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Abstract

This work deals with invariants of three-manifolds derived from finite
abelian groups equipped with quadratic forms. These invariants arise in
the theory of modular categories and generalize those of H. Murakami, T.
Ohtsuki and M. Okada. The crucial algebraic tool is a new reciprocity
formula for Gauss sums, generalizing classical formulas of Cauchy, Kro-
necker, Krazer and Siegel. We use this reciprocity formula to give an
explicit formula for the invariants and to generalize them to higher di-
mensions.
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1 Introduction

1.0 Overview

This work is a corrected and enriched version of [De].

Let M be a closed oriented 3-manifold. We consider a C-valued topological
invariant 7(M;G,q) depending on a finite abelian group G equipped with a
quadratic form ¢ : G — Q/Z. This invariant arises in the theory of modular
categories (see [Tul, Chap. 1]) and generalizes an invariant introduced by H.
Murakami, T. Ohtsuki and M. Okada [MOO].

The aim of the paper is to compute 7(M;G,q) in terms of classical invari-
ants and to describe its main properties. In particular, 7(M; G, q) is completely
determined by (G, q), the first Betti number of M and the linking form of M
(Theorems 1 and 4). We also compute the absolute value of 7(M; G, q) (Theo-
rem 1) which only depends on the order of a certain cohomology group of M.

The crucial algebraic result of this paper is a new reciprocity formula for
Gauss sums (Theorem 3). It allows us to establish an explicit formula for the
invariant 7(M;G,q) (Theorem 4). As another application of the reciprocity
formula, we generalize the invariant 7(M;G,q) to closed oriented (4n — 1)-
manifolds. Here we apply the reciprocity formula in a topological context but
we expect it to have algebraic applications as well.

1.1 Definition of 7(M;G,q) and first properties

Fix a finite abelian group G. A quadratic form q : G — Q/Z is a function
satisfying q(nz) = n2q(z) for any n € Z and = € G and such that the function
defined by by(z,y) = g(z +y) — g(z) — q(y) is a (symmetric) bilinear form on G,
called the bilinear form associated to ¢q. Let adby : G — Hom(G, Q/Z) denote
the adjoint homomorphism of b,. We define the Gauss sum by

v(G,q) = |kerad bq|‘1/2|G|—1/2 Z e2mia(a) 1)
z€G



Here the normalization factor |kerad b,|~*/2|G|~'/? ensures that (G, q) is ei-
ther 0 or an 8-th root of unity ([Sc, chapter 5]). The following lemma gives a
necessary and sufficient condition for v(G,q) to vanish (the proof is given in
§2.3).

Lemma 1.1
0 if g(keradb,) # 0,

1v(G,q)| :{ 1 if g(keradb,) = 0.

It is not hard to see that if ¢ is non-degenerate or if |G| is odd, then
g(keradb,;) = 0 and hence v(G, q) # 0.

Let M be a closed connected oriented 3-manifold. There is a simply con-
nected compact smooth 4-manifold W such that OW = M (see [Rok]). As a con-
sequence of Poincaré duality, the second homology group of W is a free abelian
group and carries a symmetric bilinear pairing! By : Hy(W;Z) x Hy(W;Z) —
Z. Let o(Bw) be the signature of By, which is equal to the number of positive
eigenvalues of By minus the number of negative eigenvalues of Byy. Denote by
b2 (W) the second Betti number of W.

For any pair (G, q) such that v(G,q) # 0, we define the following complex
number:

r(M;G,q) = 7Gra) " |Glkeradby| 25 Y emiteeBw)@) (9)
zEGRH2(W;Z)

Here ¢® By denotes the Q/Z-valued quadratic form on G® Ha(W'; Z) uniquely
determined by (¢ ® Bw)(z ® y) = q(z)Bw (y,y) for all z € G, y € Ho(W; Z).

The terms 7(G, )" " and |G/ker adb,|* in the right hand side of (2)
are normalization factors which are better understood in light of Theorem 1
below. Theorem 1 says that the complex number we have defined does not
depend on the choice of W, which in particular justifies the fact that we made
the notation dependent on M rather than W in formula (2).

Theorem 1 7(M;G,q) is a topological invariant of M, independent of the
choice of W. If the pair (G,q) is fized, T is completely determined by the fol-
lowing data:

(i) the first Betti number, dim Hy(M;R);
(i) the linking form Lp; on Tors Hy (M;Z), considered up to isomorphism.

Moreover, if T(M;G,q) # 0, then % is an 8-th root of unity and the

phase of T(M; G, q) only depends on the linking form Ly on Tors Hy(M;Z).

Iwhich may be degenerate, since W has a boundary.



A useful expression for 7(M; G, q) can be obtained by choosing W as follows.
Present the 3-manifold M as the result of surgery in S® = 9B* on a framed
link L with components Lq,...,L,. Let W be the simply connected compact
smooth 4-manifold obtained by attaching m 2-handles to the 4-ball B* (the
attaching map being determined by the framed link L). These m 2-handles
yield a basis of Ho(W;Z) (which is free of rank m). The intersection form
By, with respect to this basis, is given by an (m x m) matrix of integers (whose
(4, k)-entry is the linking number of L; and Ly). The definition (2) of 7(M; G, q)
can be rewritten in terms of the linking matrix A = (lj1)1<j,k<m for L:

H(M;G,q) = 7(G,q) " |Glkeradb,|3 S e2ritied)e), 3)

zeEGRZ™

where ¢ ® A denotes the quadratic form defined by (¢® A)(z ®1y) = q(z) -y Ay,
ze€G,yeZm.

The invariants M — 7(M;G,q) arose in the theory of modular categories
(see [Tul]). We refer to the appendix A for the construction of 7(M; G, g) from
a modular category.

The invariants also generalize the invariants M — Zn(M;w) introduced by
H. Murakami, T. Ohtsuki and M. Okada [MOO] and further studied by J. Mat-
tes, M. Polyak and N. Reshetikhin (see [MPR]). Here N is a positive integer
and w an N-th primitive root of unity (resp. 2/N-th primitive root of unity) if N
is odd (resp. if N is even). The relation is as follows: Zy(M,w) = 7(M;G, q)
where G = Z/NZ and the quadratic form ¢ : G — Q/Z is chosen so that
w = exp(2mig(1l mod N)).

One property of 7 is the multiplicativity on connected sums. Let M#M'
denote the connected sum of two closed oriented 3-manifolds M and M'. Then:

T(M#M';G,q) = 7(M;G,q) - 7(M'; G, q) (4)

Another property is the behavior of 7 under a reversal of orientation. Let
M be a closed oriented 3-manifold and let —M denote the same manifold with
the orientation reversed. Then:

7(—=M;G,q) = 7(M;G,q) (5)

Note also that 7 is multiplicative with respect to orthogonal sums of pairs
(G, q) of finite abelian groups equipped with quadratic forms. All these proper-
ties follow from the definition of 7 and elementary properties of Gauss sums.

Elementary considerations show that we can always assume, without loss of
generality, that ¢ is non-degenerate. More precisely:

Lemma 1.2 Let G be a finite abelian group equipped with a quadratic form q
such that v(G,q) # 0. Then:

T(M;G,q) = 7(M; G/ ker ad by, §) (6)



where § is the non-degenerate quadratic form on G/keradb, induced by q.
The following theorem computes the absolute value of 7.
Theorem 2 Let M be a closed oriented 3-manifold. If 7(M;G,q) # 0, then:
|7(M;G,q)| = |[H'(M; G/ kerad b,)|*/2.

In particular, the absolute value of 7(M;G,q) does not depend on the
quadratic form q unless ¢ is degenerate.

Using Theorem 2, one can rewrite 7(M;G,q) as a product of Gauss sums
normalized as in (1):

— Ao (Bw)

T(M;G,q) =7(G,q)" " (G ® Hy(W;Z),q® Bw) |[H'(M; &), (7)

where G = G/ kerad b,.

Necessary and sufficient conditions for 7(M;G,q) to vanish are given in
Theorem 6 (see §3.4). Theorems 1 and 2 indicate that the interesting topological
information is concentrated in the phase of 7(M;G,q). The question arises to
determine its algebraic dependence on ¢ and Lj;. Theorem 1 shows that if
7(M;G,q) is not zero, the phase can take at most 8 values. In fact, we can
show that

T(M;G,q)

H(M; G
depends on g only modulo hyperbolic quadratic forms and on £,; only modulo
hyperbolic symmetric bilinear forms. See Theorem 5, §3.3 for a precise state-
ment.

1.2 The reciprocity formula

Further study of the invariant 7(M;G,q) is based on a new reciprocity for-
mula for Gauss sums. The following reciprocity formula goes back to the 19-th
century:

Lemma 1.3 (Cauchy, Kronecker) Let a and b be two nonzero integers.

_1 i 2 s L. _ _1 b2 s
|b| 3 E : eTit e tmiax _ 7 sign(ab) ab|a| 3 E : e~ iz +mibz (8)
z€EZ/VZ z€Z/aZ

An analytical proof of this lemma can be found in [Ch], Chapter IX, where
some historical background is given. The original proof, due to Cauchy and
Kronecker, is analytical and consists in studying the limiting case of a transfor-
mation formula for the theta-function 63 (u, ) = Y00 ___e™n’T+2miu_ Another
reciprocity formula appears as an important step of H. Braun’s classification of



quadratic forms in [Br]. We formulate it as follows. Let A be a symmetric mxm
matrix of integers and let r (resp. o(A)) be the rank (resp. the signature) of
A. There exists a matrix A’ with integer entries and nonzero determinant and
an unimodular matrix P such that PtAP = A’ & (0,_,) where 0,,_, is the zero
matrix of size n — r [Ky, lemma 1].

Lemma 1.4 Let d be a nonzero integer. Assume that either d is even or A is
even (i.e., its diagonal entries are even). Then

m—r 7l

df% Z emw:tAw = dTeTU(A) Z e*m’dytA’—ly (9)
=5 .
z€(Z/dZ)™ |det 14,'2 yeZm JA'Z™

According to [Br], the formula (9) is due to A. Krazer [Kr]. The proof is
analytical and also involves the limiting case of a transformation formula for
theta-functions. A particular case of (9) also appears in the work of C. Siegel
[Si] in the context of modular transformations. The formula (9) is discussed in
[MPR, lemma (8.5)], with a slight imprecision. Recently, R. Dabrowski [Dab]
found a proof of (9) using p-adic numbers, in which analysis is kept to a mini-
mum. Note that (8) is not a particular case of (9).

In order to generalize both formulas (8) and (9) to our setting, we need a
construction relating symmetric bilinear forms on free abelian groups to bilinear
and quadratic forms on finite abelian groups. This is a particular case of a
correspondence between isomorphism classes of bilinear (resp. quadratic) forms
on modules over a Dedekind ring R and isomorphism classes of bilinear (resp.
quadratic) forms with values in B/R where R denotes the quotient field of R.
This correspondence was studied by C.T.C. Wall, M. Kneser, A. Durfee and
others. We refer to [Du, §2] for the general construction and further references.

A lattice is defined as a finitely generated free abelian group. A symmetric
bilinear form f on a lattice F' gives rise to a symmetric bilinear form L on
Tors(coker ad f), where ad f is the homomorphism F — Hom(F, Z) adjoint to
f- The construction is as follows. The homomorphism ad f induces a homo-
morphism ay : F ® Q — Hom(F, Q). Set K = Hom(F,Z) NIm as. Set

Ky = K/Im ad f = Tors(coker ad f).
The formula

Li(z+Im ad f,y +Im ad f) = xQ(g) mod Z (10)

where z,y € K, zQ denotes the rational extention of z and § € a;l(y), does
not depend on the choice of the lift § and defines a non-degenerate symmetric
form Lf : Kf X Kf — Q/Z

The form f : Fx F — Z on F is said to be even if f(z,z) € 2Z for all z € F,
odd otherwise. Recall that a quadratic form () is said to be over a symmetric
bilinear form B if B is the bilinear form associated to @ (see §2.1). In the case



when f is even, one can unambiguously define a quadratic form ¢; : Ky — Q/Z
over Ly by the formula

1
¢r(z+Im ad f) = §xq(a~c) mod Z (11)
where z € K, zq is the rational extention of x and & € a;l(a:).

The construction of ¢; can be generalized in terms of Wu classes. A Wu
class for f is an element w € F such that f(w,z) = f(z,z) mod 2, for any
z € F. In particular, f is even if and only if 0 is a Wu class for f. Given a Wu
class w for f, one can associate a quadratic form ¢y ., : Ky — Q/Z over Ly by

drw(x+Im ad f) = %(xQ(:E) — z(w)) mod Z. (12)

Clearly, ¢¢0 = ¢y if f is even and ¢y, depends only on w mod 2. All quadratic
forms over Ly arise as ¢y ,,: more precisely, there is a one-to-one correspondence
between quadratic forms over L and Wu classes w € F modulo 2 [BM, Theorem
2.4].

Clearly (K_y,L_y) = (Ky,—Lys) and (K_,¢_fu0) = (K_f,¢—5—w) =
(K, —¢r0). It is also clear that the correspondences f +— Ly, f — ¢; and
(f,w) — ¢y, take unimodular forms to the trivial form and preserve direct
sums. In general, they do not preserve the tensor product.

Let f: V xV - Zand g: W xW — Z be symmetric bilinear forms on
lattices V' and W respectively, equipped with Wu classes v € V and w € W
respectively. We are now ready to state our reciprocity formula for the Gauss
sum

VK@V, b0 ®g) = |kerad (Ly @ g)[ 3Ky @W[3 3 i@,
ZEKf®W

We recall that ¢f, ® g denotes the quadratic form Ky ® V' — Q/Z uniquely
determined by (¢r, ® 9)(z @ y) = ¢ (2)9(y,y), v € Ky, y e W.

Theorem 3 (Reciprocity formula) The following relation holds:

YE;@W, 5, ®g) = elff(a(f)a(g)ff(v,v)g(w,w))fy(Kg BV, dgu®f). (13)

Note the symmetry in f and g in (13).

In the case when one of the Wu classes is 0 (which implies that one of the
forms is even), the formula (13) simplifies. We denote by gz, the quadratic
form defined by qr,(z) = Ly(z,z); 39 denotes the symmetric bilinear form
W xW = 3Z,(z,y) = 39(2,y).



Corollary 1. Suppose that g is even. Then

VK;@W,qr, ® Lg) =T N 05K, @V, ¢,  f). (14)

Proof. We have ¢40 = ¢,. Let now @ be any quadratic form over L. Since
Ly(z,z) = 2Q(x), we have qr,, ®%g = Q®g. Choose Q = ¢y, and apply (13).$

Formula (13) generalizes the formulas (8) and (9). Formula (8) is the partic-
ular case of (13) when both f and g are 1-dimensional and is used in the proof
of Theorem 3. The reciprocity formula gives a new proof of (9), which can be
deduced from (14) as follows. In the case when A is even in (9), set g = A,
choose f : Z xZ — Z,(x,y) — dzy and apply (14). The case d is even in (9) is
treated similarly by exchanging the roles of f and g in formula (14).

1.3 The main theorem

This section is devoted to the application of the reciprocity formula (13) to the
study of the invariant 7(M; G, q). Let us denote by T the finite abelian group
Tors Hi(M;Z). Recall that £y denotes the linking form on T.

Theorem 4 Let f : F x F' — Z be a symmetric bilinear form on a lattice F,
with a Wu class v € F such that (K¢, ¢5,) = (G,q). Let Q : T — Q/Z be a
quadratic form over Lyr. Then

f(v,v)

T(M;G,q) =7(T,Q)" "vT e F,Q® f) [H(M;G)|3, (15)

For the definition of ¢y ,, see the previous section, §1.2.

Remarks.

1. Formula (15) implies that the right hand side of (15) does not depend on the
particular choice of Q.

2. Since the linking form Lj; is non-degenerate, so is ). By lemma 1.1,
(T, Q) # 0.

3. It is known that there always exists a form f : F' x F' — Z satisfying the
hypothesis of Theorem 4 (see [Du, Corollary 4.2] or lemma 2.1, part (b), §2.2).

The case when f is even, with Wu class equal to 0 in (15) is interesting
enough to be formulated explicitly. By % f, we denote the bilinear form F'x F —
1Z,(z,y) — 1 f(z,y); the quadratic form g.,, is defined by g, (z) = L (z, ),
z€T.

Corollary. For any even integral symmetric form f : F X F — Z on a lattice
F such that ¢5 = q, the following formula holds:

7(M;G,q) = ¥(T ® F,qc,, ® L f) |H'(M;G)|/2. (16)



Remark. This result provides an explicit formula for 7(M;G,q) in terms of
the classical invariants of 3-manifolds listed in Theorem 1, so that the invariant
7(M; G, q) can be interpreted in a purely 3-dimensional setting (compare with

(2)).

Proof of Theorem 4. Using formula (7), we have:

70-(

B 1
T(M;Gq) = 1(Gra)” " 9(G ® Hayq Bw) [H(M;G)[3,

where Hy = Ho(W;Z). Equip B with a Wu class w such that Q = —éBy, ,u-
Then
(G ® Hz,q® B) = ~(K; ® Ha, ¢5,, ® Bw)
= 1 CNeBw)=1 0 Bw ()Y (K, @ F, ¢p.0 ® f)
— e%(U(f)U(BW)_f('uvv)BW(w’w))ry(T 34 F, Q 34 f)

where the first equality follows from the equality (G, q) = (K¢, ¢r,v), the second
one from (13) and the last one from the fact that (Kg,, ,¢5,s) = (T,—Q). We
now use Van der Blij’s formula [Bl], which states that

’Y(G7 Q) = eﬂ—Ti(‘T(f)—f(v,v)) )

Thus
M;G, _mi, o(F)— mi
M e~ HoBw) (o (1)=100) B (o(£)o(Bw) ~F(0:0) Bw (ww)) (T & F,Q ® f)
= TIwVeBW)-Bwww)y(T @ F,Q ® f)
= YT, ¢8..) " TOF,Q® f)

= Q" yTeFRQs f),

where we used Van der Blij’s formula in the first and third equalities. This is
the desired result. o

1.4 Plan of the paper

§2 is devoted to generalities on quadratic forms and elementary properties
of Gauss sums. In §3, we prove the algebraic and topological properties of
7(M;G,q): Theorems 1 and 2, the dependence of 7(M;G,q) on ¢ and Ly
modulo hyperbolic forms (Theorem 5) and a necessary and sufficient condition
for 7(M; @, q) to vanish (Theorem 6). The technical tool is lemma 2.1. §4 is
devoted to the proof of the reciprocity formula (Theorem 3). Appendix A con-
tains an introduction to the theory of modular categories and establishes how
our invariant 7(M; G, ¢q) can be recovered from such a category. In appendix B,
we indicate how to define 7(M; G, q) for a closed oriented (4n — 1)-manifold.



2 Quadratic forms on abelian groups

2.1 The monoids MO and M

Note. This section is a very brief review of quadratic forms intended to fix
notations.

Let A be a lattice or a finite abelian group and let R = Z or Q/Z respectively.
A quadratic form q : A — Ris a function satisfying q(nz) = n?q(x) foranyn € Z
and z € A and such that the function defined by b,(z,y) = ¢(z+y) —q(z) —q(y)
is a bilinear form on A (called the bilinear form associated to ¢). We say that
q is non-degenerate (resp. mnon-singular) if its associated bilinear form b, is
non-degenerate (resp. non-singular) 2. If A is a finite abelian group, then g is
non-singular if and only if ¢ is non-degenerate.

A subgroup N of A is said to be orthogonal to a subgroup N’ of A with
respect to a symmetric bilinear form b if b(N, N') = 0. Orthogonality for a
quadratic form is defined with respect to the associated bilinear form. We say
that A is the orthogonal sum with respect to b of two subgroups N and N’ if
M is the direct sum of N and N' and b(N, N') = 0. In this case, N and N' are
called orthogonal summands of A. We write (A4,b) = (N,b|nxn)®(N', b| N7 s N7 ).
There is a similar notation for quadratic forms. We say that a (quadratic or
symmetric bilinear) form on A is irreducible if A has no nontrivial orthogonal
summands. The negative —b of a bilinear form b : A x A — R is defined by
(=b)(z,y) = —b(z,y). A quadratic form ¢ is said to be over a bilinear form
b: AxA— Rif by =b. A bilinear form b: A x A — R gives rise to a quadratic
form ¢ : A — R by gp(z) = b(x, z). The following relations hold between The
forms g, and b,: g5, (x) = 2q(x) and by, (z,y) = b(z,y) + b(y, ).

For the notions of hyperbolic (symmetric bilinear and quadratic) forms, we
refer to [Sc]. Note that if a quadratic form ¢ is hyperbolic, then its associated
bilinear form b, is also hyperbolic.

Given a quadratic form ¢ : G — Q/Z and an integral symmetric bilin-
ear form f : F x F — Z on a lattice, there is a unique quadratic form
¢q® f:G®F — Q/Z such that (¢ ® f)(z ®y) = q(x)f(y,y) for all z € G
and y € F. Cf. [Fr][Sa]. In general, the tensor product of non-singular forms
gives rise to pairings of Witt groups. However, the product of a non-degenerate
quadratic form and a non-degenerate symmetric bilinear form need not be non-
degenerate. (For example, take q : Z/2Z — Q/Z,1 — 1 and the symmetric

1
bilinear form on Z which maps (1,1) to 2.)

2 A symmetric bilinear form b : Ax A — R is said to be non-degenerate (resp. non-singular)
if its adjoint homomorphism ad b : A — Hompg(A, R) is injective (resp. is an isomorphism).

10



We now fix the notations which we use throughout the rest of the paper:

- Mz denotes the monoid (for direct sum) of isomorphism classes of pairs
(A,b) where b : A x A — Z is a symmetric bilinear form on a lattice A.

- M7Z* denote the monoid whose elements are isomorphism classes of pairs
(a symmetric bilinear form on a lattice, a Wu class for this form).

- M denotes the monoid (for direct sum) of isomorphism classes of pairs
(G,b) where b : G x G — Z is a non-degenerate symmetric bilinear form
on a finite abelian group G.

- M denotes the monoid (for direct sum) of isomorphism classes of pairs
(G,q) where ¢ : G — Z is a non-degenerate quadratic form on a finite
abelian group G.

- M is the monoid of equivalence classes of 9t for the following equivalence
relation: (G,b),(G',b') € M are equivalent if there exist hyperbolic sym-
metric bilinear forms b; : Gy x G1 = Q/Z and by : G5 x G2 — Q/Z such
that (G,b) ® (G1,b1) = (G, V) & (G2, b2) in M.

- ML is the monoid of equivalence classes of ML for the following equiv-
alence relation: (G,q), (G',q') € MMQ are equivalent if there exist hyper-
bolic quadratic forms ¢ : G = Q/Z and ¢ : G2 — Q/Z such that
(G.q) ® (G1,q1) = (G',¢") ® (G2, ¢2) in MA.

The monoids introduced above fit in the following (non exact) sequences of
maps:

M & om 5T o,
oy 4 oma *S ma.
Here L and ¢ are the maps defined by (10) and (12) respectively (see §1.2).
For a nonzero integer m, we denote by (m) the unique bilinear form on Z
sending (1,1) to m. Let a and b be coprime integers such that 0 < |a| < b. We
denote by (%) the unique bilinear form on Z/bZ sending (1,1) to § € Q/Z. We

denote by Ef (1 < k) and E} (2 < k) the bilinear forms on Z/2*Z @ Z/2*Z
determined by the matrices

0 27k ol=k 2=k
( 2—k 0 ) and ( 2—k 21—k )
respectively. Notice that all these forms are non-degenerate and E} is hyper-
bolic. These notations agree with those of [KK] and [Mu].

11



2.2 The correspondence from integral forms to forms over
finite abelian groups

We need to formulate the main result about the correspondence discussed in
§1.2. This result will be instrumental in the proof of Theorem 1.

In 9z, we consider the equivalence relation, denoted by ~, generated by
the following operation: (F, f) — (F ® Z, f & (£1)).

In 97", we define the equivalence relation, also denoted by ~, generated by
the following operation: (F, f,w) — (F @ Z, f ® (£1),w & w') where w' is an
odd integer.

Lemma 2.1
(a) The homomorphism Mz — M, f — Ly is surjective. For (F, f),(F', f') €
Mz, the following two conditions are equivalent:

(a1) (F,f) ~ (F', f');
(a.2) kerad f = kerad f' and (Tors (coker ad f), Ly) = (Tors (coker ad f'),Ly:).

(b) The homomorphism IMY" — MQ, (f,w) — @5 is surjective. For (F, f,w),
(F', f',w'") € MY~ the following two conditions are equivalent:

(bl) (F, 5 'U)) ~ (Flaflawl);

(b.2) kerad f = kerad f' and (Tors (coker ad f), ¢s.,) = (Tors (coker ad f), ps o).
Proof. Denote by 9ty the monoid of isomorphism classes of pairs (A4, f)
where f: A x A — Z is an even symmetric bilinear form on a finitely gener-
ated free abelian group A. The surjectivity of the maps Mz — M, f — Ly
and My — MQ, f — ¢rwas proved by C.T.C. Wall [Wa, Theorem 6]. See
also [Du, Theorems 4.4 and 4.7] and [La] for generalizations. The surjectiv-

ity of MY+ — MA, (f,w) — ¢Pr. is a direct consequence of the surjectiv-

ity of Mgy — M, f — ¢y since for f even, ¢y = ¢o. The implica-
tions (a.1) = (a.2) and (b.1) = (b.2) are straightforward. The converse
(a.2) = (a.1) can be found in [Du, Corollary 4.2], where it is assumed that f
and g are non-degenerate, but the argument given applies in our case as well:
simply decompose f (resp. g) as a direct sum of a 0-form and of a non-degenerate
form on a summand of the lattice F' (resp. of the lattice F'). For the implication
(b.2) = (b.1), note that, since ¢y, is a quadratic form over Ly, there is an
isomorphism (Tors (coker ad f), L¢) = (Tors (coker ad f'), Ly). Applying (a),

we obtain that (F, f) ~ (F', f'). We can assume that k£ = rank F' —rank F' > 0.

Thus there exist k integers vy, . .., v such that w' = w@@levj. It follows from
the definition of ¢y, that v; = 1 mod 2 for j = 1,...,k. This is the desired
result. ¢
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The importance of the constructions described in §1.2 and lemma 2.1 in
algebraic topology lies in the following fact. Let By : Ho(W;Z) x Ho(W;Z) —
Z be the intersection form of a compact simply connected 4-manifold, let M =
OW and let Ly : Tors Hy(M;Z) x Tors Hy(M;Z) — Q/Z be the linking form
of M. Then

(KBW7 _LBW) = (Tors Hl(M; Z), ,CM)

Furthermore, even though we will not use it, we recall the following fact: M al-
ways admits a spin structure (see [Ki2] for example) and it is known (see [Rok])
that this spin structure can be extended to the 4-manifold W; in this case, By
is even and the form ¢p, defined by (11) is a quadratic form over Lg,, = —Ly
and depends only on the spin structure on M [Tu2].

2.3 Elementary properties of Gauss sums

Lemma 2.2 Let f: G — Q/Z be a homomorphism where G is a finite group.
Then )
Z e27rif(a) — { |G| kaerf ;é {1}’

0 otherwise.
a€eG

An application of lemma 2.2 leads to

Lemma 2.3 Let G, H be finite abelian groups and f be a bilinear pairing G x
H —> Q/Z. Letad f : H - Hom(G,Q/Z) be the left adjoint homomorphism.
For any f € H,

Z 2mif(a,8) — { |G| if B € kerad f,

0 otherwise.
aeG
Corollary. Let G be a finite abelian group and G* = Hom(G, Q/Z). For any
bilinear pairing f : G x G* — Q/Z, the sum

Z e27rif(w,a)

(z,2)EGXG*

s a positive real number.

We now proceed to the proof of the lemma, preliminary to the definition of

the invariant 7(M; @G, q) in §1.1.
2

Proof of lemma 1.1. We rewrite as

deG e2mia(g)

T o) § g = 3 2rialo) § gmwiath) - 5 (z embq(g,h)) G2mials)

geG heG geG heG 9€G “heq
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Applying lemma, 2.3, we obtain:

Z e2mia(g)

geG

2

= |G| Z e27ia(g)

gEkerad b,

We observe that the restriction of g to ker ad by is a homomorphism ker ad b, —
{1,—-1} = Z/27Z. Consequently,

Z (g) = | keradb,| if g(keradbd,) =0,
9= 0 otherwise.
g€kerad b,

The proof is complete. &

We need to make the condition g(keradb,) = 0 more explicit. This is the
purpose of the next lemma.

Lemma 2.4 Let q be a quadratic form G — Q/Z on a finite abelian group G.
The following assertions are equivalent:

(1) g(keradby) =0;
(2) q(H) =0 for any 2-cyclic summand H of G which lies in ker ad b,.

Proof. The implication (1) => (2) is obvious. We show the implication
(2) = (1). For any g € G, 2q(g) = by(9,9). If |G| is odd, then 2¢(g) = 0
implies ¢(g) = 0 (since the order of ¢(g) in Q/Z must be odd). It follows
that g(keradb,) = 0. Assume |G| to be even. There is an orthogonal split-
ting (G, q) = ®p(Gp, ¢p) where p runs over prime numbers, G, is a p-subgroup
of G, G = ©,Gp and g, = q|g,. Therefore we may assume that G itself
is a (finite abelian) 2-group. Let = € keradb, and let H be the cyclic sub-
group of G generated by x. Its order is a power of 2. By definition of =z,
H is orthogonal to G. If H is a summand of G, then condition (2) applies,
so that gl = 0 and hence g(z) = 0. If H is not a summand of G then
H C 2G. Therefore there exists an element y € G such that z = 2y. Then

q(z) = q(2y) = 4q(y) = 2b,(y,y) = by (2y,y) = by(z,y) = adby(z)(y) =0. &

Remarks.

1. The proof shows that a sufficient, but not necessary, assumption to ensure
condition (1) of lemma 2.4 is ker ad b, C 2G.

2. From lemma 2.4, one deduce the following condition: g(keradbd,) = 0 if and
only if there exists a 2-cyclic summand H of G which lies in ker ad b, such that
g|lu(z) = % if z generates H, g|n(z) = 0 otherwise.

The next two lemmas are preparation for the proof of lemma 1.2.

Let G be a finite abelian group and ¢ : G — Q/Z be a quadratic form on
G. Set G = G/ keradb,.

14



Lemma 2.5 The following relation holds:

. 0 ) if g(kerad by) # 0,
Z e?ria(@) = | ker ad b,| Z e*mi(®) if g(kerad by) = 0, (17)
z€G z€G

where §: G — Q/Z is the quadratic form induced by q.

Proof. If g(ker ad bg) # 0 then the result follows from lemma 1.1. If g(kerad b;) =
0 then it is clear that ¢ : G — Q/Z induces a non-degenerate quadratic form
G: G — Q/Z. The result follows easily. &

Lemma 2.6 Let B : F X F — Z be a symmetric bilinear form on a lattice F'.
Then

0 if (9@ B)(keradb, ® F) # 0,
> B — & keradb, ® F| Y e2mile®B)@ if (4@ B)(keradb, ® F) =0,

reGRF wEé@F

where q@JB =j®B:GQF — Q/Z is the quadratic form induced by q ® B.

Proof. Analogous to the proof of the previous lemma. The key observation is
that kerad by, ® F' C ker(ad by ® ad B). o

Proof of lemma 1.2. Since y(G, q) # 0, lemma 1.1 ensures that g(kerad b;) =
0. Lemma 2.5 applies and gives:

(G, q) = (G, Q). (18)
Next, g(keradb,) = 0 implies (¢ ® Bw)(keradb, ® Ho(W;Z)) = 0 (Recall
Hy(W;Z) is a free abelian group). So lemma (2.6) applies:

Z e27rz'(q®Bw)(:c) — | ker ad bq|m . Z e27ri(q<§EW)(z)‘ (19)
TEGRH2 (W;Z) z€GQH2(W;Z)

Comparing equations (18) and (19) with the definition (2) of 7(M;G,q), we
obtain the desired result. O

The following two lemmas (2.7 and 2.8) will be useful in proving Theorems
1, 3 and 5. We denote by ug the group of complex 8-th roots of unity.

Lemma 2.7 Let f : F' — Z be a symmetric bilinear form on o finitely generated
free abelian group. Let q : G — Q/Z be a quadratic form on a finite abelian
group. The map MQ — C, (G, q) — v(G® F,q® f) induces a homomorphism
gﬁ—ﬂ — s U {0}
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Proof. For multiplicativity of Gauss sums and the fact that the image is in
us U {0}, see for example [Sc, chapter 5]. It suffices to show that v(GQZ™,q®
f) = 1 for g hyperbolic. Suppose G = M @& M* where M is a finite abelian
group, * denotes usual duality, i.e. (.)* = Hom(.,Q/Z) and ¢(z,v) = v(z). Fix
an isomorphism F' = Z™. Then ¢ ® f can be viewed as a quadratic form

GRF=M"o® (Mm)* — Q/Z, (X,V) — Zfijz/j(a:,-)
4,3
where (fij)1<i,j<n is the matrix of f, x = (z1,...,2m) and v = (v1,...,Vm).
Observe that the map
M™ x (Mm)* — Q/Z, (X, I/) = Zf,’jl/j(.’ﬂz')
1,3
is a bilinear pairing. Therefore it follows that from the corollary of lemma 2.3
that
Z e27ri(q®f)(z)
TEM™ X(M™)*

is a nonzero real number. Since Y(GQ Z™,¢® f) € us U{0} (or by lemma 1.1),
we deduce that y(G®Z™,q® f) = 1. o

Lemma 2.8 Let f : F — Z be a symmetric bilinear form on a finitely generated
abelian group. Let q : G — Q/Z be a quadratic form on a finite abelian group.
Let B : Mz — pg U {0} be the map defined by

(F, f) = 7(Grg)""

It induces a homomorphism MM — pug U {0} making the following diagram com-
mute:

(G ® F,q® f).

Mz —2—  psU{0}

L [
rojection ——
D)/ Qakchalitt m

Proof. To simplify notations, we write B(f) instead of B(F, f). The multiplica-
tivity of B is clear. First, we show that B(f) only depends on (the isomorphism
class of) Ly. Observe that

1G9 "G e Foz)gs (fo ()
V@Afm%G®EQ®ﬁ%Q® (G, £q)
= B(f).

If f and f' are isomorphic forms, it is clear that B(f) = B(f'). By lemma
2.1, (a), it follows that B only depends on the isomorphism class of Ly and

B(f @ (£1))
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kerad f. We prove that B does not depend on kerad f. Let f : F' x F' — Z
be a symmetric bilinear form on a finitely generated abelian group such that
Ly = Ly. We can assume k = rank (ker ad f') — rank (kerad f) > 0. Consider
the symmetric bilinear form f on F = F @ (@§=1 Z) defined by

(Fa.f) = (Faf) @@izl(z,o)
It is easy to see that (K7, Lf) = (Ky, L) = (Ky.Ly). Furthermore, rank (ker ad =

rank (kerad f) + k = rank (kerad f'). We deduce that B(f) = B(f'). The mul-
tiplicativity of B yields

k
B(f) = B(f)- [[ B(0) = B(f)

j=1

si