Non-Hyperbolic Complex Spaces with Hyperbolic Normalizations

Shulim KALIMAN and Mikhail ZAIDENBERG

A complex space is called hyperbolic if the Kobayashi pseudodistance on it is a distance [2]. Recall the following

Theorem ([2], [3]). If \tilde{E} is a normalization of a hyperbolic complex space E, then \tilde{E} is also hyperbolic.

One may ask whether the converse is true. More precisely, if E is a complex space with hyperbolic normalization \tilde{E} , is E also hyperbolic? The answer is negative, and we present two very simple examples below. In the first of them E and \tilde{E} are affine algebraic surfaces, while in the second one they are projective surfaces.

Example 1.

Let (x, y, u, v) be a coordinate system in \mathbb{C}^4 , and let E be the algebraic surface in \mathbb{C}^4 given by the equations

$$\begin{cases} y^4 = x^4 - 1 \\ u^4 = y^4(v^4 - 1). \end{cases}$$

The surface E is not hyperbolic, since the hyperplane section $E \cap \{y = 0\}$ consists of complex affine lines $\simeq \mathbb{C}$, which are not hyperbolic.

Let \widetilde{E} be the algebraic surface in \mathbb{C}^4 given by the equations

$$\begin{cases} y^4 = x^4 - 1 \\ u^4 = v^4 - 1. \end{cases}$$

Then \widetilde{E} is smooth and, in particular, normal. One can consider \widetilde{E} as the direct product $R \times R$, where R is the smooth affine algebraic curve defined by the equation $x_1^4 = x_2^4 - 1$ in $\mathbf{C}^2 = \{(x_1, x_2)\}$. Since R is hyperbolic, \widetilde{E} is also hyperbolic ([2, Proposition 4.1]). Put p(x, y, u, v) = (x, y, yu, v) and $\pi = p \mid_{\widetilde{E}}$. Clearly, $\pi : \widetilde{E} \to E$ is a normalization of E. This is a desired example.

Example 2.

Next we give an example in the compact case. Choose a homogeneous coordinate system (X:Y:Z) in $\mathbf{P}^2 = \mathbf{P}_{\mathbf{C}}^2$. Put $\overline{R} = \{(X:Y:Z) \in \mathbf{P}^2 \mid X^4 - Y^4 - Z^4 = 0\}$.

Then \overline{R} is a smooth Riemann surface of genus 3, and therefore, \overline{R} is hyperbolic. Set $R_1 = \overline{R} - \{Z = 0\}$ and $R_2 = \overline{R} - \{X = 0\}$. Let $q: B \to \overline{R}$ be a holomorphic fiber bundle over \overline{R} with the fiber \mathbf{P}^2 such that $q^{-1}(R_k) \cong R_k \times F_k$, where $F_k \cong \mathbf{P}^2$ with a homogeneous coordinate system $(U_k: V_k: W_k)$, k = 1, 2, and the transition mapping is given in $q^{-1}(R_1 \cap R_2)$ as follows: $(U_2: V_2: W_2) = (ZU_1: XV_1: XW_1)$. Let $E \subset B$ be the surface defined by the equations

$$E \cap q^{-1}(R_1) = \begin{cases} Y^4 &= X^4 - Z^4 \\ Z^4 U_1^4 &= Y^4 (V_1^4 - W_1^4) \end{cases}$$

and

$$E \cap q^{-1}(R_2) = \begin{cases} Y^4 &= X^4 - Z^4 \\ X^4 U_2^4 &= Y^4 (V_2^4 - W_2^4) \end{cases}$$

Then E is not hyperbolic, since the intersection $E \cap \{Y = 0\}$ consists of Riemann spheres $\simeq \mathbf{P}^1$, which are not hyperbolic.

Let $\widetilde{E} \subset B$ be the surface defined by the equations

$$\widetilde{E} \cap q^{-1}(R_1) = \left\{ \begin{array}{rcl} Y^4 &= X^4 - Z^4 \\ Z^4 U_1^4 &= V_1^4 - W_1^4 \end{array} \right.$$

and

$$\widetilde{E} \cap q^{-1}(R_2) = \begin{cases} Y^4 = X^4 - Z^4 \\ X^4 U_2^4 = V_2^4 - W_2^4 \end{cases}$$

It is easily seen that \widetilde{E} is smooth and that $q \mid_{\widetilde{E}} : \widetilde{E} \to \overline{R}$ is a holomorphic fiber bundle over \overline{R} with the fiber \overline{R} . Thus, \widetilde{E} is hyperbolic [1]. The mapping

$$Q: ((X:Y:Z), (U_k:V_k:W_k)) \longmapsto ((X:Y:Z), (YU_k:V_k:W_k)), k=1,2,$$

makes \tilde{E} a normalization of E.

References

- 1. P. Kiernan, Some results in connection with hyperbolic manifolds, Proc. Amer. Math. Soc. 25 (1970), 588-592.
- 2. Sh. Kobayashi, *Hyperbolic manifolds and holomorphic mappings*, Marcel Dekker, Inc., New York, 1970.
- 3. M.H. Kwack, Generalization of the big Picard theorem, Ann. Math. **90** (1969), 9-22.

Shulim Kaliman Department of Mathematics and Computer Science University of Miami Coral Gables, FL 33124 U.S.A.

e-mail: kaliman@math.miami.edu

Mikhail Zaidenberg Université Grenoble I Institut Fourier de Mathématiques UMR 5582 CNRS-UJF BP 74 38402 St. Martin d'Héres-cedex France

 $e\text{-}mail:\ zaidenbe@mozart.ujf\text{-}grenoble.fr$