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Abstract. We give a criteria for the completeness of Nayatani’s metric on the domain
of discontinuity of a geometrically finite kleinian group.

Complétude de la métrique de Nayatani
pour les groupes kleiniens géométriquement finis

Résumé. Nous donnons un critére de complétude pour la métrique de Nayatani sur
le domaine de discontinuité d’un groupe kleinien géométriquement fini.

Version Francaise Abrégée

Soit I' un groupe kleinien non élémentaire. I' est par définition un sous-groupe du
groupe de Mobius M (n): ses éléments agissent par isométries sur le modéle en boule B*+!
de l’espace hyperbolique de dimension n + 1 et par transformations conformes sur son bord
géométrique, la sphére unité S™. En utilisant les mesures de Patterson-Sullivan, S. Nayatani
[3] a construit une métrique g sur ’ensemble de discontinuité Q(I') C S™ de I, conforme &
la métrique standard gy de la sphére et invariante par I'. En notant A(T') 'ensemble limite
de T, 6 = 6(T") son exposant critique, y une mesure de Patterson-Sullivan sur A(T) et |.| la
norme euclidienne de R**!, ¢ est donnée par:
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Si T' agit librement sur (T'), on obtient une métrique compatible sur la variété kleinienne
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M = Q(T")/T. S. Nayatani a montré que la courbure scalaire de g s’exprime simplement en
fonction de l'exposant critique 6(I") de T', ce qui permet de faire le lien avec les travaux de
R. Schoen et S.T. Yau (cf [5]) sur les variétés conformément plates.

Si I' est convexe cocompact, la variété quotient M est compacte et donc la métrique g
est compléte sur (). Nous nous intéressons dans cette note a la complétude de g dans le
cas ol I' est seulement supposé géométriquement fini. En comparant le facteur conforme de
g avec les masses totales de mesures de Patterson-Sullivan bien choisies, et grace & l’article
[7] de D. Sullivan, on voit apparaitre une condition portant sur le rang des cusps. Plus
précisément, on montre que g est compléte si et seulement si ’ensemble limite A(T") de I" ne
contient pas de point fixe parabolique de rang k < §(I") (théoréme 1).

Can one realize conformally flat Riemannian manifolds as Kleinian manifolds, that is,
quotients of (connected) domains of the unit sphere S™ by Kleinian groups? Schoen and Yau
[5] answered positively this question for a large class of conformally flat manifolds, which in
particular contains those which admit a compatible complete metric of non-negative scalar
curvature.

Conversely, given a non-elementary Kleinian group I', Nayatani [3] constructed a metric
g on the domain of discontinuity Q(I") of I', which is conformal to the standard metric g

of S™
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where A(I') C S™ is the limit set of I, § = §(I") its critical exponent, |.| is the euclidian
norm of R**! and y is a borel measure supported on A(T') of unit total mass such that for
every borel subset E of S™ and for every v in I,

Hy(E)) = /E () du(y)

(see Patterson [4] and Sullivan [6]). Following Sullivan, we call x4 a geometric measure of
unit total mass.

This metric is I-invariant and hence if T acts freely on Q(T"), it gives rise to a compat-
ible metric on the Kleinian manifold M = Q(I')/T". Nayatani also showed that the scalar
curvature of g is closely related to the critical exponent of T'.

If M is compact, for example if T is convex cocompact (cf [8]), the metric g is auto-
matically complete on Q(I'). When I' is geometrically finite with parabolic elements, the
situation becomes somewhat more complicated. The purpose of this note is to prove the
following theorem for a geometrically finite Kleinian group:

THEOREM 1. — Let I' be a non-elementary geometrically finite Kleinian group,
Q(I") C S™ its domain of discontinuity and 6(I') its critical exponent. The Nayatani metric
g on Q(T") is complete if and only if the limit set A(T') of T" does not contain any parabolic
fixed point of rank k < 6(T).



Let B"™! be the unit ball model of the hyperbolic (n+1)-space, and let S"” = 9,,B" ™! be
its boundary at infinity. Sullivan showed that, for I non-elementary and geometrically finite
(what we now assume), there is, up to a constant multiple, only one geometric measure.
Hence we may assume that pu = pg, the Patterson-Sullivan measure at 0 € B**!, and that
g = f go, whith

f:Qr) — RF
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For z € B"*!, let u, denote the Patterson-Sullivan measure at z and let ¢, be the map
“total mass” on B"! defined by ¢, (z) = pz(S™). ¢, is continuous and T-invariant. In fact,

we have that 5
o) = [ () duotw)
g A(T) |z —y? o

Thanks to the work of Sullivan, ¢, is a much more known object than f. Thus we would
like to compare f(z) for z € Q(T) with ¢, (z') for 2’ € B*™ well chosen.

LEMMA 1. — Let z € Q(I'), r(z) = infyepm)|z — y| and £ € A(T) such that
|t —¢&| =7r(z). Let v(&,7(x)) be the point on the geodesic [0,&) in B**! at hyperbolic
distance In (1/r(z)) from 0. Then we have:

_ 1 2/6
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where < means that there exist a constant C > 0, which depends only on I" (and maybe on
the equivalence class of £ under T'), such that

o P ET@)P < 1) < O g o r @),
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Proof. — Let r = r(z). From the hyperbolic formulas (cf [1]), we have

1—r 2r

=1 and  vgn) =€ = 1o

The following is just an obvious computation: let y € A(T),

v(€r) =yl (& r) =&l + 16 —al + |z -y

<
< 2420z -y
<

4z —y|
In the same way, we obtain the reverse inequality and thus
|z —y| = |v(&,r) -yl

Hence

flz) = fv(§ ),



and

which yields the result. O

From now on, we will assume that 0 € B**! belongs to the hyperbolic convex hull
C(A(T)) of A(T) in B™*! (if not, just take an L-neighbourhood Vi (C(A(T))) of C(A(T))
containing it and replace C(A(T')) by V.(C(A(T))) in the proof).

If T' is geometrically finite without parabolic element, that is, convex cocompact,
C(A(T"))/T is by definition compact. Hence by continuity and I'-invariance, ¢, is bounded
from below on C(A(T)) by a strictly positive constant. We denote the go-distance from z
to A(T') by p(z). Since v(§,7(z)) € C(A(T)) and p(z) < r(z), we have

3C > 0 such that Vz € Q(T), f(z) > ,
0).4(@) >

which gives another proof of the completeness of g on Q(T).

But when I' is geometrically finite with parabolic elements, C(A(T"))/T" consists of a
compact piece with boundary and a finite number of exponentially skinny ends attached,
called cuspidal ends, one for each class under I' of parabolic fixed points ([7]) . ¢, is then
bounded from below only in the compact part of C(A(T')) mod I and we need a control of
¢, inside the cuspidal ends, which is precisely given by the following result of Sullivan (|7]).

THEOREM 2. — Let £ € A(T") be a rank k parabolic fixed point. There is a constant
r9, which depends only on I', k, and the class of £ under I', such that:

Vr<ro, pul(6,r) < (1)“.

r

Proof. — It is more convenient to work in the upper half-space model H'T! of the
hyperbolic (n 4 1)-space. We write Ht+l = RE @ R** @ Rt and we denote by [z, [2], &,
[€]n11, the images of z € Hot! under the projections on RF, R*=% R+,

We come back to the construction of the Patterson-Sullivan measures. Let d denote the
hyperbolic distance in H**!. Fix a point y in H**' and define the absolute Poincaré series
by:

gs(z,y) = »_exp(—sd(z,vy)), for z € H'.
yel’

By definition, § = §(T') = inf{s € R" /gs(z,y) < co}. For s > §, form the measures

- > exp(—s d(z,vy)) 6(7y),

Us.oz =
95y 9) 25

where d(yy) is the Dirac atomic mass at yy. Since I' is geometrically finite, g5(y,y) = o0
([6]) and the Patterson-Sullivan measure at z is given by:

Py = 1im g o
s—0
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Hence

— 1o (S™) = lim iy o () = lim 92(829)

Thus we need to estimate gs(z,y), for s > §, when z € H*™! goes to the rank k parabolic
fixed point €. Up to conjugation, we may assume that £ = oo and so we compute gs(z,,y)
for z, = (0,---,0,2). Let 'y, C T be the stabilizer of co.

95(2,y) = X crexp(—sd(zz,7y))
= Zh|h(y)€Poo Z'yefoo exp(—s d(.’I)z, ’Y_lh(y)))
= Z:h|h(y)ePoo Z’yEI‘o@ exp(—sd(yz, hy))

where P, is a convex fundamental polyhedra for the action of I'y, on H?HL.
We have, see Beardon [1], that

|'7-Tz - h'y|2

exp(d(yz,, hy)) = cosh(d(yz,, hy)) = 1 + .
xp(d(yz;, hy)) < cosh(d(yz,, hy)) 22l

But, up to conjugation, one may assume that I's, leaves R¥ globally invariant and acts
cocompactly on it: RF /Ty, is compact. Then, the action of T'n, on HrH! is given by

a k
() = (ls + a0y {[2ha), oo where { TTEE

so that
Iyz, — hyl? = |ay — [hylel* + |[My)n—k|® + |z — [hy]ns1[*-

The next theorem (see Tukia [8]) describes the structure of the limit set near a rank k
parabolic fixed point:

THEOREM 3. — Let I' be a geometrically finite group, and oo a rank k parabolic fixed
point. Then there is a neighbourhood Uy, of co in H L of the form

H1 0 (]R<“+1\(]R’c x Bn—k(o,R)))
where B"*(0,R) is the euclidian ball in R*~* of center 0 and radius R, such that
AT) N Uy = {0}, Uy is To-invariant and h(Ux) N Uy = O for every h € T\I's. Such a
neighbourhood is called cuspidal.

and allows us to show the

LEMMA 2. — Let I'y be the orbit of y under I' and Py, a convex fundamental polyhedra
for the action of T, on H*1. T'yN Py is bounded for the euclidian norm |.| on H*+! C R*HL,



Proof of the lemma. — From theorem 3, there exists a constant R such that for all £
in A(T')\{oo}, |[€]n—k| < R. Hence there exists a compact K C R" such that

V€ € A(T)\{oo}, Iy €T | Y€ € K.

Rn—k

/

o S N T
A

Rn

Now, assume that 'y N Py, is unbounded: there exists a sequence (hy,)men of distinct
elements of I" such that h,,(y) € Py and |hpy(y)| — oo. Then,

{ [[hm(9)]k| is bounded, for R¥ /T, compact implies Py, N R¥ bounded,
|[han ()] -] + [[hm (¥)]n 1| — oo

We may assume that y € Py, and hy, € I'\I's. Let P be a convex fundamental polyhedra
for the action of I' on H**!'. We can choose P so that co € P. Indeed, consider the Dirichlet
polyhedra P based at p € Uy with [[p]nt1] > R. Since g(Uso) N U = 0 for all h € T\,
[[vPlns1| < |[plns1| for every v € T. Hence P must contain oo.

Let z be a point in P and o be the geodesic [z,00): o C P because P is convex.
d(hm(z), hm(y)) = d(z,y) and so |[km(2)]n—k| + |[Pm(Z)]n+1| —> oo. Since hy, doesn’t
belong to I'ao, Am(00) € A(T')\{oo} and there exists 7y, € ['w such that v, o hy,(c0) € K.
Remark that we still have |[, © by (%) n—k| + |[Ym © b (2)]nt1| — o0.

Hence we can find a compact K’ C H**!, for example Vi (K) x {1} (here Vi(K) denotes
the set of points of R” at euclidian distance from K less than one), so that v, o hp (o) N
K' # () for m large enough. But the covering of H*™! by I'P must be locally finite. This
contradiction ends the proof. O

Thus there exists a constant M such that |hy —z1| < M, for every h € T" with hy € Px.
From now on, we assume that z > zg > M.

Then we have
vz, — hy|* < |ay — [hylsl” + |2/,

and

exp(d(yz,, hy)) < 1+

DO e (= PP,
2Z[hy]n+1 [hy]n—H 22
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Hence

gs(z2y) <270 D (ylasr)” D (1+M)

z
h|h(y)EPxo Y€l
L s ay — [hyls*\
gs(xzay) =2z Z ([hy]n+1) Z Z (1 + | . Z[2 ]k| ) :

m < lay —[hyle| <m +1

_ 2
For every v € ' such that m < l|a, — [hylg] <m +1, 1+ % =<1+ ’;’—22 Moreover,
card{y € Too |m < |ay —[hylk| < m+1} < mF 1, with the convention that 0F~1 = 1. Thus,

gelany) =2 Y ([hy]nﬂ)szmk—l(lﬂg_f)_s.

h|h(y)EPo meN
2\ — 0o k-1
" dt
ka—1(1+m_2) = [T
z 0

B
meN (1 + 2—22)

and after the change of variables ¢ — u = t/z in the integral, we finally obtain

') uk—l
gs(2ry) = 70 /0 (—d’* S (i)

2\S
1+ u?) hih{g)ePa

We remark that

The integral [;° g’:TIQd)tS is finite since a rank k parabolic fixed point implies § > k/2 (cf [2]).

The same computation is valid for z = 2y and thus

k—s
z
gs(z2,y) < (_> 9s(T20,9)-

20

But z is fixed and we have
- Jk—s
Psz, =2 Hswzgs

which, making s — 4, yields ¢,(z,) =< z%=9. (The constant, implicit in the notation x,

depends only on the geometry of I', on the class of the parabolic fixed point oo, and on the
point yy € H*t! we chose to define the Patterson-Sullivan measures.) O

We are now in position to prove theorem 1. Assume that the rank of any parabolic
fixed point of A(T') is not less than §. Then, for every parabolic fixed point &, ¢, (v(§, 7))
is bounded from below when r — 0. This lower bound depends only on the class of £ and
there is a finite number of these: ¢, (v(§,7(x))) is bounded from below on C(A(T)) by a
stricly positive constant, independently of ¢ € A(T"). Hence there is a constant A > 0 such

that f(z) > ﬁ for all z € Q(I'): g is complete on Q(T").

Remark. — It is known that if I" is geometrically finite with only rank n parabolic fixed
points then M is compact ([8]) and hence g is complete on Q(T"). Here we obtain this last
completness result from the fact that 6(I') < n for I" geometrically finite ([7]).



On the contrary, assume that there exists a parabolic fixed point & whose rank k is
(stricly) less than . Then 1 < k < n— 1 since for a geometrically finite group, § < n. From
the existence of a cuspidal neighbourhood Uy of {, we see that there exists zo in Q(I") such
that |zo — &| = r(zo) (Indeed, this cuspidal neighbourhood is the image of a set of the form
Us by the conformal transformation mapping H**! into B"*! and sending oo on ).

Let (Ct)te[o,lg} be the unit speed geodesic from zy to & for the gy metric of S™ (lp is the
go-distance between xy and &). ¢ is a divergent curve of Q(T"): it escapes from every compact
of Q(T"). Let’s compute the g-length of ¢:

1/2 lo 1/6 lo
0= [“rarrase [' () ao [

For r(ct) < p(ct) = lo —t and k/6 < 1, the last integral is finite. ¢ is a divergent curve in
Q(T) of finite g-length: ((T'), g) is not complete and theorem 1 is proved.
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