+* k> 1.

Proof. We indicate, following Ramanujam [Ram], an alternative direct proof of this
corollary. According to Proposition 4.1, it suffices to show that X x C is diffeomorphic
to the interior of a smooth compact manifold D with a simply connected boundary 0D.
There are two natural ways to compactify X x C. First, consider any smooth affine
variety Z < CV. Then the restriction ¢ of the real polynomial ||z||?> to Z has only
a finite number of critical values, and ¢ ![R,00[ for R large enough is diffeomorphic
to [R,00[XT , where T := ¢ *(R). Thus, Z is diffeomorphic to Zy := ¢ [0, R], the
interior of the manifold with boundary Z; := ¢7![0, R], 0Z, = T. Represent in this way
X < C" attaching the boundary 0X, and Y := XxC — C"*! attaching the boundary
0,Y = ¢ '(Ry). Since Y is diffeomorphicto X x A, where A = {|z] <1}, Y can also
be compactified by attaching the non-smooth boundary 8,Y := (0X x A) (X x S'). In
fact, 0,Y = y71(Ry) , where (7, z) := max {||Z||?, |z|?}, and R, > 0 is large enough.
By the Van Kampen Theorem, 0;Y is simply connected.

We may assume that sufficiently large R}, R, R), R, are chosen in such a way that
0 = o7 (R) C 7[Ry, B3]) € 7 ([Ry, RY]), and that ¢7'([Ry, R{]) ~ 01Y x
(R}, R!], v7Y([R}, RY]) =~ 0,Y x[R}, RY] . Thus, the composition of embeddings 0,V —
0Y x [Ry, Ry] — 01Y x R}, R{] provides a homotopical equivalence. Respectively, the
induced isomorphism 7,(8,Y) — m (6, x [R}, RY]) factors through the trivial one
m(01Y) — m(0Y X [RY, Ry]) ~ m(02Y) = 1. This proves simply connectedness of the

boundary 0,Y, and the assertion follows. O

Theorem 4.3. (a) Let S be a smooth contractible surface non-isomorphic to C2.
Then S x C"2 (n > 2) is a smooth affine variety diffeomorphic to C", but non-

isomorphic to C™ (in what follows such a variety is called an ezotic C™).
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(b) Furthermore, if two smooth contractible surfaces Si, So are not isomorphic, then

Sy x C" 2 S, x C"2 (n > 2) are two non-isomorphic exotic C"— s.

Proof. (a) By Lemma 4.1, S x C* 2 is diffeomorphic to R?>" for n > 3. By
the Miyanishi-Sugie-Fujita Theorem 2.3.(a), k(S) # —oc (otherwise S ~ C?), whence
k(S) > 0. But if S x C" 2 were isomorphic to C", then we would have k(S) = —o0,

a contradiction.

(b) By virtue of the Strong Cancellation Theorem 4.1 of litaka-Fujita, the classification of
exotic product structures on C" of the type S x C" 2, where S is a surface as above,
is reduced to the classification of surfaces S themselves. Indeed, S; x C* 2 ~ Sy x C" 2
and k(S;) > 0 would imply that S; ~ Sy. Since S; % S,, and both surfaces are acyclic,

by the Miyanishi-Sugie-Fujita Theorem 3.3(a), k(S;) > 0 for at least one value of i , say,

for 7 =1, and so, the assertion follows. O

Remark 1. For instance, pairwise non-isomorphic surfaces X7 of log-general type
(see Example 2.3 above) yield sequences of exotic C". Since contractible surfaces S with
k(S) =1 admit deformations (see the Classification Theorem 3.3(d)), the corresponding
exotic C™ -s of the type S x C"2 admit deformations, too [FlZa 1].

Remark 2. Let X =[], S; be a product of n > 2 contractible surfaces. Then
X is diffeomorphic to the interior of a compact contractible variety with boundary. By
the Van Kampen Theorem, the boundary 0X is simply connected. Therefore, X is
diffeomorphic to C?*. Also, k(X) =", k(S;). Hence, X is of log-general type iff S;

are so for all i =1,...,n; k(X)=—occ if k(S;) = —oo for at least one value of i.

Remark 3. If k(S) = 2, then X = S x C contains no copy of C?, i.e. there
is no embedding C? < S x C [Za 3]. (This is based on the fact that S contains no
simply connected curve; see [Za 1] and Theorem 3.4 above.) In the next section we present

examples of exotic C? with many copies of C? (see Example 5.1).
Remark 4. Due to the Ramanujam Theorem 2.2(b), there is no exotic C?.

Remark 5. Actually, the Zariski Cancellation Problem can be reformulated as follows:

Given an exotic C", denote it X, should also the product X x C* be an exotic C™ (m =
n+k)?
Another question is a generalized Serre Problem:

Is any vector bundle over an exotic C™ trivial?
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Exercise (4.1) Verify that a smooth irreducible quadric hypersurface in C"*' is

contractible if and only if it is isomorphic to C".

5 The Kaliman modification

Definition 5.1. Consider a triple (M,D,C), where M D D DregD D> C, M and C
are smooth affine varieties, D is an irreducible hypersurface in M, and C' is proper in
D, so that codim ;D =1 and codim ,C > 2. Let o¢ : M —s M be the blow up
of M along C with the exceptional divisor £ = ¢ }(C). Then o¢|E: E — C isa
fiber bundle with the fiber P*¥, k = dim F —dim C; E and the proper transform D’
of D meet transversally, and oc: E(\D' — C is a fiber bundle with the fiber P*~1.
The variety M’ := M \ D' is called the Kaliman transform or the Kaliman modification
of the triple (M, D,C) along D' with the center C'. Let E' = E \ D'; clearly, the
restriction o¢| E': E' — C' is a fiber bundle with the fiber CF.

Lemma 5.1. (Kaliman [Ka 2, Lemma 3.4]) 7 (M) ~ 7 (M).

Proof. The restriction o¢|(M'\ E') : M'\E' — M\ D is an isomorphism. Thus,
we may consider the following commutative diagram (left) and the induced commutative

triangle (right):

M’ m (M)
N N
M\ D J M, n(M\D) — 2 .m0

It is easily seen that both i, and j, are surjections (since a complex hypersurface has
real codimension 2). Thus, (o¢). is also surjective. Denote by ap a vanishing loop of
D. By Lemma 2.3.(a), Ker j, =<< ap >>, where << S >> denotes the subgroup of
a group G generated by the conjugacy classes of the elements s € S C G (<< S >>
is said to be normally generated by S ). We choose ap in such a way that near D it
is a boundary circle of a small transversal disc w centered at a point ¢y € C. Then the
proper transform ' of w in M’ is a disc centered at a point of E' = E'\ D'. Thus,
iv(ap) =1 € m(M'), i.e. ap € Ker i,. This implies that Ker j, C Ker i,. But since
J« = (0¢)« 0 1s, Ker i, = Ker j,, and so (0¢)s : m(M') — 71 (M) is an isomorphism.
O
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Lemma 5.2. (cf. Kaliman [Ka 2, Proof of Thm. 3.5]) Suppose that (i) D is a
topological manifold, and (i) D and C are acyclic. Then M' is acyclic iff M is.

Proof. As follows from Lemma 5.1, (0¢). : Hi(M') — Hy(M) is an isomorphism
(hereafter all the homology groups are with coefficients in Z ). Note that

e oc : EF' — (C is a smooth fibration with a contractible fiber, and so, it yields a
homotopy equivalence between E’ and C (ezercise). Therefore, (o¢). : H.(E') —

H,(C) is an isomorphism. Hence, E' is also acyclic.

e Let X be the one-point compactification of a manifold X. Then we have

HY(X)~ H{(X,*) ~ H(X) & H,_i(X),

~J

where = stands for the Lefschetz—Poincaré duality, and m = dim g X. Thus, under our

assumptions D and E' are homology spheres, and so is M resp. M’ iff it is acyclic.

Assume first that M is acyclic. Then by the exact cohomology sequence of a pair

H*(M)

H*(D) " H(M,D),

where deg r* = deg i* = 0, deg 0* = 1, we have H>*'(M,D) ~ H*(M,D) ~ Z,
where n = dim ¢M , and H(M,D) =0 for j < 2n—2. Since M\D = M\D ~ M'\F',

we have the homeomorphisms
M/D~ (M\ D)~ (M\E)~M/E
(ezercise).'® Hence,
HE (M, ) ~ (V)Y ~ (31 /D) ~ H* (M., D).

Thus, H>* Y(M' E') ~ H>*(M',E') ~ Z, and the other groups are zero. From the
exact cohomology sequence of the pair (M’', E') we obtain H/(M') ~ HI(E) = 0,
1<j5<2n-—3, and

0= H>" (M, E') — H* 2(M') — H* *(E') ~Z %

3More generally, one may show that if D is a non-compact connected closed subspace of a smooth
connected manifold M , then the identity mapping of the complement M \ D extends to a homeomor-
phism of Hausdorff compact spaces M /D = WM \ D).
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—s H Y M'",E") ~Z — H™ Y(M') — H™ Y(E') = 0. (%)

By the Poincaré duality, we have
Hgn_j(Ml) - ﬂJ(MI)

Hence, H;(M') = 0 for ¢ > 3, and H;(M') ~ H;(M) = 0. Thus, by the Poincaré
duality, H>*'(M') =0 in (%), whence & : H* %(E') ~ Z — H* Y (M',F') ~ Z is
onto, and so, it is an isomorphism. This implies that H2*~2(M’) = 0, and also, by the
Poincaré duality, Ho(M') = 0. Finally, we have that H,(M') = 0, which means that
M' is acyclic.

Vice versa, assuming that M’ is acyclic, we can prove that sois M repeating word-in-
word the above arguments, but exchanging the roles of the pairs (M, D) and (M', E').
This completes the proof. O

Theorem 5.1. (Kaliman [Ka 2, Thm. 3.5]) Suppose that (i) D is a topological
manifold, and (i) D and C are acyclic. Then M' is contractible iff M is.

Proof. By the Theorems of Hurewicz and Whitehead, M resp. M’ is contractible
iff it is acyclic and simply connected. Thus, the statement follows immediately from
Lemmas 5.1 and 5.2. O

Remark. It can be shown that M’ as in Theorem 5.1 is an affine variety once so is
M; see [Ka 2, Lemma 3.3|.

Lemma 5.3. (Kaliman [Ka 2]) k(M') > k(M).

Proof. Indeed, M' = M\ D' implies k(M') > k(M). Since oc: M — M is a
proper birational morphism, by Proposition 3.1.(f), we get k(M') > k(M), as claimed.
O

Example 5.1. (Kaliman [Ka 2]) Let X =S x C be an exotic C*, where S is a
contractible surface of log-general type. Chose a finite sequence of points {(s;, 2;)}7 C X
as the centers C; of the Kaliman modifications along the fibers H; = S x {z;} of the
second projection X — C, i = 1,...,n. Then E! ~ C? and one can show that
E!, i=1,...,n, are the only copies of C? in X'. Thus, X’ is an exotic C?, and the
positions of Ej,i = 1,...,n, in X' or, what is the same, the positions of the points

{(si,2i)}} € X, up to automorphisms of X , provide deformation parameters.
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6 The hyperbolic modification

Here we follow, up to minor changes, tom Dieck [tD 1] (cf. another treatment in Petrie

[Pe]); but we restrict the consideration to the simplest possible case.

Definition 6.1. Let h € C[xzy,...,z,] be anirreducible polynomial such that h(0) =
0. Suppose that grad gh # 0, and so the hypersurface X = {h = 0} C C" is smooth
at the origin. Define the hyperbolic modification q of h as follows:

h(uz)

q(7,u) =

€ Clx1, .-, Tn,ul-

Since h(uT) = uq(T,u), we have the equalities

oq , _ < Oh(uz)
uau(x,u) +q(T,u) = ;xz FEa
dq _ . Oh(uZ) .
axi(x,u)— I i=1,...,n.

It follows that, once (o, up) is a critical point of ¢, i.e. grad Fouo) 4 = 0, then also

grad 3 ,,h = 0 = h(uoTy), that is, ueZo € X is a singular point, and (Tp,up) € Yo =
{g =0} C C"". Thus, all the fibers Y, = {¢=c}, ce€ C* = C\{0}, of the polynomial
g are smooth hypersurfaces, and the fiber Yy = {¢ = 0} is smooth iff so is X, which

will be assumed in the sequel. We denote Y =Y.

Lemma 6.1. The restriction q|(C"™'\Y): C""'\Y — C* is a trivial algebraic
fiber bundle with the fiber Y; := {q =1}.

Proof. Consider the commutative triangle

Cn—|—1 \YE)

N

Y, x C*

C*,
where the map @ is defined as follows:
@A) = (T, u), N) — (AT, \"'u) := 7, € Y.
It is easy to check that ® is a fibrewise (biregular) isomorphism, so we are done. O

Define a C*— action on C™*!: (), (z,u)) = (AZ, A"'u), A € C*. Then

o(GA (T, u)) = ”A(f’i) — (7, u).
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This means that ¢ is a quasi-invariant of weight 1 of G. In particular, Y is invariant
with respect to G, and G,(Y.) = Y). In the above diagram this corresponds to the
canonical C*— action on the direct product, whence & is equivariant.

The monomials uzy,...,uz, € Clzy,...,x,,u] are G— invariants. It is easily seen
that, in fact, Clz1,...,Zn, u]® = Cluzy,...,ur,] (the algebra of G— invariants). Hence,

the algebraic quotient of C™1 by this C*— action is
C""//G ~ C" = spec Clxy, ..., T, ul°.

The action of G on C"*! is hyperbolic, that is, it has only one fixed point (the origin
0 € C"™1), and the weights at the origin (1,...,1,—1) are of different signs. The origin
belongs to the closure of each orbit which is contained in the hyperplane {u = 0}, and
of those in the axis OU := {0} x C; all the other orbits are closed.

Denote by M the complement of the axis OU in C"*!. Then the C*— action G
restricts to M with closed orbits only. Let @ : M — T be the canonical morphism
onto the orbit space (= the geometric quotient) T = M/G. Also, consider the morphism

T: M — C" (T,u) — uZ. Since 7 is constant on any orbit, it factors as 7 = oo :

7/ \\U
M T cr.

The restriction of 7 to the hypersurface M N {u =0} := E ~ C"\ {0} coincides with
the standard projection C"\ {0} — P"!, Z — {)\T}yec:. Set 7(E) = E C T}
thus, o(F) = {0}, i.e. E is the exceptional divisor of o; it is straightforward that
o/ (T\E) : T\E — C"\ {0} is an isomorphism. Therefore, o : T — C" is the blow
up of the origin.

Furthermore, n(Y N M) := X' is the proper transform of X in T (indeed, Y is
saturated by the orbits, whence 7(Y (M) is an irreducible closed hypersurface in T
containing the proper transform o'(X)). Therefore, T\ X’ is the Kaliman transform of

C" along X with center at the origin 0 € C".

Lemma 6.2. There is an isomorphism Y, ~ T\ X'.

Proof. Fix a point y = (7,u) € Y;. Since ¢ is a G —quasi-invariant of weight 1,
Gi(y) € V), and hence, the orbit Gy of y meets Y} at y only. This means that the
morphism 7|Y; : Y] — T\ X' is injective. On the other hand, any G— orbit outside Y
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meets Y7; thus, this morphism is also surjective. Finally, a bijective morphism of smooth

varieties is an isomorphism. O

Corollary 6.1. The hypersurface Y1 C C* s isomorphic to the Kaliman modifi-
cation of C™ along the hypersurface X C C™ with center at the origin.

Lemma 6.3. The hypersurface Y = Yy, C C™! is isomorphic to the Kaliman
modification of X x C along the hypersurface X x {0} with center at the point (0,0) €
X x C.

Proof. The morphism
7' =C" L C" =17, (Y1, Yny ) > (UYL, -, U, ),

is nothing but the Kaliman modification of Z along the hyperplane Hj := {u = 0} with
center at the origin, and with the exceptional divisor E' = {u = 0} C Z'. Consider the
natural embedding i : X x C < Z. Set h(T,u) = h(Z); then the image of i is the
hypersurface h =0 in Z ~ C**1,
We have
hoo(y,u) = h(uy) = uq(y,u).
Hence, for a point (g,u) € Y (i.e. such that ¢(g,u) =0), we get ho o(g,u) =0, ie.
o(G,u) € X xC, and so o(Y) C X x C. Furthermore, the total preimage of X x C in
Z' is the union of Y and of the exceptional divisor E = {u = 0}. Therefore, YV is the

proper transform of X x C in Z’, and the assertion follows. O

Remark. The C*— action A(y1,---,¥n, %) = (A1, ..., A\yn, A tu) on Z’ provides

the C*— action A(z1,...,%n,u) = (Z1,...,Zn, A 'u) on Z and on X x C.

Exercise (6.1) Show that, under the embedding C" < C"*! given as T +— (7, 1),
X is naturally isomorphic to the hyperplane section Y N H;, where H; := {u =1} C
C"*! | Furthermore, show that the exceptional divisor £ C Y of the Kaliman transform
0:Y — X x C coincides with the linear subspace Y N{u=0}.If ¢/ : Y — X is

composed of the contraction o and the first projection, verify that
T
o' (T,u) — (5, 1) eY(VHi = X
u

outside F, and o'(7,0) = (0,1) on E . Deduce that Y is the closure in C"*! of the
C*— orbit of the subvariety YN H; ~ X .
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Theorem 6.1. (tom Dieck [tD 1]) Let X C C" be a smooth contractible hypersurface
given by an irreducible polynomial h € Clzy,...,x,], h(0) = 0. Then any fiber Y, =
g '(c), c€C, of the hyperbolic modification q(T,u) = @ € Clzy,...,zn,u] of h is
a smooth contractible hypersurface in C"t'. Thus, q: C"*' — C yields a foliation of

C™*! by smooth contractible hypersurfaces.

Proof. Indeed, by Lemma 6.1, Y, ~ Y; for ¢ # 0. By Corollary 6.1 and Lemma
6.3, Y =Y, and Y} are both Kaliman modifications of (triples of) smooth contractible

varieties. By Kaliman’s Theorem 5.1, ¥ and Y; are contractible. O

Remark 1. The inequality k(M') > k(M) of Lemma 5.3 does not provide here a
useful information; indeed, k(C") = k(X x C) = —oo. However, sometimes the inter-
mediate Fisenman-Kobayashi intrinsic measures serve as appropriate analytic invariants
(see Kaliman [Ka 2]).

Remark 2. The Kaliman Theorem 5.1 is still applied if X is only assumed being
a contractible topological manifold smooth at the origin (and C C reg H ). In this case
we still have that all the hypersurfaces Y., ¢ # 0, are smooth and contractible, but the

central fiber Y =Y, can be singular, as it is in the following example.

Example 6.1. (Petrie, tom Dieck [PtD 2]; see Example 3.1 above). Up to auto-
morphisms of C?, Ty, := {2 -4y =0} c C?, (k1) =1, k > 1> 2, are the only
contractible irreducible singular affine plane curves [LiZa] (see Theorem 3.4 above). Start-
ing with I'y;, perform the hyperbolic modification at the smooth point (1,1) € T'y;. We
obtain a foliation py;: C* — C of C® by the fibers of the polynomial

zz 4+ 1)k — (yz + 1)
Pkl 52( ) p, e ) € Clz, vy, 2]

All of them are irreducible contractible surfaces; all but the central one p,;}(O) are
smooth. One can see that k(X)) = 1, where Xj; := p; (1) (see Exercise 6.2 be-
low). Now, starting with X} ;, by means of hyperbolic modifications one can construct
non-trivial foliations of C*, C?, etc. by smooth contractible hypersurfaces. Moreover,
the corresponding polynomials are quasi-invariants of hyperbolic C*— actions on C”. In
particular, for n > 4 the zero fiber of such a polynomial is a smooth contractible hyper-
surface in C" endowed with a hyperbolic C*— action. Furthermore, one can obtain new
exotic C"! -s by passing to cyclic C*— coverings over such a hypersurface (see the next

section).
Exercise (6.2) Verify that k(Xjy,;) =1, where (k,l)=1, k>1>2.
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Indication. One can proceed, for instance, as follows. Lifting the meromorphic func-
tion z¥/y' on C? to the function f := (zz + 1)*/(yz + 1)'| Xy, on Xj;, we obtain
a C*— fibration f : X;; — P'. Hence, by litaka’s Easy Addition Theorem (Proposi-
tion 3.1(c)), k(X;) < 1. Since Xy, is acyclic, by the Classification Theorem 3.3(b),
k(Xg;) =1 as soon as Xj; # C?. Recall that the surface Xj; is the Kaliman mod-
ification of C? along the curve I'y; C C* with center at the point (1,1) € I'x;. Re-
solving singularities of the plane projective curve Ty; Uly C P? and blowing up at the
point (1,1) € Tk,l , we obtain a completion V;; of X}, Contracting, if necessary, the
(—1)— boundary components of valence at most two in the dual graph, we come to a mini-
mal completion V7™ of X, . The dual graph of its boundary divisor D}* is non-linear
(what is this graph?). Therefore, by the Ramanujam Theorem 2.2(a), Xj; % C2.

7 Cyclic C*— coverings

Definition 7.1. (cf. [KoRu 2, Prop. 2.11]) Let X be an affine variety, and let ¢ € C[X]
be a regular function which defines an effective divisor Fj = ¢*(0) on X. Fix an integer
s > 1. The variety Yy = {(z,u) € X x C | ¢(x) = u®} together with the projection
ws Yy — X, (z,u) V225 x, yields a eyclic covering of X branched to order s along
F,. We suppose that Fy is smooth and reduced; then Y; is also smooth (indeed,
grad (,,)(q(z) — vw’) = (grad ,q, —su’~") ), as well as the hypersurface Fj o := ¢;'(Fp)
in Y, (ezercise).

If X is endowed with a regular C*— action ¢ : C* x X — X, and ¢ is a quasi-

invariant of ¢ of weight d, i.e.
q(trz) = Nq(2),
where d € Z, then the C*— action \(x,u) = (A\*(2), Au) on X x C restricts to Y,

making the following commutative diagram equivariant

(z,u) —
Y, X
PTQl q
U — u®
C C

Y

where the original C*— action G on X is replaced by its 's-th power’ (A ,z) ——
A5 (z) := t(\%, x). Indeed, we have for (z,u) € Y;:

g\ (@) = Xq(z) = 3’ = (\)”,
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whence (A\*(z), A%u) € Y;, which shows that the above diagram is equivariant.
If, in addition, (d,s) =1, then the monodromy of the cyclic covering ¢, : Y; = X
is represented via the action on Y; of the subgroup wy; C C* of the s— th roots of unity.

Indeed, the ws;— orbit of a point (z,u) in Y is
ws(z,u) = {(z,\%) | X* =1} = o] (z),

since (s,d) = 1. The fixed point set Y = {(z,u) € Y5 | v = 0} of the monodromy
action on Y; can be identified with the hypersurface Fy C X . Thus, we get X = Y;/w;
with the quotient action of C*/w; ~ C* on X .

The equivariant covering Y; — X as above is called a cyclic C*— covering.

Remarks. 1. The action of the monodromy group ws ~ Z/sZ on Y; is homologi-

cally trivial. Indeed, this is so for the continuous group action C* D w,; on Y.

2. The above observations are equally applied in the more general setting when the regular
C*— action is only given on the Zariski open subset X* := X\ Fy of X. In particular, if
(d,s) =1, then the monodromy group w; of the cyclic covering ¢, : Y* — X*, where
Y=Y, \ ¢;}(Fy), acts trivially in the homology H,(Y; Z).

The aim of this section is the following result due to Kaliman; it is a generalization of
Theorem A in'* [Ka 1].

Theorem 7.1. (Kaliman) Let X be a smooth contractible affine variety, and let a
smooth reduced irreducible divisor Fy = ¢*(0) C X be the zero fiber of a reqular function
q € C[X]. Denote G =m(X\ Fy), and fiz a vanishing loop o € G of Fy. Assume that
(t) q is a quasi-invariant of weight d # 0 of a regular C*— action defined on X \ Fy.
(#1 ) For an integer s > 0 such that (s,c) = (s,d) = 1, the hypersurface Fy is
Z,— acyclic'® for each prime divisor p of s.

(2 ) For some integer ¢ # 0, of is an element of the center Z(G) of the group G.
Consider the cyclic covering s : Ys — X branched to order s along Fy. Then Y is

a smooth contractible affine variety.

Due to the Theorems of Hurewicz and Whitehead, it is enough to show that Y; is

acyclic and simply connected. This is done, respectively, in Theorems 7.2 and 7.3 below.

4 Exposing this result in [Za 5, Thm. 6.9], the condition ( #» ) below has been missed. It should be
used in the proof of this theorem instead of Lemma 6.8 in [Za 5], which is wrong; see the proof of Theorem
7.3 below.

YShereafter Z, = Z/pZ .
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Notice that the conditions #§ and f#; guarantee acyclicity of Y;, whereas the condition

fo provides its simply connectedness.

7.1 Acyclicity of cyclic C*— coverings: elements of Smith’s The-

ory

Theorem 7.2. (Kaliman [Ka 1]; tom Dieck [tD 2]) Let X be an acyclic smooth affine
variety, and Fy = ¢*(0), where q € C[X], be a smooth reduced irreducible divisor in X.

Consider a cyclic covering ¢s : Ys — X branched to order s along Fy. Assume that
(t) q is a quasi-invariant of weight d # 0 of a reqgular C*— action defined on X \ Fp.
(t1 ) For an integer s > 0 such that (s,d) =1, the hypersurface Fy is Z,— acyclic for
each prime divisor p of s.

Then Y, s acyclic, too.

Before proving Theorem 7.2, we recall the Smith theory (see [Bre, Ch.III]).

Elements of Smith’s Theory. Consider a finite simplicial polyhedron Y endowed
with a simplicial action of a finite group w. Usually, passing to the second barycen-
tric subdivision, one obtains some additional regularity properties of the action, which
are always to be assumed (see [Bre, IIL1]). Let k£ be a field, and let Z[w], Z,[w], k[w]
be the group rings of w (e.g. Z[w] = {X,eun99 | Ny € Z} with natural ring opera-
tions). The simplicial chain complexes C(Y), C(Y) ® Z,, C(Y) @ k are, respectively,

Z|w]—, Zy|w]—, k[w]— modules (indeed, given a simplex & of Y, we set

(2-7109)(9) = D_ngg(9) € C(Y)).

In the sequel, w is assumed to be a finite cyclic group Z; = Z/sZ acting on Y in such
a way that the fixed point set Y of w coincides with the individual fixed point set Y9
for every g € w, ¢ # e. In particular, the w— action on the complement Y \ Y* is
free. We denote X =Y /w the orbit space, 7 : Y — X the natural projection, and we
identify Y“ with its image in X. Consider the following three homomorphisms of chain
complexes:
. : C(Y) — C(X),
o:C(Y)— C(Y), o= g€ Zwl,

gEW

p=7":C(X)— C(Y), w(d) = 771(8) if SNy = 0; u(d) =o(c) if m(c)=4
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(note that m, is surjective). Then we have [Bre, II1.2] Ker 7, = Ker o, and there is an
isomorphism
oC(Y)~C(Y)/Ker o ~ C(Y)/Ker 7, = C(X),

whence pm, = o. But mu(c) = |w|m.(c). On the homology level, this leads to the

following assertions.
Lemma 7.1. [Bre, I11(2.2), (2.3)]
Tapi = |w[ + Hi(X) — H.(X),
paTs = 0 = Y gt Ho(Y) — H(Y).
gew
Here p, is called a transfer. On the invariant part of homology we have
pama [ Ho (V) = |w| - Ho(Y)* — H.(Y),

This implies

Corollary 7.1. [Bre, 11I(2.4)] If k is a field of characteristic char k = q with
(¢, |w|) =1, then
| Ho (Y k)Y - Ho (Y5 k)Y — Ho (X k)

s an tsomorphism, and its inverse is the transfer .. Moreover,
H.(Y; k) = pH.(X; k) & Ker 7,,
where Ker 7, = Ker o,.
Corollary 7.2. Suppose that w acts trivially in homology:
we Ho(Y) =1id.
Then, for any field k with (char k, |w|) =1, we have the isomorphism of transfer
T = p, " Ho(Y5 k) — H,(X;k).

In particular, iof w ~ Z,, where q is a prime number, then the elements of the kernel
and of the cokernel of the homomorphism w, : H,(Y;Z) — H,(X;Z) are torsions of

order q.

The last assertion follows by the Universal Coefficient Formula:
H;(Y;Z,) = Hj(Y;Z)® Z,® Tor (H;_(Y;Z);Z,) V.
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Definition 7.2. [Bre, II1.3] In what follows w ~ Z, is a multiplicative cyclic group
of prime order p with a generator ¢ € w, so that 0 = 1+t + ...+ 7' € Z,[w].
Weset 7 =1—1t € ZyJw]. We have t? =1, o7 = 70 = 0, and o = 77! (indeed,
(—1)’(”;1) =1 modp). For an element p=p;, :=71° € Z, set p=7P"" then =171
and 7 = 0. Given p = p; = 7', consider the chain complex pC(Y;Z,). Its graded
homology group H?(Y;Z,) = H.(pC(Y;Z,)) is called the special Smith’s homology

group.
There are the exact sequences of chain complexes with coefficients in Z,, [Bre, ITI(3.1),(3.8)]:
0—pC(Y)®CY*) -5 CY) - pC(Y) — 0,
0— oC(Y) =5 7OoY) I 7+ C(Y) — 0, j=1,....,p—1.

Besides, the kernels of the homomorphism ¢ : C(Y; Z,) - C(Y; Z,) and of the com-
position C(Y; Z,) — C(Y, Y¥; Z,) — C(X, Y¥; Z,), where Y is indentified with its

image in X, are the same [Bre, p. 124]. These observations lead to the following

Proposition 7.1. [Bre, I11(3.3),(3.4),(3.8)] For the homology groups with Z, coeffi-

cients, one has
(a) an isomorphism HZ(Y) ~ H.(X;Y%),

and the following two Smith’s exact homology sequences:

(b)
H.(Y)
TN
H?(Y) * HP(Y)® H.(Y¥) ,

(c)

.

T
fj+1 (Y)

AN

2 (Y)
U

O

HI(Y),

where deg p, = deg 7, = deg i, = 0,deg 6, = —1.

Proposition 7.2. Suppose that'®

16The numeration of the conditions that we use here agrees with those in the next Corollary and

Exercise.
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(i) the fized point set Y is non-empty and Z, -acyclic: H, (Y, Z,) =0, and
(iii) X =Y/w is Z, -acyclic: H.(X;Z,) =0.

Then also Y is Z, —acyclic: H.(Y; Z,) =0.

Proof. In view of the vanishing
H.X;Z,) = H,(Y*;Z,) =0,
from the usual exact homology sequence of a pair
S H(XZ,) s Hi(X, Y Z,) 2 Hy (Y3 Z) s

it follows that H,(X, Y*;Z,) =0, and thus, by Proposition 7.1(a), also HZ(Y;Z,) = 0.
Therefore, by the Smith’s exact sequence (c), H?(Y;Z,) =0Vp=pj;,j=1,...,p—1.

Now, by the Smith’s exact sequence (b), H.(Y;Z,) ~ H/(Y;Z,) =0. O

Corollary 7.3. Suppose that
(i) w~1Z, acts trivially in homology: w.|H.(Y)=1id,

(i) the fized point set Y is non-empty and Z, —acyclic: H, (Y, Z,) =0, and
(i) X =Y/w is acyclic: H,(X; Z)=0.

Then also Y is acyclic: H.(Y;Z)=0.

Proof. By Corollary 7.2, H.(Y; Z,) ~ H.(X;Z,) = 0 for any prime g # p.
By Proposition 7.2, also H.(Y; Z,) = 0 . Thus, by the Universal Coefficient Formula,
H.(Y;Z)®Z, =0 for all prime ¢. Then H,(Y;Z)=0. O

Exercise (7.1) Assume that w ~ Z; acts on Y in such a way that
0) Y9I=YY#£0( forevery g €Ew, g#e;
i) the action is homologically trivial, i.e. w,|H.(Y;Z)=id;
it) the fixed point set Y is Z,— acyclic for any prime divisor p of s;
ii) X =Y/w is acyclic: H,(X;Z)=0.
Show that Y is acyclic, too: H,(Y;Z)=0.

~_~~ Y~ o~

Remark. Assume, for a moment, that the C*— action in Theorem 7.2 is regular
on the whole X. Then the monodromy action on Y is homologically trivial (see the
remark preceding Theorem 7.1), that is, the above condition (z) is fulfilled. This provides
a proof of Theorem 7.2 in that case. Notice that this proof does not use the assumption
of smoothness of X and F,. In general case, following tom Dieck [tD 2], we need to

consider branched coverings over smooth varieties and to use the Thom classes.
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Thom’s classes and Thom’s isomorphisms. Recall the following definitions and
facts (see e.g. [Do, VIIL.11], [MilSta, §9, §10]). Consider an oriented smooth connected
manifold X and a codimension 2 closed oriented submanifold Fy of X. Let N — Fj
be the (oriented) normal bundle of Fy in X with the zero section Z; ~ Fy, and let U C
X be a tubular neighborhood of Fy in X such that the pair (U, Fp) is diffeomorphic
to the pair (N, Z;). Denote U* := U \ F, and N* := N\ Z,. By excision, we have
the isomorphisms H,(X, X*; Z) ~ H,(U, U*; Z) ~ H,(N, N*; Z), and similarly for the
cohomology groups. The Thom class t(Fy) € H*(X, X*; Z) ~ H*(N, N*; Z) is a unique
class which takes the value 1 on any oriented relative two-cycle (F, F*) € Hy(N, N*; Z)
defined by a fiber F' of the normal bundle N.

The cup-product with the Thom class t(F,) € H?*(X, X*; Z,) yields the Thom

isomorphism!'”

Hz(X, X*, Zq) =~ HZ'_Q(FO; Zq), 1= 0, 1, e

Let ¢, : Yy — X be a smooth cyclic ramified covering of X branched to order s
along Fp, i.e. Y; is an oriented manifold equipped with an action of a group w ~ Z; of
orientation preserving diffeomorphisms; the fixed point set Y” C Y, is a codimension 2
closed oriented submanifold; w acts freely in the complement Y;\Y¥, and ¢, : Y; - X

is the orbit map, which provides a natural identification of Y with Fy C X .

Note that under the assumption ( § ) of Theorem 7.2, the monodromy group w =~ Z;
acts trivially in the homology H., (Y;\Fy; Z). Thus, the next proposition'® yields Theorem
7.2.

Proposition 7.3. [tD 2, Thm. 2.9] Let, in the notation as above, @s : Yy — X be
a smooth cyclic ramified covering of X branched to order s along Fy. Suppose that
(i) the covering group w ~ Zs acts trivially in the homology of the complement Y\Y¥ :
W[ HL(Y,\ Y5 Z) = id;

(1) the fized point set Y¥ is Z,— acyclic for any prime divisor p of s;

(i) X =Y;/w is acyclic: H (X;Z)=0.
Then Y, is acyclic, too: H,(Yy; Z) = 0.

Proof. Assume, for simplicity, that s = p is a prime number (the general case can be

reduced to this one; cf. Exercise 7.1 above). By Proposition 7.2, we have H, (Y, Z,) =0.

"the homology groups with negative indices are considered being zero.
18¢f. Corollary 7.3.
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By the Universal Coefficient Formula, it suffices to prove that H,(Yy; Z,) = 0 (i.e. Y,
is Z,— acyclic) for any prime g # p.

Denote Y' =Y, \Y” and X* = X \ F;. The restriction 7 : Y7 — X* is a non-
ramified cyclic covering of order p . By Corollary 7.1, (¢s)« : H. (Y5 Zg) — H.(X*; Zy)
is an isomorphism for any prime g # p.

We have the Thom isomorphisms

H(X, X*; Zg) ~ Hy 5(Fo; Zg),  Hi(Y, Y5 Zg) = Hy 5(Yy'; Zy),
given by cup-products with the Thom classes t(Fp) € H*(X, X*; Z,) resp. t(Y) €
H?(Y,, Y}; Z,). 1t is easily seen that (¢,)*(t(Fy)) = p-t(Y,’). Since the multiplication
by p is an invertible operation in Z,— (co)homology for ¢ # p, it follows that (¢s). :
H.(Y,, Y5 Zy) — H.(X, X*; Z,) is an isomorphism.
Consider the following commutative diagram, where the horizontal lines are exact
homology sequences of pairs with Z,— coefficients:

. — Hj+1(Y;,, Y;k) — H](Y;)*) — HJ(Y;,) — Hj(Y},, }/p*) — Hj_l(Y*) — ...

p

N N
..— Hj (X, X*) — Hj(X*) — H;(X) — H;(X, X*) — H;_1(X*) — ...

By the above observations, we may conclude that the four indicated vertical arrows are
isomorphisms induced by the projection ¢, . By the 5-lemma, the middle vertical arrow
is an isomorphism, too. Hence, since X is acyclic, ﬁ*(Yp; Z,) ~ H,.(X; Z,) =0 for any

prime ¢. This yields the assertion. O

Thus, the proof of Theorem 7.2 is completed.

Example 7.1. Let X be a smooth acyclic surface, Fy = ¢*(0) be a smooth reduced
irreducible contractible curve in'® X | where ¢ € C[X] is a quasi-invariant of weight
d # 0 of a regular C*— action on X \ Fy. Then by Theorem 7.2, Y, :={z° =¢(x)} C

X x C, where (d, s) =1, is a smooth acyclic surface, too.

For instance, for k, [, s pairwise relatively prime, the surface Y;;, C C® given by

the equation
(z2° + 1)F — (y2* +1)
ZS

!
=1

9see Theorems 3.3, 3.4 above for a description of such pairs (X, Fp).
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is a smooth acyclic one, and k(Yy ;) =1 (cf. [tD 2]; see Examples 3.1, 6.1 and Exercise
6.2 above). Indeed, there is a cyclic C*— covering Yy ;s — Xk, branched to order
s along the curve Ly, := X, N{z = 0} ~ C in Xj,, where the C*— action in
Xk,i\ Lg,; is induced via the isomorphism Xj ;\ Lg ; ~ C*\I'y; by the linear C*— action
(A, (z, y)) — (Ma, M*y) on C2. Thus, we may apply Theorem 7.2 to show that the

surface Y} ; s is acyclic.

7.2 Simply connectedness of cyclic C*— coverings

Theorem 7.3. (Kaliman) Let X be a simply connected smooth affine variety, and
Fy = ¢*(0), where g € C[X], be a smooth reduced irreducible divisor in X. Fiz a
vanishing loop o € G := m (X \ Fy) of Fy. Consider a cyclic covering @5 : Vs — X
branched to order s along Fy. Assume that

(2 ) For an integer ¢ # 0 such that (s, c¢) =1, «f is an element of the center Z(Q)
of the group G.

Then Y, 1s simply connected, too.

Remark. In [Ka 1, Lemmas 7 and 8] conditions on a polynomial ¢ € C[zy,...,z,]
are given which ensure that m(C" \ Fy) ~ Z. In particular, repeating word-in-word
the proof of Lemma 8 in [Ka 1] (based on the Seifert-van Kampen Theorem) one can
easily see that m (X \ Fy) ~ Z if F, is a generic fibre of a regular function ¢ on a
simply connected smooth affine variety X, that is, the restriction of ¢ onto a preimage
¢ '(Ae) of asmall disc A, C C centered at the origin yields a smooth fibre bundle over
A¢. Thus, in this case also the assumption ( f2 ) of Theorem 7.3 holds.

We need the following definition.

Definition 7.3. We say that a subgroup H of a group G is normally generated

by elements aq,...,a, € H if it is generated by the set of all elements conjugate with
a1, --.,0,, i.e. if H is the minimal normal subgroup of G which contains ay,...,a,.
We denote it by << ay,...,a, >> . G is said to be normally one—generated if G =

<< a >> for some element a € G.

Lemma 7.2. Let X be a smooth irreducible affine variety, and Fy = ¢*(0) be a

reduced irreducible divisor in X, where q € C[X]|. Fiz a vanishing loop o € G :=
m (X \ Fo) of Fy. We have:

(a) m(X)=1 iff G=<<a>>.
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(b) Let @5 : Yy — X be a cyclic covering branched to order s along Fy. Set @S =<<
of >> . Assume that Fy is a smooth divisor. Then m (Y;) =1 iff G/G, ~ Z/sZ.

Proof. (a) By Lemma 2.3(a), we have that Ker (i, : m (X \ Fy) —» m (X)) =<<
a >>, and the assertion follows.
(b) Set Fso = ¢; (Fy) CY;, X*=X\Fy and Y} =Y\ Fyp. Then ¢, : Y} - X*

is a non-ramified cyclic covering of order s. The induced homomorphism
(@s)s = m(Y)) = m(X7) =G

is an injection onto a normal subgroup G, of G of index s, and G/G; ~ Z/sZ.
Observe that, by (a), G =<< a >>, and that o® € G, is the image of a vanishing loop
B € m(Y]) of the smooth irreducible divisor F;o C Yy, i.e. (p;)«(8) = ®. Therefore,
G, =<< a®>>C G,, and G, =@, iff G/CAJS ~ GGy ~7Z/sZ.

Denote also 55 =<< a® >>q, the subgroup of G normally generated (in Gy ) by
the element o € G,.

Claim. G, = G,.

Proof of the claim. Clearly, és c G, C G,. Since the quotient Gs/@S ~ Z/sZ
is abelian, we have that K := [G, G] C G,. Since G =<< a >>, the abelianization
G := G/K is a cyclic group generated by the class K«. Hence, any element g € G
can be written as g = ¢’'a’, where ¢’ € K C G, and t € Z. Thus, we have ga’g™' =
gdotg e 55 for any ¢ € G. Therefore, G, C és, and the claim follows. O

~
~

By (a), m(Ys) =1 iff m(Y]}) =<< @ >>, or, what is the same, iff G5 = G,. Due
to the above Claim, the latter holds iff Gy = G,, or, equivalently, iff G/C:'S ~ Z/sZ.
This proves (b). O

Proof of Theorem 7.3. Since G =<< a >>, any element g € G can be written
as g = Hz’-‘zlgia”g{l, where ¢g; € G and r; € Z, i=1,...,n. Let p: G - G/K ~
H(X \ Fy; Z) ~ Z be the canonical surjection. Then, clearly, p(a) = 1, and so,
plg) =i € Z.

Since K C G := (s)«(m1(Yy)) and G/Gs ~ Z/sZ, we have that p(G;) = sZ.
That is, g = [I", g:a"ig; ' € G, iff p(g) = X%, 7 = 0(mod s).

Using the assumption (s, ¢) =1 write r; = k;s + l;c, where k;, ; €Z, i=1,...,n.
By our assumption (#2 ), o € Z(G), and hence gia”ig;' = gia**ig7 ', i=1,...,n,

and furthermore,

n n
9= g"g;" = (H gias’“igf) ™,
1=1 =1
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where m = Y " ;. For an element g € G, it follows that p(g) = s>, ki + mec =
0(mod s), or, equivalently, m = 0(mod s). Set m = ls, | € Z. Whence, we have
g = ( ) giozs’”gi’l) ()l e G,. Therefore, Gy, C G, C G,, and so, G, = G,, as
required (see Lemma 7.2(b)). O

Now the proof of Kaliman’s Theorem 7.1 is completed. In exercises 7.2-7.7 below
we expose some additional properties of the fundamental group G = (X \ Fp) in the
situation where the variety X \ F, is equipped with a C*— action. In Example?® 7.2
we show that, without the assumption ( f2 ) (or, perhaps, a weaker one which has to be
precised), the fundamental group of a cyclic C*— covering Y; of a contractible smooth

affine variety (even surface) X can be quite big.

Exercises (7.2) 2! Let G =<< a >> be a normally one-generated group. Denote
K =[G, G]. Show that a¢ € Z(G) iff # [a¢, K] = 1, and that under this condition
Kc@G,:=<<a*>> forany seZ prime to c.

(7.3) Let X and ¢ € C[X] be as in Theorem 7.3 (in particular, m(X) = 1).
Assume that the restriction ¢| (X \ Fy) : X \ Fop — C* is a smooth fiber bundle with
a connected fiber Fy := ¢ '(1). Show that ¢.(a) =1 € Z, i.m(F) =K =[G, G],
Ga = G/K ~ Hi(X \ Fy;Z) ~Z, and ¢. = p : G - G/K = Z is the canonical
surjection. Deduce that G = m(X \ Fy) ~ Z if and only if 7 (F;) = 1, which, in turn,

implies the condition ( s ).

(7.4) Show, furthermore, that under the condition (f) of Theorem 7.1, the above
assumption is fulfilled, and, moreover, the group G contains a normal subgroup G, of
index d with the cyclic quotient G/G4 ~ Z/dZ such that G4 ~ K x Z ~ m(F}) X
Z. Let an element 7 € G4 correspond to a generator of the second factor Z of this
decomposition. Verify that?® ya~¢ € K, and that the centralizer subgroup C, of 7 in

G contains Gy.
Hint. Put Gyq = (pa)«(m(Y])), where ¢4 @ Yy — X is the d— fold branched cyclic
covering, X* =X\ Fy and Y, =Y\ ¢, (Fy). The induced C*— action on Y yields

an equivariant isomorphism Fy x C* — Y}, (z, p) — (t,(z), ), which provides, in

20These exercises and example were elaborated jointly with Sh. Kaliman.

21Gee [Za 5, Appendix]. A much shorter proof was proposed by H. Flenner during the lecture course.
2If A, B C G, then [A, B] denotes the subgroup generated by all the commutators [a, b] =

aba~'b~!, where a € A, b€ B.
21n the proof of Lemma 6.8 in [Za 5] it was taken v = a?. In general, this is not true; see the next

exercise.
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turn, the desired decomposition of the subgroup G; of G. Thus, v is the image of a
generator of the group 7;(C*) ~ Z under the homomorphism induced by the mapping
C* — O0,, C X* onto the C*— orbit O,, of a base point z, € F}.

(7.5) Set X = C? and q(z, y) = 22 — y® € Clz, y]. Show that the group G =
m (X \ Fo) can be identified with the 3-braid group Bj :=< 01, 03| 010201 = 090109 >,
the generators oy, 0o € G being vanishing loops of the divisor Fy = I'y 3 := ¢*(0) C X.
Describe the subgroups G4 and K = [G, G] in this example (see the preceding exercise).
Verify that one can take for v the element (0,05)® which generates the center Z(G) ~
Z(B3) ~ Z. Putting a = oy check that G =<< a >>, and of ¢ Z(G) whatever
ceZ\ {0} is.
Hint. One can use the presentation of —q as the discriminant of the cubic polynomial
3 — (y/V/4)t + £/v/27 € C[t], and consider the Vieta covering C? — C?2, which is a

branched Galois covering ramified over I'y 3, with the Galois group Ss.

(7.6) Let X be an irreducible quasiprojective variety, D C X be an irreducible hy-
persurface which contains the singularity locus sing X of X, and C C D be a non-empty
smooth subvariety such that C'N( sing XU sing D) = (). Consider the Kaliman transform
oc : X' = X of X along D with center C. Show that m(X’) ~ m(X\ sing X).
Hint. Replace the triple (X, D, C') by the triple (X\ sing X, D\ sing X, C') and apply
Lemma 5.1.

(7.7) For q € Clzy, ...,z,], ¢(0) =0, denote hy =qoon,(z1, ...,2,)/T,, where
on : C" = C", op(x1, -y Zn) = (T1Tp,y « -+, T 1T, Tp) -

Put X =¢7'(0) C C" and X'=h'(0) C C". Assume that 0 € X is a smooth point.
Verify that X' is the Kaliman transform of X along D := X N {z, = 0} with center
at the origin.

Hint. Notice that o, : C" — C" is the Kaliman transform of C" along the hyperplane
{z, = 0} with center at the origin (cf. the proof of Lemma 6.3).

Example 7.2. ** Consider the smooth surfaces X sm = Py, m(0) € C* defined
by the polynomials

(z2™ + 1)F — (yz™ 4+ 1)t — 2°

Zm

Pk,l,s;m = € C[$, Y, Z]a

24We are thankful to V. Sergiescu for useful discussions related to this example.
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where 1 <m <s. For (k,1)=(k,s)=(,s) =1 and m =s we have that Xj;,, =
Yi1s is an acyclic surface (see Example 7.1)?°. Moreover, it can be represented as a cyclic
C*— covering of a contractible surface Xj; 1= X411 C C? branched to order s along
the curve Ly, := X3, N{z =0} ~ C in X;,. However, in general, the acyclic surface
Y} 15 is not contractible and possesses quite a big fundamental group.

Indeed, Exercise 7.7 above shows that o3| Xy ism @ Xkism — Xkism—1 is the Kali-
man transform of Xy ;-1 along D := Xy ;sm_1N{z =0} with center at the origin.

The repeated application of Lemma 5.1 and Exercise 7.6 yield the isomorphisms

1 (Yk,l,s) =m (Xk,l,s,s) =T (ch,l,s,s—l) ... E=Em (Xk,l,s,l) =T (ch,l,s,O \ {po}) )

where X0~ Xggs:={2F — ¢y —2° =0} C C3, and py = (-1, —1,0) € Xy 50 is
the only singular point of Xj ;0. Whence, Xj;,0 ~ Xj ;s is homotopically equivalent
to the cone over the Pham-Brieskorn 3-manifold My ;s := Xgis N S5 (the link of the
surface singularity of Xj,;s in the sphere S°). In turn, Xy, \ {0} is homotopically
equivalent to the link My, and thus m(Yy,,) ~ m1 (M) := Gy -

The structure of these groups is well known (see [Mil 3]). The groups G}, are finite
iff 1/k+1/l+1/s > 1, infinite nilpotent iff 1/k+1/I+1/s=1. If 1/k+1/1+1/s < 1,
then G}, , =[Gk, Giys), Where

Gris =<1 %2, B =% =7 = NP0V >
is a central extention of the Schwarz triangular group
o 2 _ 12 32 _ k_ 1 _ s _
Typs =< by, by, b3 | bY = by = b3 = 1, (b1bg)" = (bab3)" = (b3b1)* =1 >,

which is a discrete group of isometries of the non-euclidean plane generated by reflections
in the sides of an appropriate triangle.

Note that for 1/k+1/l4+1/s < 1 the triangular group Ty, s contains a free subgroup
with two generators. Therefore, the group G;c,l’s also contains such a subgroup (ezercise);
in particular, it is not solvable. Observe that this group is perfect, i.e. it coinsides with
its commutator subgroup; indeed, its abelianization H;(Yj,;,; Z) is trivial. On the other
hand, it is known that for (k, ) = (k, s) = (I, s) = 1 the Pham-Brieskorn manifold
My,.s is a homology 3-sphere; see [HNK, Appendix 1.8].

Recall that Xj,; \ Ly; ~ C?\ Ty, where T'y;:= {2F — ¢y =0} C C? (see Example
6.1). The group By, := m(Xk,; \ Liy) =~ m1(C? \ I'y;) has the presentation By, =<

%By Lemma 5.2, all the surfaces Xy s.m, m=1,...,s, are acyclic, too.
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a, b|a* = b > (see e.g. [Di2]). In turn, the group m(Yy,s \ {# = 0}) is isomorphic
to an index s subgroup of the group By, with a cyclic quotient. By Lemma 2.3(a),
Ker (i, @ m(Yeus \{z =0}) = m(Yi1s)) =<< o >>, where a € By, represents a
vanishing loop of the line L;; C X;;. Let p, ¢ € Z be such that kp+Iqg=1. Then one
may take a = a%P € By, (ezercise).

Therefore, for 1/k + 1/l +1/s < 1 and (k, 1) = (k,s) = (I, s) = 1 the group

kts = M1 (Yeys) is isomorphic to an index s subgroup of the quotient
Biys:= By, <<af>>=<a,bld" =V, (W) =1>.

In particular, for £ =2, =3, and s > 7 we have that By 3 = B3 is the 3-braid group
with generators oy, 0o € Bs being vanishing loops of Ly3 in X535 (see Exercise 7.5
above), a = 010901, b= 0103, and GI2,3,5 is isomorphic to an index s subgroup of the

group

By 3 s = B3/ << 0] >>=< 01, 09| 010201 = 020109, 0] =05 =1> .

8 Multicyclic C*— coverings

8.1 Contractibility of multicyclic C*— coverings. Examples

To clarify the very idea of the construction of contractible multicyclic C*— coverings due
to Koras and Russell [KoRu 1, KoRu 2], let us start with simple examples. We exhibit

two different approaches (compare, for instance, Examples 8.1 and 8.3 below).

Example 8.1. (The Russell cubic threefold) The polynomial ¢y = z(zy + 1) €
C|z, y] is the hyperbolic modification of the polynomial h = z + z?> € C[z|. Thus,
it is a quasi-invariant of weight 1 of the C*— action (), (z,7)) — (Az,A7ly) on
C?. The zero fiber Ty = ¢, 1(0) is a disjoint union of two affine curves isomorphic to
C and to C*, respectively. Consider the two-fold C*— covering F, — C? branched
along Ty, given as the surface Fy = {z + z%y + 2> = 0} C C® with the projection
09 1 Fy — C% (z,y,2) — (z,y). Thus, ¢o is C*— equivariant with respect to the
actions (\, (z,y,2)) — (\2z, A2y, Az) on Fy and (), (z,9)) — (A%z,A%y) on CZ
The restriction of the above C*— action on F, to the subgroup wy = {\? =1} ~ Z/2Z
of C* yields the monodromy of the covering F, — C?. Since this monodromy acts

trivially in the homology of Fy , by Corollary 7.2, F, is Zs— acyclic.
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Furthermore, by the Sebastiani-Thom-Némethi Theorem?® (cf. e.g. [Di 2, Ne, tD 2,
Proof of Thm. B]), the generic fibre Fy = ¢~'(1) of the polynomial ¢ = (z +2%y) + 2% €
C[z,y, z] is homotopically equivalent to the join?" T';xZ/2Z, where T'; := ¢5*(1) C C?,
i.e. to the suspension 28 over I';. Since the curve I'y ~ C* is connected, the fibre F is
simply connected, and hence, G := 1 (C?\ Fy) ~ Z (see Exercise 7.3).

Next we pass to the three-sheeted cyclic C*— covering over C? branched along Fy,

i.e. to the hypersurface
X={z+2*y+2+t*=0}cC’

with the projection @3 : (z,y,2,t) —> (z,y,2) onto C?® (we call X the Russell
cubic threefold). Since the polynomial ¢ is a quasi-invariant of weight 2 of the above
C*— action on C2, we are under the assumptions of Kaliman’s Theorem 7.1. Due to this

theorem, X is a contractible smooth affine variety.
Exercise (8.1) Verify that the smooth cubic threefold
X'={z+22y++t*=0}cC*
is simply connected, but not acyclic (what are the homology groups of X'?).

Example 8.2. (tom Dieck [tD 2, Thm. B]) More generally, let X be a smooth
contractible affine variety equipped with a regular C*— action ¢, and let ¢ € C[X] be
a quasi-invariant of ¢ of weight d # 0 such that Fj := ¢*(0) is a smooth reduced (not
necessarily irreducible) divisor in X. Fix s1, s € N such that d, s;, sy are pairwise

relatively prime. Consider the smooth affine hypersurface
Yis = {q(z) + 2 +t2 =0} C X x C%.

We assert that Y, 5, is contractible.

Indeed, consider first the cyclic C*— covering Yy, — X, Y;, = {¢(z) + 2 = 0} C
X x C, branched to order s; along Fp. Then Y, C X x C is a smooth reduced
irreducible divisor defined by the quasi-invariant ¢(z, 2) := ¢(z) + 2** € C[X x C] of

26This theorem says that a generic fibre of a polynomial p(z) + q(y), p € Clz1,...,2%], q¢ €

Cly1,---,y], is homotopically equivalent to the join of generic fibres of the polynomials p and g.
2TRecall that the join X xY of two topological spaces X, Y is the cycinder (X xY) x [0, 1] with

the base (X xY) x {0} resp. (X xY) x {1} being retracted to X x {0} resp. to ¥ x {1}.
Z8that is, to the cycinder Ty x [0, 1] with the bases T'; x {0}, I'1 x {1} being contracted each one to

a point.
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weight ds; of the C*— action (), (z, 2)) — (£(\*1, z), A%2) on X x C. Since the
monodromy group G =~ Z,, of the covering acts trivially in the homology of Yj,, by
Corollary 7.2, Y;, is Z,— acyclic for any prime p which is prime to s;, and hence, for
any prime divisor p of s,.

Besides, the fibre F; = ¢7'(1) of the regular function ¢ € C[X] is connected (see
Exercise 7.3). As above, it follows from the Sebastiani-Thom-Némethi Theorem that the
fibre ¢;'(1) = {q(z) + 2%t = 1} of the function ¢; € C[X x C] is simply connected, and
hence, we have 71 ((X x C)\Ys,) ~ Z.

Therefore, by Kaliman’s Theorem 7.1, the total space of the cyclic C*— covering

Y;, s, — X x C branched to order s, over Y, is asmooth contractible affine variety.

Applying Kaliman’s Theorem 7.1 successively in the same way as above, one can easily
get the following result (cf. Koras and Russell [KoRu 2, (7.14)]).

Theorem 8.1. Let X be a smooth contractible affine variety equipped with an ef-
fective C*— action. Let ¢; € CIX], i = 1,...,k, be a sequence of quasi-invariants
of positive weights dq,...,d, respectively, and let sq,...,s; be a sequence of positive

integers. Suppose that the following conditions are fulfilled:

(1) Foreach i=1,...,k, F,:=¢q}(0) is a smooth reduced irreducible divisor, the union
U¥ F; is a divisor with normal crossings, and the group m (X \U¥ F}) is abelian;

(¢) (diysi) = (8i,85) =1 forall i,j=1,...,k;

(13) F; is Z,— acyclic for each prime divisor p|s;, i=1,...,k.

Let Y — X be a multicyclic covering branched to order s; along F;, i =1,...,k,

ie. Y =Y . inthe tower of cyclic C*— coverings
}/;1...51‘, — Y;l...sk,1 — ... }/;152 — }/;’1 — X7

where Ys, . — Y5, s, s a C*— covering branched to order s; over the preimage of
the divisor®® F; in Y,

Then Y s a smooth contractible affine variety given in X x CF by the equations

1---84—1 *

zi=¢qi(z), i=1,...,k.

Remark 1. In the case when X C C", and g¢; is a variable, ¢; = z; say,
the equations of the cyclic covering Y;, — X can be obtained from the equations

Pi(z1,...,2y) = 0, i =1,...,m, which define X, by the substitution z; — z,

2%In other words, if A = C[X], then Y =spec A[ /g1, ..., 4/qx)-
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ie. Y, ={P(x1,...,x/,...,2y,) =0, i =1,...,m} C C". In particular, if X isa

hypersurface in C", sois Yj;.

Remark 2. To construct contractible C*— invariant hypersurfaces, one can use the
hyperbolic modification in the same way as in Example 8.1 above. Recall that, if X =
{h =0} C C" is a smooth contractible hypersurface, then Y = Y, = ¢~(0) c C**!,
where ¢(Z,y) = @, is isomorphic to the Kaliman transform of X x C along X with
center at the origin (Lemma 6.3), and so, by Theorem 5.1, Y is a smooth contractible
hypersurface, too. Moreover, ¢ is a quasi-invariant of weight 1 of the C*— action
(A, (®,u)) — (AZ,A\"'u) on C™! with the only fixed point at the origin (of hyperbolic
type with weights (1,...,1,-1)).

If we take k£ smooth hypersurfaces H; = {h;(Z) =0}NX in X, ¢=1,...,k, which
hi(uz)

satisfy the condition (i) above, and put ¢;(zZ,u) =
of weight 1 of the above C*— action on Y . The hypersurfaces F; := ¢; ' (0)NY, i =
1,...,k, in Y also satisfy the condition (i) (note that F; is the closure of the C*— orbit
of the subvariety H; C X ~YNH CY, i=1,...,k, where H := {u = 1} ; see Exercise

6.1). This construction can be illustrated by the following simple example.

, then the ¢; are C*— invariants

Example 8.3. (The Russell cubic threefold once again; see Koras-Russell [KoRu 2];
cf. Example 8.1.) Starting with X = C?, fix two smooth curves (f) and (g), where
f, g € Clz, z] , isomorphic to C and such that (f),(g) meet transversally at the origin
and in k other points, k¥ > 1. For instance, take f = 2, g = z + 2 + 22. Then the
Kaliman modification Y of X x C along X with center at the origin is nothing but C3.
The plane curves (f) and (g) give rise, respectively, to the surfaces (F) and (G) in
C3?, where F = W, and G = W . Observe that (F) and (G) are isomorphic
to C?, meet transversally, and m (C3\ ((F) U (Q))) ~ Z (ezercise).

In our particular example F' = 2z and G = z + z + z%y. The polynomials F and
G are C*— quasi-invariants of weight 1 with respect to the action (A, (z,y,z2)) —
(Az, A 'y, Az) on C?. We may also take Hy = {y = 0} for the third surface transversal
to the first two (F) and (G) .

Fix two relatively prime positive integers s, s3. Passing to the bicyclic C*— covering
of Y ~ C? branched to order s; along (F) and to order s, along (G), we obtain a
hypersurface Y, ;, C C* given by the equation

T+ 2%y + 25+ 152 =0,
which is a smooth contractible threefold. If s; = 2,55 = 3, we get the Russell cubic.
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More generally, passing to the tricyclic covering of C? branched to order sy resp. si, so
along the surface H, resp. (F), (G), where (s;,;s;) = 1, i # j, yields the smooth
contractible hypersurface {r + x?y* + 2%t +t2 = 0} in C*.

Remark. A theorem due to Koras and Russell [KoRu 2, Thm. 4.1] says that any
smooth contractible affine threefold with a ’good’ hyperbolic C*— action appears in the

same way as in the above example.

8.2 The logarithmic Kodaira dimension of multicyclic coverings

Lemma 8.1. Let V' be a smooth projective variety, and let L be a line bundle on V .

(a) (Mori [Mo, Prop. 1.9]) L is big (i.e. k(V,L) = dim ¢V ) iff for some k € N the
multiple kL can be written as kL = A+ E , where A is an ample line bundle on V ,

and E is an effective oneC.

(b) (Kleiman-Kodaira; see e.g. [Wil, (2.3)], [KMM, Lemma 0-3-3]) If L is ample (resp.
big), then for any line bundle L' on V and for any k € N large enough, kL — L' is
ample (resp. big), too.

Proof of (b). Recall the Kleiman criterion of ampleness [Kl]: L is ample iff it is
positive on the cone NE;(V) (with the origin deleted) of numerically effective 1— cycles
on V modulo numerical equivalence. This finite dimensional cone is closed, and hence,
it has a compact support on the unit sphere. Thus, the openness of ampleness follows.

Let L be big, and let kgL = A+ E be a decomposition as in (a). Then for ny € N
large enough, we have ngkoLl — L' = (ngA — L') + noE , where nyA — L' is ample.
Therefore, by (a), mokoL — L' is big. It follows that for any k > ngko the divisor
kL — L' = (nokoL — L") + (k — ngko)L is big. O

Proposition 8.1. (Kaliman [Ka 1, Lemma 11]) Let X be a quasi-projective variety,
(V,D) be an SNC-completion of X, and Z = Y% 7Z; be an SNC-divisor on V such
that DU Z is also an SNC-divisor, and D and Z have no irreducible component in
common. Let Y =Y; — X, 5:= (s1,...,5k), be a ramified covering branched to order
s; over Z; X, i=1,...,k. Then

F(Y) = h(V, Ky + D +3°(1 = )20,

i—1 Si

30that is, E admits a non-zero holomorphic section.
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Proof. One can compactify Y by an SNC-divisor D’ (i.e. Y =V’\ D) to obtain a

commutative diagram of morphisms

Y — 1%
J K
X — Vv

Then ¢*(Z;) = s;Z, + E;, where each E; is ¢— exceptional, i.e. codim y¢(E;) > 2.
The restriction ¢ | (V'\ (D'UZ")) : V'\(D'UZ') -V \ (DU Z) is an étale covering.
Therefore, by the Logarithmic Ramification Formula (R), we have

Kyw+D +7 =¢*(Ky+D+Z)+ R,
where R is an effective ¢— exceptional divisorin V' (see Proposition 3.1.(f),(g)). Hence,

Ky+D'=¢p"(Ky+D+Z)+R—-Z'=¢"(Ky + D+ Z)+
ko1 ko1 k 1
+0' (L (-)Z) + R+ Y —Ei= ' (Ky+ D+ (1= )Z) +E,

i=1 4 i=1 °1 i=1 Si
where E := ¥, LE; + R is a ¢— exceptional Q- divisor. By [li 1, Lemma 1] or
[li 3, Thm. 10.5], k(V', ¢*(D;) + E) = k(V, D;) for any Q- Cartier divisor D; on
V', where E is a ¢— exceptional divisor in V' (indeed, a meromorphic section of the
associated line bundle [¢*(D;)] with poles at most along E has no pole). Thus, the

assertion follows. O

Corollary 8.1. ([Ka 1], [KoRu 2, Cor.6.2]) If 3" = (s},...,s}) and s, > s;,i =
1,...,k, then k(Yy) > k(Ys).
Corollary 8.2. If X\ Z is of log-general type (i.e. k(X \ Z)=dim ¢X ), then for
si, t=1,...,k, large enough Y3 is of log-general type, too.
Proof. Indeed, by Lemma 8.1(b), for s; >> 1, i =1,...,k, we have
k
_ 1 _
E(Y:) =k(V, Ky +(D+2) =Y. =Z) =k(V, Ky + D+ Z) = K(X \ Z) = dim¢c X .

i=1 i

|

Proposition 8.2. (see [Ka 1], [KoRu 2, Prop. 6.5]) Let Yz C C*, where 5 =

(s1, 82, 83), and (s;, s;) =1, i # 4, be given as*

Y = {z + 2%y + 2% + ¢ = 0}.

31This is a particular kind of the Koras-Russell threefolds; see Example 8.3 above.

47



If s1, 89, 83 >> 1, then Y5 is an erotic C*, and k(Ys) =2 .

Proof. Set
X={z+2°u+us+us=0}CcC* and Z={u;=0}CX, i=1,2,3.

Evidently, X ~C?, Z;,~C? i=1,2,3, and Z := Z;UZ,UZ; is an SNC-divisorin X .
The threefold Y5 is a tricyclic covering of X branched to order s; along Z;, ¢ =1,2,3,
with the covering morphism 5 : (z, vy, 2, t) — (x, u1, ug, uz) := (z, y*, 2°2, t*3) . By
Theorem 8.1, it follows that Y5 C C* is a smooth contractible affine hypersurface. Due
to the Dimca-Ramanujam Theorem 4.2, Y5 is diffeomorphic to RS . It remains to show
that k(Yz) =2 when sy, sy, s3 are large enough.

Due to Corollary 8.1, k(Ys) > 2 for sufficiently large s;, so, s3 if it is so for a
particular choice of 3= (s1, s9, s3) (even without the assumption of relative primeness,
which guarantees the contractibility).

Note that Ys C C* is invariant under the hyperbolic linear C*— action on C*
G: (\ (7,9, 2, 1) — (X2, A%y, Xz, \%),

where

a4 = $152583, b = S983, ¢ = 5183, d = $159.

The morphism ¢z : ¥z =+ X is a C*— covering with respect to the C*— action G' on
Ys and the C*— action

G : (N (z, u1, ug, uz)) — (A%, A%y, Aug, A\u3)

on X . We have spec (C[X])? := X//G ~ S, where S :={u+u*+v+w=0}cC C?
(clearly, S ~ C2). Indeed, (C[X])® = Clu, v, w], where u = w1z, v = Uy, W :=
uyug € (C[X])C are the basic G— invariants. This yields the following commutative

diagram of morphisms:

Y5 Y5//G = Ss
%3 Dy

x —". x/G=5s,

where Sg:=Y;//G = spec (C[Y5])¢ is a normal surface. A generic fiber of the quotient
morphism ps : Y5 — S; (i.e. a generic orbit) is isomorphic to C*. Since k(C*) =0,
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from the Addition Theorems 3.1(c),(d) 32 we obtain

Thus, it remains to find a particular triple 5= (s1, s, s3) such that k(Ss) =2.

Note that the threefold Y5 is the closure of the G— orbit of the surface T3 := Y;NH ,
where H := {y = 1} C C* (see Exercise 6.1). The surface Ty is invariant under the
induced action of the cyclic subgroup wy C C* on Yz, and S;=Y5//G ~ Ts/wy .

Take s =pq, so = p, s3 =¢q, where p, ¢ € N are prime and distinct. Then we have

Yy = {z 4 22yP? 4+ 22 + 19 = 0} , and
G\, (@, 9, 2, 1)) = (W', APy, X2, X091

Therefore, w, = wy,y C C* (= the kernel of non-effectiveness of the C*— action G on
Y; ) acts triviallyon Ty = ;N H = {z +2?>+ 2 +t1 =0} C C*. Hence, S; =Y;//G ~
T5 C Y3 . The projection

pows|Ts : Ts = S, (x, 2z, t) —> (u, v, w) = (x, 27, t9),

is a bicyclic covering branched to order p resp. ¢ over the curve Cy :={v =0} C S
resp. Cy:={w =0} C S. By Corollary 8.2 above, we have k(Ss) = k(T%) = k(S\ (C; U
(,)), if p and ¢ are sufficiently large. Thus, the proof is completed by the following

simple exercises. O

Exercises Show that
(8.2) (S, CLUCy) ~ (C?%, D, UD,), where Dy :={y =1}, Dy := {y = 2%} C C%
(8.3) and that33 E((:2 \ (D1 U Dg)) = 2.

Remark (see [KoRu 2, Prop. 7.8.]) However, for s; = 1 the threefold Ys C C* is
dominated by C3; in particular, it has the log-Kodaira dimension k = —oo . Indeed, if
sy =1, thenforany = # 0, y isexpressed in terms of z and ¢, whence the part {x # 0}
of the threefold Y5 is isomorphic to C? x C*. The ’book-surface‘’ B := {z =0} C YV
is the product C x [y, s, , where T, := {252 +¢%3 = 0} € C?. Fix a smooth point
p € L'y, s,, and perform the Kaliman modification o : Y7 — Y5 of Y; along B with
the center C := C x {p}. In this way, we replace B by a smooth surface F ~ C2  and
replace the function z by a function f : Y] — C such that all the fibers of f are

32they are still available, although the quotient surface Sz might be singular.
33¢f. [Ka 1, Lemma 16], [KoRu 2, Lemma 6.3].
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smooth reduced surfaces isomorphic to C2. By a theorem of Miyanishi [Miy 1], Y7 ~ C3,
and so o : C? ~ Y] — Y is a birational (whence, dominant) morphism.

In the case of Russell’s cubic X, = {z + 2%y + 2> + > = 0} € C* a dominant
morphism C?® — X, can be given explicitly as (u, v, w) — (z, ¥y, z, t), where

u— (v?v +1)? = (v?w +u/3 —1)3
02

(‘rL‘a Y, z, t) = <—U,

v+ 1, u2w+u/3—1> )

9 The Makar-Limanov invariant of the Russell cubic
threefold

Let X be an affine variety. If X is irreducible, then the algebra A = C[X] of regular
functions on X is an integral domain. In the sequel, this is supposed to be the case.
Makar-Limanov [ML] (see also [KaML 3]) introduced a subring ML(A) of a ring A such
that ML(A) is invariant under ring isomorphisms; that is, if B ~ A, then ML(B) ~
ML(A). He proved the following

Theorem 9.1. (Makar-Limanov [ML]) Set Ay = C[Xy], where X, = {z + 2%y +
22 +1t3 =0} C C* is the Russell cubic threefold. Then ML(Ag) is not isomorphic to
C = ML(C|z,y,z]). Thus, Xy is not isomorphic to C*, and hence, X, is an ezotic
C3.

Later on, Kaliman and Makar-Limanov [KaML 3] extended this result to all the Koras-
Russell threefolds. This was one of the crucial steps in the recent proof of the Linearization

Conjecture for n = 3 (see Koras and Russell [KoRu 2, KoRu 3|, Kaliman, Koras, Makar-
Limanov, Russell [KaKoMLRul).

Theorem 9.2. [KoRu 2, KoRu 3, KaKoMLRu, KrPo, Po| Any regular C*— action
on C3? is linearizable (i.e. it is conjugate with a linear C*— action on C3 ). Moreover,

any reqular action of a connected reductive group on C? is linearizable.

Here we give an exposition of Makar-Limanov’s result following a simplified approach
due to Derksen [De].

9.1 C,— actions and locally nilpotent derivations

Definition 9.1. Let, as before, X be an affine variety, A = C[X]| be the algebra of
regular functions on X , and LND(A) be the set of all locally nilpotent derivations of
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A, i.e. the set of all C— linear homomorphisms A Y| satisfying the Leibnitz rule,
and such that for any a € A, 9"a = 0 for some n = n(a) € N. Any C,— action®

A:Cy x X — X induces an algebra homomorphism
A5 At~ C[CL x X], pe A p(A(t,x)) € A[t].

Set Op = 4],y (poA). Then 0 € LND(A) (ezercise). Vice versa, given 9 € LND(A),

consider the algebra homomorphism ¢y : A — A[t] given by

0 idip

va(p) = exp(td)(p) =D

=0

T p € A.

Exercises (9.1) Show that ¢y corresponds to a C,— action on X , and that this
action is trivial iff 0 = 0.

(9.2) Prove the equality A% = A% where A% :=Ker 9, and A% is the subalgebra
of invariants of the C,— action ¢y on X. Verify that this subalgebra is algebraically
closed.

(9.3) Let 0 € LND(A) \ {0}. Verify that the transcendence degree of the algebra
extension [A : A?] is 1. More precisely, let 79 be any element of A such that dry € A?
and 7y ¢ A%. Show that the subalgebra A?%[ry] C A is a free A°— module, and for any
a € A there exists b€ A%\ {0} such that ba € A%[r).

(9.4) Given a linear representation ¢ : C, — GL,(C), t > ‘B, where B €
L,(C), verify that it provides a regular C,— action on C" iff it is unipotent, i.e. iff B is
a nilpotent matrix. Or, equivalently, iff the associated derivation 0,(p) =< Bz, grad p >
of the polynomial algebra CI" = C[zy,...,z,] is locally nilpotent.

(9.5) Let ' be an irreducible affine algebraic curve. Show that, if C, actson I' in

a non-trivial way, then I' ~ C.

Definition 9.2. Let A be an algebra over C . The Makar-Limanov invariant ML(A)
of A is the subalgebra ML(A) := Nger.nn(a) A% C A.

The Derksen invariant Dk(A) of A is the smallest subalgebra of A which contains
A9 for all @ € LND(A) \ {0}.

Clearly, ML(C") = C, and Dk(CP’) = CI"l.

34 As before, C4 stands for the additive group of the complex number field; also, C™ = Clz1,...,%n)

denotes the polynomial algebra in n variables.
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Theorem 9.3. (Derksen [De]) Dk(Aq) # Ao. Hence, Ay is not isomorphic to C[3,

and so, the Russell cubic Xy 1is not isomorphic to C?, i.e. Xy is an exotic C3.

Before proceeding with the proof, we recall the following notions (see e.g. [Bou]).

9.2 Degree functions, filtrations and the associated graded al-

gebras
Let A be an integral domain (usually, it will be also an algebra over C).

Definition 9.3. A degree function deg : A — ZJ{—00} on** A is a map which

satisfies the following axioms:

(d1) deg 0 = —o0, and dega € Z for all a#0; deg1=0.
(d2) deg fg=deg f+deg g forall f,ge A
(d3) deg (f + g) < max{deg f,deg g} for all f, g€ A.

Definition 9.4. A degree function determines an ascending filtration F = {F*A} on
A, where F'A:={a € A|deg a <i}. This filtration satisfies the following conditions:

(f1) F'A is a C-— linear subspace of A, and F'A C F**'A (ascending).
(f2) A = U;jez F'A (ezhaustive); ez F'A = {0} (separated); 1 € FPA\ F~'A.
(f3) (F'A\ F*YA)(FIA\ FI1A) C (FHA\ FHi1A).

Clearly, F°A C A is asubring (resp. subalgebra), and A represents as an F°A— module.

Vice versa, given a filtered domain (A, F)) which satisfies the conditions (f1)-(f3),
one can define a degree function dr on A as follows: dp(0) = —oco0 and dp(a) =i iff
a€ FPA\ F'A (exercise).

Definition 9.5. The associated graded algebra Gr A = @;czGr*A of a filtered
algebra (A, F), where Gr'A := F'A/F'"'A, can be identified with the algebra of
the Laurent polynomials {S%*! fiu'}, where f; is either zero or is equal to gr f; :=
fi+F"*A e Gr'A forsome f; € FP’A\F*'A. Due to the property (f3) of filtrations, the

mapping gr : A — Gr A, gr f= f , is a homomorphism of multiplicative semigroups.

Definition 9.6. A weight degree function on the polynomial algebra C[™ is a degree
function d such that d(p) = max;{d(m;)}, where p € CI"l is a non-zero polynomial,

and m; runs over the set M(p) of all the monomials of p. Clearly, d is uniquely

35In a similar way, one may define a degree function with values in arbitrary ordered semigroup.
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determined by the weights d; :== d(z;), i =1,...,n. A weight degree function d defines
a grading C = @jeZCEZ:L', where Cgf]j \ {0} consists of all the d— quasihomogeneous

polynomials of d— degree j . Accordingly, for any p € CI"I\ {0} we have a decomposition
d(p)
p= > p; into a sum of d— quasihomogeneous components; here pg := pq( is called
i=m(p)
the principal d— quasihomogeneous component of p. It is clear that (pq)s = paqa-

Let X = (I) C C™ be a reduced irreducible affine variety defined by a prime ideal
I ¢ C". Denote A= C[X]=ClM/I, andlet I be the (graded) idealin C[" generated
by the principal d— quasihomogeneous components p;, where p runs over I. We say

that the weight degree function d is appropriate for I if the following conditions hold:
(x) 0eX, ie. ICa:=(x1,...,Zn);

(%) the ideal T is also prime, and 2; ¢ I Vi=1,...,n.

For fe A\ {0} set

da(f) = min{d(p)},  where  [f]:={pe C"| p|X = f}.

Exercises (9.6) Show that d4(f) = d(p) for a polynomial p € [f] iff py ¢ I.

(9.7) Assuming that d is appropriate for I, deduce that d4 is a degree function on
A, and that da(z;) = d(z;) = d;, where Z;:=x;| X =x; +I1 € A, i =1,...,n. Hence,
due to the property (d2) of a degree function, da(m|X) = d(m) for any monomial
m € C",

Indication. Suppose that f € A and da(f) = —oo, that is, there exists a sequence
pj € CM j =1,..., such that p; | X = f and jliglod(pj) = —00. For p € CI" set
1(p) = minenrp){degm}, where deg is the usual degree. Then p € o) (as above,
a C Cl denotes the maximal ideal which corresponds to the origin of C"). By the
condition (%), & := (&1,...,%,) C A is a proper ideal, and we have f = p;|X €
ar®i) 5 =1,.... Thus, f € Npen@" = {0} C A (by the Krull Theorem), and so,
f=0. Hence, da(f) > —oo forany f e A\ {0}.

The rest of the exercise, including checking of the other properties of a degree function,

can be done without difficulty.

(9.8) let F = {F'A} be the filtration on A determined by the degree function
ds, and let A = Gr A be the associated graded algebra. Verify that the elements
T1,...,%, € A, where Z; = gr I; € A, generate the graded algebra A.
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Lemma 9.1. (Kaliman, Makar-Limanov3®) Keeping the same notation and assump-

tions as in the above exercises, we have
A~cClM/I =C[X],

where X = (I) C C" is the affine variety defined by the prime ideal” I.

Proof. According to Exercise 9.8, the elements Z1,...,Z, € A generate the graded
algebra A. Henceforth, A = Clrl/J, where J c C" = C[Z,,...,%,] is the ideal of
relations between the generators Zi,...,Z, in A. Thus, we must show that J = 1.

d(p) d(p)—-1
Fix p= Y p;€l. Then p=0 mod [, i.e. p,=— > p; mod I, and hence
i=m(p) i=m(p)
d X) < max dalp; | X)} < max dip;)} <d(p)=d .
Apa )< max  {dalpi| X} S | max  {d(p) < dlp) = dipa)

Therefore, py| X € FP~1A.

Since d is appropriate for I, by Exercise 9.7 we have d4(m;|X) = d(m;) = d(p)
for any monomial m; € M(pg). Thus, m;| X € FP A\ FIP)=1A for any m; € M(pa),
and pg | X = Y empy (M| X) € FiP)=1 A, Tt follows that (m; | X)" := gr (m;|X) =
mj(1, ..., %) € A% and ¥, crrgpy(my| X)' =0 in AP e py(Fy,...,2,) =0
in AP, Whence, py € J, and so, I C J.

d(f) .
Vice versa, fix f= Y f; € J. Itisclear that f;(Zi,...,%,) € A" (indeed, as above,
i=m(f)

this is true for any monomial m € M(f;) ). Since dgj) [i@1, o 0 Zn) = f(Br,..., ) =
0, we have f;(Zi1,...,Z,) =0 for each i = m(f), Zm,(gl)(f) Thus, J is a homogeneous
ideal of the d— graded algebra CI (see Definition 9.6). Hence, it is enough to show
that J, c I for any d— homogeneous component J, of J.

Let f € J, be a d— quasihomogeneous polynomial of d— degree r = d(f). For
any monomial m € M(f) we have, as above, that m|X € F'A\ F" A, and so,
m(@1,...,3,) € A7, Since Ypenr(py M(Z1s- .-, 3n) = f(Z1,...,30) = 0, it follows that
fIX € Fr1A, ie. da(f|X) < r = d(f). By Exercise 9.6, this implies that f; € I.

But f = f;, and so, we are done. O

Gradings and C*— actions (see e.g. [KamRu, Ru 3]) Let X be an affine variety

endowed with a C*— action ¢. Then ¢ induces a grading A = @,czA™ on the algebra

36 A personal communication. We place here this lemma and the preceding definition and exercises
with a kind permission of Sh. Kaliman.
37In fact, the same is true under the weaker assumption that Tisa proper prime ideal, instead of the

conditions (xx) above.
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A = C[X] of regular functions on X , where A" := {f € A| foty = A"f} consists of
the quasi-invariants of weight n of t.

Vice versa, given a grading A= @nezﬁ" of A= C[X\ | , one can define a C*— action
on A by setting t5(f,) = A" f, for f, € /T”, n € Z , and extending it to the whole A in
a natural way. If A s finitely generated, then it also has a finite system of homogeneous
generators (fny,---» far)s  Ju; € A™. The morphism F = (fu,,..., fn,) : X < CF
is an embedding equivariant with respect to the linear C*— action ¢\(zy,...,z) =

o~

(A"Zp,, ..., A"z, ) on CF and the induced C*— action on X.

Gradings and locally nilpotent derivations (see e.g. [ML, KaML 3, De|)

Definition 9.7. Let 0 € LND(A)\ {0}, where (A, F) is a filtered domain. Suppose
that

(x) there exists k € Z such that OF'A C F***A for all i € Z.

Denote by deg 0 = ky the minimal such k. Define d = grd: GrA — Gr A as
follows: for f € FiA\ FilA, set df = Of + Fi*ho-14  and then naturally extend 9
to the whole algebra Gr A.

Exercises (9.9) Given 9 € LND(A) \ {0}, verify that § € LND(Gr A) \ {0},
where LNDgr(ﬁ) denotes the set of all homogeneous locally nilpotent derivations of a
graded algebra A= @nezﬁn.

(9.10) Suppose that a filtered domain (A, F') is finitely generated. Show that, given
0 € LND(A) \ {0}, the condition (%) is fulfilled.

(9.11) Let A = @,czA" be a graded algebra. Show that, given any 9 € LNDgr(ﬁ),
there exists ko = ko(0) € Z called the degree of & such that 9(A") c Antho. Fur-
thermore, show that, if f = YF £ € Ker = /Tg, where f; € Ai, then f; € ﬁg,
1=k,...,k+1. Therefore, A is a graded subalgebra of A.

(9.12) Let A be an integral domain. Given 0 € LND(A), set degy, f = n if
Ol f =0 and 0"f #0; degy, 0 = —oo. Verify that deg, is a degree function on A
(over N). Given f,g € A\ {0}, show that 9(fg) = 0 implies df = dg = 0. Check
that, if A is a C— algebra, then 0\ =0 for any A\ € C.

(9.13) Let A = Clz, y]. Consider the C,— action ¢y : (z,y) — (z,y + Az?) on
C2 Let 0, be the locally nilpotent derivation which corresponds to ¢ . Show that
dy(x) =0, 0,(y) = 2* and 95(y) = 0. Deduce that deg, z =0, deg, y =1 for
the associated degree function deg, on A, and so, that deg, f = deg, f for any
polynomial f = f(z,y) € A.
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9.3 Gradings and LND’s on Russell’s cubic

From now on A = Ay = Clz,y,2,t]/(py), where py = x + 2%y + 23 + t?, will be the
algebra of regular functions on the Russel cubic threefold X, C C*. Consider the weight
degree function deg z = —1,degy = 2,deg z = degt = 0 on CH. It is easily seen
that deg is appropriate for the principal ideal I := (py) (see Definition 9.6). Hence, by
Exercise 9.7, it induces a degree function d4 on A, which, in turn, defines a filtration
on A. Let A := Gr A be the associated graded algebra. From Lemma 9.1 we obtain

such a corollary.

Corollary 9.1. A ~ C[z,7,2,1/(q0), where qo(Z,7,%,1) = %5 + 25 + £2, i.e.
A = C[X,], where Xo = {227 + 2% + 2 = 0}.

Lemma 9.2. (a) (exercise) Any f € A has a unique representation

f=a(z,z,t) + yby, 2, t) + zyc(y, 2, 1),

where a,b,c are polynomials.

(b) We have:

(i) f="h(z,8) iff deg f=r<0;

(i1) fz@rh(,?,ﬂ iff deg f =2r > 0;

(iii) f=Zy h(z,1) iff deg f=2r—1>0,
where h(2,t) € C[2,1].

Proof of (b). Since the degree deg [yb(y, 2,t)] is even and positive when b # 0,
deg [zyc(y, z,t)] is odd and positive when ¢ # 0, and deg a(z,z,t) < 0, we have
that, in the case (i), f = a(w,zt), and hence f = Z"h(z,1); in the case (i), f =
gr[yb(y, z,t)] = §7h(2,1); finally, in the case (iii), f=gr [zyc(y, z,t)] = 29" h(2,1) for
some h(2,%) € C[z,1]. O

It follows that A° = C[2,7] (and thus A is a C[Z,#]— module); A’ =z C[2,1] for
i<0; A¥ =g C[z,1], and A¥"! =277 C[3,7] for r > 0.

Lemma 9.3. A% C F°A for any 0 € LND(A) \ {0}. Hence, Dk(A) C F°A # A,
which proves Theorem 9.35.

Proof. Assume the contrary, i.e. that for some f € A, where deg f > 0, and for
some & € LND \ {0} we have 8f = 0. Then deg f > 0 as well, and 0f = 0 (see

Exercise 9.9). Thus, it suffices to prove the following
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Claim 1. For any 8 € LND(A)\ {0}, and for any homogeneous f € A», 8f =0
implies that n := deg fﬁ 0.

Proof of Claim 1. Assume, on the contrary, that n > 0. Suppose first that n is
odd, i.e. n=2r—1 for some r € N. Then, by Lemma 9.2(b), f= 27 h(2,1) for some
non-zero polynomial h(Z,%) € C[2,1], and df = 0 implies that 9% = 8§ = 0h = 0
(see Exercise 9.12 above). Thus, Z, § € A? are invariants of the associated C,— action
¢ = 5 on Xo = {225+ 2% + 12 = 0} (see Exercise 9.2 above). Therefore, each orbit
of ¢ 1is contained in a curve I'c ., = {Z = ¢1, 7 = 2} C Xo. Conversely, any such
curve in X, consists of C,— orbits. Since a generic curve Toiey = {22+ = —Clcy} is
elliptic, it admits no embedding of C (cf. Exercise 9.5 above), and hence all the points
of I'c, ¢, arefixed by ¢ . It follows that the C,— action on 5(\0 is trivial, i.e. 0= 0, a
contradiction.

Now consider the case when n > 0 is even, i.e. n = 2r for some r € N. In this case,
F=7h(z1), where h(2,7) € C[2,7], and h# 0. Hence, 85 =0, and so § € A° is an
invariant of the C,— action ¢ on 5(\0. Thus, 5(\0 is foliated by the ¢— invariant surfaces
Se ={y = ¢}, ¢ € C (see Exercise 9.2). Denote by J. € LND(A,) the corresponding
locally nilpotent derivation on A, = C|[S,|, that is, the infinitesimal generator of the
C,— action ¢, :=¢|S. on S.. For a generic ¢ € C, ¢, is a non-trivial C,— action
on S., whence 0, # 0.

Next we show that there exists a non-constant ¢— invariant function hy(2,%) € A,
Indeed, since tr.deg A0 = trdeg A —1 =2 (see Exercise 9.3 above), A contains a
function ¢ such that § and g are algebraically independent; in particular, g ¢ C[g].
Furthermore, § and 7§ are both ¢— invariants, and so, for s € N sufficiently large
gy° is a @— invariant of a positive degree. We have proven above that the equality
GJ° = Y hy(2,1) is impossible. Hence, we get A9 3 GJ° = 7"h(2,1) for some r > 0,
where h; € 25 is non-constant.

To get a final contradiction, we prove

Claim 2. For ¢ #0, the surface S, = {cz?+ 2>+ =0} C C® does not admit any

non-trivial C4— action with an invariant function hy(2,%) # const.

Proof of Claim 2.3 Assume the contrary, i.e. that for some ¢ # 0, the surface
S. does admit a non-trivial C, — action with a non-constant invariant function 5, (2, 7).
We may suppose that the general fibers Cy = {hi(2,%) = A} of the polynomial h; in
C? are smooth irreducible affine plane curves. The generic fiber Fy = (h; | S.)"*()\) C S.

38We give a simplified proof suggested by Sh. Kaliman; cf. [De].
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of the regular function h; on S, is represented as a two-sheeted ramified covering of
Cy under the projection 7 : S, — C?, (Z, 2, %) — (2, ). Since F) coincides with a
one-dimensional orbit of the C,— action, the curve C) admits a dominant morphism
C ~ F)y — C,, and hence, it is isomorphic to C (ezercise; cf. Exercise 9.5 above).
Moreover, it meets the ramification locus 'y 3 = {22+ > = 0} C C? of the projection
7 at most at one point (indeed, a quadratic polynomial of one variable has only one
critical value). If a generic curve C) does not meet I'; 3, then it should be contained
in an elliptic curve 22 4+ 3 = const # 0, which is impossible. Therefore, the restriction
hy|Ty 3 : I'y )3 = C is generically one-to-one, which is impossible, too. This completes

the proof. O
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