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by A.A. PANCHISHKIN

The purpose of this paper is to describe some new general constructions of p-adic

L-functions attached to certain arithmetically defined complex L-functions. These con-

structions are based on the use of the p-adic Mellin transform. We explain that these con-

structions are equivalent to proving some generalized Kummer congruences for critical

special values of these complex L-functions. The paper is based on a talk of the author in

the French-Vietnamese Colloquium onMathematics held in HoChiMinh City fromMarch

3 to March 8, 1997. A part of the work was done in MSRI in 1995 [PaMSRI].

1. Kummer congruences and p-adic integration

The starting point in the theory of complex and p-adic L-functions is the expansion

of the Riemann zeta-function ζ / s 0 into the Euler product:
ζ / s 0$132

p

/ 1 4 p 5 s 065 1 1879
n : 1 n 5 s / Re / s 0 > 1 0 .

The set of arguments s for which ζ / s 0 is defined can be extended to all s ; C, s <1 1, and

wemay regard C as the group of all continuous quasicharacters

C 1 Hom / R => ,C = 0 , y ?@ ys

of R => . The special values ζ / 1 4 k 0 at negative integers are rational numbers:
ζ / 1 4 k 0A1�4 Bk

k
/ k B 1 0

where Bk are Bernoulli numbers.

The proof of these facts which is due to Riemann is based on theMellin transform:

the constructionwhich associates to a functionh / y 0 onR => (with certain growth conditions
for y @DC and y @ 0) the integral

Lh / s 0E1GF
R HI h / y 0 ys dyy
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(which probably converges not for all values of s). For example, if ζ / s 0�1 7�
n : 1 n 5 s is the

Riemann zeta function, then the function ζ / s 0 Γ / s 0 is the Mellin transform of the function

h / y 0 1 1/ / 1 4 e 5 y 0 :
ζ / s 0 Γ / s 0 1 F 7

0

1

1 4 e 5 y ys dyy ,

so that the integral and the series are absolutely convergent for Re / s 0 > 1. This iden-

tity is immediately deduced from the well known integral representation for the gamma-

function

Γ / s 0$1 F 7
0

e 5 yys dy
y

, n 5 sΓ / s 0 1 F 7
0

e 5 nyys dy
y

/ Re / s 0 > 0 0
where dy

y
is a measure on the group R => which is invariant under the group translations

(Haar measure). The idea of Riemann was to replace the integral � 70 1
1 5 e � y ys dyy by a cer-

tain contour integral giving an analytic continuation to all s ; C. The above formulas for
ζ / 1 4 k 0 are obtained using the Taylor expansion of the function

y ey

ey 4 1 1879
k : 0 Bky

k

k!

and an evaluation of such a contour integral in terms of residues.

For an arbitrary function of the type

f / z 0A1 79
n : 1 a / n 0 e2πinz

with z 1 x � iy ;�� in the upper half plane � and with the growth condition a / n 0�1� / nc 0�/ c > 0 0 on its Fourier coefficients, we see that the zeta function
L / s, f 0A1 79

n : 1 a / n 0 n 5 s ,
essentially coincides with the Mellin transform of f / z 0 , that is

Γ / s 0/ 2π 0 s L / s, f 0A13F 70 f / iy 0 ys dy
y

.

Both sides of this equality converge absolutely for Re / s 0 > 1 � c.
The numbers ζ / 1 4 k 0 have remarkable integrality properties: by the classical

Sylvester-Lipschitz theorem we know that

c ; Z implies ck / ck 4 1 0 Bk
k
; Z .

The proof [Mi-Sta] uses the function

f / y 0E1 ecy 4 1
ey 4 1 1 e � c 5 1 � y � . . . � ey � 1, c B 1,

2



and the Taylor expansion of the function

d

dy
log

�
ecy 4 1
ey 4 1 � 1 f � / y 0

f / y 0 1 c 4 1 � 79
k : 1 / ck 4 1 0 Bky

k 5 1
k!

.

One sees on one hand that f / 0 0A1 c and f � k � / 0 0 ; Z, and on the other hand
/ ck 4 1 0 Bk

k
1 dk 5 1
dyk 5 1 ddy log f / y 0�� y : 0 .

The result follows from the identity:

dk 5 1
dyk 5 1 ddy log f / y 0E1 dk 5 1

dyk 5 1
�
f � / y 0
f / y 0 � 1 P / f , f � , . . . , f � k 5 1 � 0

f / y 0 k / k B 1 0
where P / X1, . . . , Xk 0 ; Z � X1, . . . , Xk � a universal polynomial with integral coefficients (this
is easily proved by induction).

The theory of non-Archimedean zeta-functions originates in the work of Kubota

and Leopoldt containing p-adic interpolation of these special values. Their construction

turns out to be equivalent to classical Kummer congruences for the Bernoulli numbers,

which we recall here in the following form.

T (Kummer). — Let p be a fixed prime number, c > 1 an integer prime

to p. Put

ζ � c �� p � / 4 k 0A1 / 1 4 pk 0 / 1 4 ck > 1 0 ζ / 4 k 0
and let h / x 0$1 n�

i : 0αi x
i ; Z � x � be a polynomial over Z such that

/ n, p 0$1 1 1�� h / n 0
	 0 mod pN .

Then we have that
n9
i : 0 αi ζ � c �� p � / 4 i 0 ; pNZp .

Note that ζ � c �� p � / 4 k 0 ; Zp � Q is p-integral due to the theorem of Sylvester-Lipschitz
and the theorem of Kummer implies in particular that the numbers ζ � c �� p � / 4 k 0 depend con-
tinuously on k in the p-adic sense: if we take h / x 0$1 xk � 4 xk with k �
	 k mod / p 4 1 0 pN
we have by Euler’s theorem that h / n 0
	 0 mod / p 4 1 0 pN , and the theorem implies that

ζ � c �� p � / 4 k � 0�	 ζ � c �� p � / 4 k 0 mod / p 4 1 0 pN .

Proof. — The proof of the theorem is deduced from the known formula for the

sum of k-th powers:

Sk / N 0A1 N 5 19
n : 1 nk 1 1

k � 1 � Bk > 1 / N 0 4 Bk > 1 �
3



in which Bk / x 0A1 / x � B 0 k 1 k�
i : 0 � ki � Bixk 5 i denotes the Bernoulli polynomial. Indeed, all

summands in Sk / N 0 depend p-adic analytically on k, if we restrict ourselves to numbers
n, prime to p, so that the desired congruence follows if we express the numbers ζ � c �� p � / 4 k 0
in terms of Bernoulli numbers. More precisely we express the Bernoulli numbers in terms

of Sk / N 0 :
Bk 1 lim

m � 7
1

pm
Sk / pm 0 ,

(the p-adic limit) which follows directly from the above formula for Sk / N 0 . Consider now
the sum Sk / pm 0 1 pm 5 1�

n : 1 nk . For each n with / p, n 0 1 1 we have the congruence h / n 0 	
0 / modpN 0 . Let

S �k / pm 0A1 pm 5 19
n � 1�
n,p � � 1

nk 1 Sk / pm 0 4 pkSk / pm 5 1 0 .
Then

lim
m � 7

1

pm
S �k / pm 0A1 lim

m � 7
1

pm
� Sk / pm 0 4 pkSk / pm 5 1 0 � 1

lim
m � 7

1

pm
Sk / pm 0 4 pk 5 1 lim

m � 7
1

pm
Sk / pm 5 1 0A1 / 1 4 pk 5 1 0 Bk .

In order to prove the congruence9
i

αi ζ � c �� p � / 4 i 0
	 0 / modpN 0
where ζ � c �� p � / 4 k 0A1 / 1 4 pk 0 / 1 4 ck > 1 0 ζ / 4 k 0 , we rewrite it as9

i

αi / 1 4 pi 0 / 1 4 ci > 1 0 Bi > 1
i � 1 	 0 / modpN 0 ,

and we choosem > N such that/ 1 4 pk 5 1 0 Bk 	 1

pm
S �k / pm 5 1 0 mod pN .

then the left hand side transforms to9
i

αi / 1 4 ci > 1 0 1

i � 1
S �k / pm 0
pm

	 9
i

αi
1

i � 1
pm 5 19
n � 1�
n,p � � 1

ni
>
1

c 4	/ nc 0 i > 1
pm

/ modpN 0
where nc ;�� 1, 2, 	
	�	 , pm 4 1 � with nc 	 nc mod pm . Write t 1 nc 5 � nc �

pm
; Z,

ni
>
1

c 4	/ nc 0 i > 1 1 / nc � pmt 0 i > 1 4	/ nc 0 i > 1 	�/ i � 1 0 pmt / nc 0 i / modp2m 0 .
We see that the left hand side becomes

pm 5 19
n � 1�
n,p � � 1

nc 4 / nc 0
pm

9
i

αi / nc 0 i / modpm 0 .
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and it remains to notice that
�
i

αi / nc 0 i 	 0 / modpN 0 ,m > N Q.E.D.

The domain of definition of p-adic zeta functions is the p-adic analytic Lie group

Xp 1 Homcontin / Z =p ,C =p 0
of all continuous p-adic characters of the profinite group Z =p , where Cp 1��Qp denotes the
Tate field (completion of an algebraic closure of the p-adic field Qp 0 , so that all integers k
can be regarded as the characters xkp : y ?@ yk . The construction of Kubota and Leopoldt

is equivalent to existence a p-adic analytic function ζp : Xp @ Cp with a single pole at the

point x 1 x 5 1p , which becomes a bounded holomorphic function on Xp after multiplica-

tion by the elementary factor / xp x 4 1 0�/ x ; Xp 0 , and this function isuniquely determined
by the condition

ζp / xpk 0A1�/ 1 4 pk 0 ζ / 4 k 0 / k B 1 0 .
This result has a very natural interpretation in framework of the theory of non-

Archimedean integration (due to Mazur). We recall that a p-adic measure µ on a profi-

nite group G 1 lim� �
i

Gi / i ; I 0 is a bounded Cp-linear form on
� / G ,Cp 0 , notation: µ ;

Meas / G ,Cp 0 . Then the theorem of Kummer is equivalent to the fact that there exists a p-

adic measure µ � c � on Z =p with values in Zp such that � Z Hp xkp µ � c � 1 ζ � c �� p � / 4 k 0 . Indeed, if we
integrate h / x 0 overZ =p we exactly get the above congruence. On the other hand, in order to
define ameasure µ � c � satisfying the above condition it suffices for any continuous function
φ : Z =p @ Zp to define its integral � Z Hp φ / x 0 µ � c � . For this purpose we approximate φ / x 0
by a polynomial (for which the integral is already defined), and then pass to the limit. The

Kummer congruences guarantee that the limit is well defined.

2. The non-Archimedean Mellin transform

Letµ be a (bounded)Cp-valuedmeasure on Z =p . Then thenon-ArchimedeanMellin
transform of a measure µ is defined by

Lµ / x 0A1 µ / x 0E1GF
Z Hp x dµ / x ; Xp 0 ,

which represents a bounded Cp-analytic function

Lµ : Xp @ Cp .

Indeed, the boundedness of the function Lµ is obvious since all characters x ; Xp take

values in
�
p and µ is also bounded. The analyticity of this function expresses a general

property of the integral, namely, that it depends analytically on the parameter x ; Xp .
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However, there is a pure algebraic proof of this fact which is based on a description of the

Iwasawa algebra. This description also implies that every bounded Cp-analytic function

on Xp is the Mellin transform of a certain measure µ.

The Iwasawa algebra. Let
�
be a closed subring in

�
p 1�� z ; Cp � � z � p � 1 � , and

letG 1 lim� �
i

Gi / i ; I 0 be a profinite group. Then the canonical homomorphismGi πi j� 4 Gj
induces a homomorphism of the corresponding group rings

� �Gi � � 4 � �Gj � .
Then the completed group ring

� � �G � � is defined as the projective limit
� � �G � � 1 lim� �

i

� � � Gi � � / i ; I 0 .
Let us consider also the setDistr / G ,

� 0 of all � -valued distributions on G (finite-additive
functions on open-compact subsets of G with values in

�
, which itself is an

�
-module

and a ring with respect to multiplication given by the convolution of distributions, which

is defined in terms of families of functions

µ � i �1 , µ � i �2 : Gi @ �
(see the previous section) as follows:/ µ1 � µ2 0 � i � / y 0"1 9

y : y1y2 µ � i �1 / y1 0 µ � i �2 / y2 0�/ y1, y2 ; Gi 0
ThenMeas / G ,Cp 0$1 Distr / G ,

�
p 0��	� p Cp andF

G

φ / y 0 / µ1 � µ2 0 / y 0$1 F
G

φ / y1y2 0 µ1 / y1 0 µ2 / y2 0 .
Nowwedescribe an isomorphism of

�
-algebras

� � �G � � andDistr / G ,
� 0 . In the case when

G 1 Zp the algebra � � � G � � is called the Iwasawa algebra.
T (see [PaLNM], Ch.1).

(a) There is the canonical isomorphism of
�
-algebras

Distr / G ,
� 0�
@ � � � G � � ;

(b) If G 1 Zp then there is an isomorphism
� � � G � � 
@ � � � X � � ,

where
� � � X � � is the ring of formal power series in X over � . The isomorphism depends on

a choice of the topological generator of the group G 1 Zp .
In order to prove this result one needs to construct a measure (an

�
-valued distri-

bution) attached to a power series in
� � � X � � . A convenient tool to construct p-adic mea-

sures is given by the following

6



T (abstract Kummer congruences, see [KaCM], p.258). — Let � f i � be a sys-
temof continuous functions f i ; � / G ,

�
p 0 in the ring � / G ,

�
p 0 of all continuous functions

on a profinite group G with values in the ring of integers
�
p of Cp such that Cp-linear span

of � f i � is dense in � / G ,Cp 0 . Let also � ai � be any system of elements ai ; � p . Then the
existence of an

�
p-valuedmeasure µ on G with the property

F
G

f i dµ 1 ai
is equivalent to the following congruences: for an arbitrary choice of elements bi ; Cp

almost all of which vanish9
i

bi f i / y 0 ; pn � p for all y ; G implies
9
i

biai ; pn � p .

Remark. — Since Cp-measures are characterized as bounded Cp-valued distribu-

tions, every Cp-measure on G becomes a
�
p-valuedmeasure after multiplication by some

non-zero constant.

Proof. — The necessity is obvious since9
i

biai 1 F
G

/ pn � p 4 valued function 0 dµ

1 pn F
G

/ � p 4 valued function 0 dµ ; pn � p .

In order to prove the sufficiency we need to construct a measure µ from the numbers ai .

For a function f ; � / G ,
�
p 0 and a positive integer n there exist elements bi ; Cp such

that only a finite number of bi does not vanish, and

f 1 9
i

bi f i ; pn � / G ,
�
p 0

according to the density of the Cp-span of � f i � in � / G ,Cp 0 . By the assumption the value�
i

aibi belongs to
�
p and is well definedmodulo p

n (i.e. does not depend on the choice of

bi ). We denote this value by “ � Y f dµ mod pn”. Then we have that the limit procedure

F
G

f dµ 1 lim
n � 7 “ F G f dµ mod pn” ; lim� �

n

�
p/pn
�
p 1 � p ,

gives the measure µ.

Formulas for coefficients of power series. We have noticed above that Cp-analytic

bounded functions on Xp can be described in terms of measures. Indeed, these functions

are defined on analyticity components of the decomposition Xp as certain power series

with p-adically bounded coefficients, that is, power series, whose coefficients belong to

7



�
p after multiplication by some non-zero constant from C =p . We give a direct compu-

tation of these coefficients in terms of the corresponding measures. Let us consider the

decomposition Z =p �1 ∆
�

Γ where ∆ 1 / Z/pνZ 0 = , Γ 1 / 1 � pνZp 0 = , where ν 1 1 for

p > 2 and ν 1 2 for p 1 2. Then the group Γ �1 Zp is topologically cyclic with a generator

γ 1 1 � pν. Consider a ; ∆, and let µa / x 0 1 µ / ax 0 be the corresponding measure on
Γ defined by restriction of µ to the subset aΓ � Z =p . Consider the isomorphism aΓ �1 Zp

given by

y 1 aγx / x ; Zp , y ; Γ 0 .
Let µ �a be the corresponding measure on Zp . Then this measure is uniquely determined by
values of the integrals F

Zp

�
x

i � dµ �a / x 0A1 ai ,
with the interpolation polynomials � xi � , since the Cp-span of the family� �

x

i ��� / i ; Z, i B 0 0
is dense in

� / Zp ,
�
p 0 according to the Mahler’s interpolation theorem which says that any

continuous function f : Zp @ Qp can be written in the form:

f / x 0A1 79
n : 0 an

�
x

n � ,

with an @ 0 (p-adically) for n @8C . For a function f / x 0 defined for x ; Z, x B 0 one

can write formally

f / x 0A1 79
n : 0 an

�
x

n � ,

where the coefficients can be found from the following system of linear equations

f / n 0$1 n9
m : 0 am

�
n

m � ,

that is

am 1 m9
i : 0 / 4 1 0 m 5 i

�
m

i � f / i 0 .
This property of the interpolation polynomials implies that9

i

bi

�
x

i � 	 0 / modpn 0 / for all x ; Zp 0$1�� bi 	 0 / modpn 0 .
We can now apply the abstract Kummer congruences, which imply that for arbitrary choice

of numbers ai ; � p there exists a measure with the desired property.
8



On the other hand we state that theMellin transform Lµa of the measure µa is given

by the power series Fa / t 0 , that is
Fa / t 0A1 F

Γ

χ � t � / y 0 dµ / ay 0�1879
i : 0 � F Zp

�
x

i � dµ �a / x 0 � / t 4 1 0 i
for all characters of the form χ � t � , χ � t � / γ 0�1 t , � t 4 1 � p < 1. It suffices to show that this

identity is valid for all characters of the type y ?@ ym , where m is a positive integer. In

order to do this we use the binomial expansion

γmx 1 / 1 �G/ γm 4 1 0 0 x 1 79
i : 0

�
x

i � / γm 4 1 0 i ,
which implies that

F
Γ

ym dµ / ay 0E1 F
Zp

γmxdµ �a / x 0A1879
i : 0 � F Zp

�
x

i � dµ �a / x 0 � / γm 4 1 0 i ,
establishing the formulas for the coefficients of Fa / t 0 .

Example. — The p-adic Mazur measure and the non-Archimedean Kubota-

Leopoldt zeta function. Consider again a positive integer c ; Z =p � Z, c > 1 coprime

to p. Then for each complex number s ; C there exists a complex distribution µcp on

Gp 1 Z =p which is uniquely determined by the following condition
µ
c
s / χ 0A1�/ 1 4 χ 5 1 / c 0 c 5 1 5 s 0 / 1 4 χ / p 0 ps 0 L / 4 s, χ 0 .

The right hand side of is holomorphic for all s ; C including s 1�4 1. If s 1 k B 0 is a

natural number then the right hand side belongs to the field

Q / χ 0 � Qab � Q
generated by values of the character χ, and we get a distribution with values in Qab. If we

now apply the fixed embedding ip : Q ↪@ Cp we get a Cp-valued distribution µ � c � 1 ip / µc0 0
which turns out to be an

�
p-measure, and the following equality holds

µ � c � / χxrp 0A1 ip / µcr / χ 0 0 .
This identity is verified as above using the abstract Kummer congruences for characters

χ / y 0 yk ; it relates the special values of the Dirichlet L-functions at different non-positive
points. The function

ζp / x 0A1 / 1 4 c 5 1x / c 0 5 1 0 5 1Lµ
�
c � / x 0�/ x ; Xp 0

is well defined and it is holomorphic on Xp with the exception of a simple pole at the point

x 1 xp ; Xp , and we have that
ζp / χ / y 0 yk 0A1 / 1 4 χ / p 0 pk 0 L / 4 k, χ 0�/ k B 0, χ ; X torsp 0 .

9



The function ζp is called the non-Archimedean zeta function of Kubota-Leopoldt . The

corresponding measure µ � c � is be called the p-adic Mazur measure.
The original construction of Kubota and Leopoldt was successfully used by Iwa-

sawa for the description of the class groups of cyclotomic fields. According to a conjecture

of Iwasawa proved byMazur andWiles in 1984 [Maz-Wi1], the power series representingζp

describes the structure of p-ideal class groups in certain cyclotomic extensions ofQ as Ga-

lois modules over Z =p 1 Gal / Qab / p, C�0 /Q 0 where Qab / p, C�0�1 Q / p ��� 1 0 is the maximal
abelian extension of Q unramified outside of p and C . Since then the class of functions
admitting p-adic analogues has gradually extended.

3. Admissible measures

Nowwe recall the notion of theh-admissiblemeasures onGp andproperties of their

Mellin transform. These Mellin transform are certain p-adic analytic functions on the Cp-

analytic Lie group Xp . Recall that a p-adic measure on Gp may be regarded as a bounded

Cp-linear form µ on the space
� / Gp 0 of all continuous Cp-valued functions

ϕ @ µ / ϕ 0$1 F
Gp

dµ ; Cp , ϕ ; � / Gp 0 ,
which is uniquely determined by its restriction to the subspace

� 1 / Gp 0 of locally constant
functions. We denote by µ / a ��/ Q 0 0 the value of µ on the characteristic function of the set

a � / Q 0E1 � x ; Gp � x 	 a mod Q � � Gp .

The Mellin transform Lµ of µ is a bounded analytic function

Lµ : Xp @ Cp , Lµ / χ 0A13F
Gp

χdµ ; Cp , χ ; Xp ,

on Xp , which is uniquely determined by its values Lµ / χ 0 for the characters χ ;�� torsS .

A more delicate notion of an h-admissible measure was introduced by Amice-Vélu

and Višik (see [Am-V]). Let
�
h / Gp 0 denote the space of Cp-valued functions which can be

locally represented by polynomials of degree less than a natural number h of the variable

xp ; Xp introduced above.
D. — A Cp-linear form

µ :
� h / Gp 0A@ Cp

10



is called h-admissible measure if for all a ; Gp and for all r 1 0, 1, . . . , h 4 1 the following
growth condition is satisfied���

sup
a � Gp F a > � Q � / xp 4 ap 0 rdµ

��� 1 o / �Q � r 5 hp 0
It is known due to Amice-Vélu and Višik that each h-admissible measure can be

uniquely extended to a linear form on the Cp-space of all locally analytic functions so that

one can associate to its Mellin transform

Lµ : Xp @ Cp , Lµ / χ 0A1 F
Gp

χdµ ; Cp , χ ; Xp ,

which is a Cp-analytic function on Xp of the type o / log xhp 0 . Moreover, the measure µ is

uniquely determined by the special values of the type

Lµ / χxrp 0 / χ ; Xp , r 1 0, 1, . . . , h 4 1 0 .

4. Further generalizations

L-functions (of complex variable) can be attached as certain Euler products to var-

ious objects such as diophantine equations, representations of Galois groups, modular

forms etc., and they play a crucial role in modern number theory. Deep interrelations

between these objects discovered in last decades are based on identities for the corre-

sponding L-functions which presumably all fit into a general concept of the Langlands

of L-functions associated with automorphic representations of a reductive group G over a

number field K .

From this point of view the study of arithmetic properties of these zeta function is

becoming especially important. The major sources of such L-functions are:

1) Galois representations of GK 1 Gal / K /K 0 for algebraic number fields K , r :
GK @ GL / V 0 , V a finite dimensional vector space, and one can attach to r an Euler prod-
uct due to Artin.

2) Algebraic varieties X defined over an algebraic number field K . In this case one

can attach to X/K its Hasse-Weil zeta function.

3) Automorphic forms and automorphic representations. In the classical case one

associates to a modular form f / z 0"1 7�
n : 0 an exp / 2πinz 0 its Mellin transform L / s, f 0"1

7�
n : 1 ann 5 s . In general an automorphic form generates an automorphic representations in

11



the space of smooth functions over an adelic reductive group, and one can attach an Euler

product to it using a decomposition of such a representation into a tensor product indexed

by prime numbers p and C .
Conjecturally, all the three type of L-functions can be related to each other using

a general theory of motives over Q with coefficients in a number field T , � T : Q � < C
(this field coincides with the field Q / � an � n � 1 0 generated by the coefficients of the cor-
responding L-function L / M , s 0 1 7�

n : 1 ann 5 s .) For a fixed prime number p one can also
attach in many cases to the above complex L-function a p-adic L-function. These p-adic

L-functions are certain analytic functions in a p-adic domain obtained by an interpolation

procedure of certain special values of the corresponding complex analytic L-functions.

Their existence is equivalent to certain generalized Kummer congruences for the special

values.

5. Non-archimedean L-functions of Jacquet-Langlands

These L-functions correspond to certain automorphic representations on the group

G 1 GL2 and G 1 GL2
� GL2 over a totally real field F , and they reduce to zeta functions

of the form

L / s, � 0E1 9 � C /�� , � 0���/�� 0 5 s , L / s, � , g 0$1 9 � C /�� , � 0 C /�� , g 0���/�� 0 5 s ,
where � , g are Hilbert automorphic forms of “holomorphic type” over F , where C /�� , � 0 ,
C /�� , g 0 are their normalized Fourier coefficients (indexed by integral ideals � of the maxi-
mal order

�
F � F ) which also coincide with the eigenvalues of Hecke operators T /�� 0 . On

can regard � , g as functions on the adelic groupGA 1 GL2 / AF 0 , whereAF is the ring of ade-
les of F and we suppose that � is a primitive cusp form of scalar weight k B 2, of conductor
	 /
� 0 � � F , and the characterψ and g a primitive cusp form of weight l < k, the conductor
	 / g 0 , and the character ω, / ψ, ω : A =F @ C = are Hecke characters of finite order). The
non-Archimedean construction is based on the algebraic properties of the special values of

the function L / s, � , g 0 at the points s 1 l, 	
	�	 , k 4 1 up to some constant, which is expressed
in terms of the Petersson inner product ��� , �

 of the automorphic form � . Our theorem on

non-Archimedean interpolation is equivalent to certain generalized Kummer congruences

for these special values.

We need some more notation for the precise formulation of the result (in a simpli-

fied form). Let ψ � , ω � be the characters of the ideal group of F associated with ψ, ω and

12



let

L �6/ s, ψω 0$1 9
� > � : � F ψ � /�� 0 ω � /�� 0���/�� 0 5 s 1 2

� > � : � F / 1 4 ψ � /�� 0 ω � /�� 0���/�� 0 5 s 0 5 1
be the corresponding Hecke L-function with 	 1 	 /�� 0 	 / g 0 . We now define the normalized
Rankin zeta function by setting

Ψ / s, � , g 0A1 γn / s 0 L �6/ 2s � 2 4 k 4 l, ψω 0 L / s, � , g 0 ,
where n 1 � F : Q � is the degree of F ,

γn / s 0$1 / 2π 0 5 2nsΓ / s 0 nΓ / s � 1 4 l 0 n
is the gamma-factor. Then the function Ψ / s, � , g 0 admits a holomorphic analytic contin-
uation onto the entire complex plane and it satisfies a certain functional equation. Put

Ω /�� 0$1 �
� , �

 � ��� � , then we know due to Shimura [Shi] that the number
Ψ / l � r, � , g 0/ 2πi 0 n � 1 5 l � Ω /�� 0 is algebraic for all integers r with 0 � r � k 4 l 4 1 .

For the non-Archimedean construction we introduce the p-adic completion

�
F,p 1 / � F � Zp 0A1 2 ���

p

� �

of the ring
�
F . Put

SF 1 ��� � � divides p �
and let GF,p 1 Gal / F ab / p, C�0 /F 0 be the Galois group of the maximal abelian extension
F ab / p, C(0 of F unramified outside places over p and C .

The domain of definition of our non-Archimedean L-functions is the p-adic ana-

lytic Lie group

� p 1 Homcontin / GF,p ,C =p 0
of all continuous p-adic characters of the Galois groupGF,p with Cp being the Tate field. El-

ements of finite order χ ; � p can be identified with those Hecke characters of finite order
whose conductors are divisible only by prime divisors belonging to SF , via the decomposi-

tion

χ : A =F class field theory4 @ GF,p @ Q = ip@ C =p .

We shall use the same symbol χ to denote both Hecke character and the corresponding

element of � p . Since Qab / p, C�0 � F ab / p, C�0 , the restriction of Galois automorphisms to
Qab / p, C(0 determines a natural homomorphism

� : GF,p @ Gp 
@ Z =p .

We let � xp denote the composition of this homomorphism with the inclusion Z =p � C =p .
13



Wenote first that an analogue of the Kubota-Leopoldt zeta function in this case was

constructed by Deligne and Ribet [De-Ri]. In 1976 Yu.I. Manin [Man] has constructed a p-

adic analogue of the series L / s, � 0 1 � � C /�� , � 0���/�� 0 5 s under the assumption that the cusp
form � is p-ordinary, i.e. that for the fixed embedding Q ↪@ Cp and for all �
� p there exists
a root α /�� 0 of Hecke � -polynomial of � such that � ip / α / � 0 0 � p 1 1. This p-adic L functions

satisfy a certain functional equation , similar to the complex analytic one. In the case F 1
QHa Huy Khoai [HHKh] proved that the p-adic functional equation characterize � .

In order to construct p-adic L functions of two automorphic forms � and gwemake
again the assumption that the cusp form � is p-ordinary. We then fix roots α / � 0 with� ip / α /�� 0�0�� p 1 1 and extend the definition of α /�� 0 to all integral ideals � � � F by multi-
plicativity.

T. — (On the non-Archimedean convolutions of Hilbert modular forms)

Under the above notations and assumptions there exists a bounded Cp-analytic

function Ψp : � p @ Cp which is uniquely determined by the condition: for each Hecke

character of finite order χ ; � tors
p the following equality holds

Ψp / χ 0A1 ip � D 2l
F ω � /�� 0 τ / χ 0 2 � � l 5 1

α /�� 0 2 Ψ / l, � , gρ / χ̄ 0�0/ 4 2πi 0 n � 1 5 l � ��� , � 
 � ,

where DF is the discriminant of F , τ / χ 0 the Gauss sum of χ, and gρ / χ 0 the cusp form ob-

tained from gby complex conjugation of its Fourier coefficients and by twisting it thenwith

the character χ.

This result is also valid for the special values Ψ / l � r, � , g / χ 0�0 with r 1 1, . . . , k 4 l,
if we replace χ ; � p by χ � xrp ; � p (see [PaLNM], Ch. 4). Note that this result was
established byH.Hida [Hi] in a muchmore general, but p-ordinary, situation. On the other

hand, this construction was extended by My Vinh Quang [MyVQ] to the non-p-ordinary ,

i.e. supersingular case, when � ip / α /�� 0 � p < 1 for both roots α / � 0 and �
� p. In this situation
the functions Ψp are also uniquely determined by the above condition provided that they

have a prescribed logarithmic growth.

6. p-adic families of motives and their L-functions

Weconsider in the rest of the paper amotiveM overQwith coefficients in a number

field T (see Section 7 for definitions), and its L-functions L / M , s 0 . We describe a general
conjecture on the existence of a p-adic family MP of motives coming from M . The most

14



important known example of such a family is given by Hida’s families of p-ordinary cusp

forms �
fk 1 79

n : 1 an / k 0 exp / 2πinz 0��
of weight k. In this case P 1 Pk , k B 2, and motives of the family MPk are character-

ized by the condition L / MPk , s 0-1 L / s, fk 0 (the Mellin transform of fk ). The functions

k ?@ an / k 0�; Q admit an interpolation to certain Iwasawa functions of k. A famous ap-
plication of Hida’s families was given in the proof of Wiles of the Fermat Last theorem and

the Shimura-Taniyama conjecture [Wi]: in order to associate to an elliptic curve E overQ a

modular form of weight k 1 2 one finds first a modular form g mod p attached to E , with

p 1 3 or 5. Then one lifts this form to characteristic 0, and includes it to a family of Hida

fk . By putting k 1 2 one gets the answer. Other interesting examples of p-adic families of

automorphic forms were given recently by J.Tilouine and E.Urban, [Til-U]

In a more general situation this family is parametrised by some dense subset of

algebraic characters P of a p-adic commutative algebraic group (which we call the group

of Hida). This group can be regarded as a maximal torus of the p-adic part of the motivic

Galois group GM ofM (the Tannakian group for the tensor category generated byM ). The

important condition of motives MP of the above family is that they have the same fixed

p-invariant h 1 hP , which is defined as the difference between the Newton polygon and

the Hodge polygon of a motive at certain point d
>
(the dimension of the subspaceM

>
of

the Betti realization MB of M ). The corresponding p-adic L-functions of this family can

be unbounded (of Amice-Vélu type [Am-Ve]) but they form a family which is conjecturally

bounded in the “weight direction", that is for P parametrized by algebraic characters of

GM ,p .

More precisely, the values of the function P ?@ L / MP , 0 0 satisfy generalised Kum-
mer congruences in the following sense: for any finite linear combination

�
P

bP 	 P with
bP ; Cp which has the property �

P

bP 	 P 	 0 / modpN 0 we have that for some constant
C <1 0 the corresponding linear combination of the normalized L-values

C
9
P

bPcp / MP 0 	 L � p, 7 � / MP , 0 0
c 7 / MP 0 	 0 / modpN 0 .

Here cp / MP 0 and c 7 / MP 0 denote a p-adic and a complex period of MP so that the ratio

“
cp / MP 0
c 7 / MP 0 " is uniquely defined, and L � p, 7 � / MP , s 0 denotes the above L-function L / MP , s 0
normalized by multiplying by a certain canonically definedDeligne’s p-factor correspond-

ing to a choice of inverse rootsα � 1 � / p 0 , . . .,α � d I � / p 0�; Cp of p-local polynomial ofM such

that

ordp / α � 1 � / p 0 0 � ordp / α � 2 � / p 0�0 � . . . � ordp / α � d � / p 0 0 ,
15



d being the common rank of the familyMP , d
>
the T -dimension of the Deligne’a subspace

M
>
ofMB (the fixed subspaces of the canonical involution ρ ofM over T ).

Recent examples of such families related to modular forms were constructed by

R. Coleman [Col] who proved the following

T (R. Coleman). — Suppose α ; Q and ε : / Z/pZ 0 = @ C =p is a character.
Then there exists a number n0 which depends on p, N and ε, and α with the following

property: If k ; Z, k > α � 1 and there is a unique normalized cusp form F on X1 / Np 0 of
weight k, character εω 5 k and slopeα and if k � > α � 1 is an integer congruent tokmodulo
pn
>
n0 , for any positive integer n, then there exists a unique normalized cusp form F � on

X1 / Np 0 of weight k � , character εω 5 k � and slope α (ω denotes the Teichmüller character).

Moreover his form satisfies the congruence

F � / q 0
	 F / q 0 / modpn > 1 0 .
This result can be regarded as a generalization of the work of Hida [HiGal] who con-

sidered the case α 1 0 and constructed interesting families of Galois representations of

the type

ρp : GQ @ GL2 / Zp � � T � � 0 , GQ 1 Gal / Q/Q 0 ,
which are non ramified outside p. These representations have the following property: if we

consider the homomorphisms

Zp � � T � � sk4 @ Zp , 1 � T ?@ / 1 � p 0 k 5 1,
then we obtain a family of Galois representations

ρ � k �p : GQ @ GL2 / Zp 0 ,
which is parametrized by k ; Z, and for k 1 2, 3, 	
	
	 , these representations are equivalent
over Qp to the p-adic representations of Deligne, attached to modular forms of weight k.

This means that the representations of Hida are obtained by the p-adic interpolation of

Deligne’s representations. A geometric interpretation of Hida’s representations was given

by Mazur and Wiles [Maz-W2], cf. [Maz]. For example, for the modular form ∆ of weight

12 Hida has constructed a representation

ρp,∆ : GQ @ GL2 / Zp � � T � � 0 ,
as an example of his general theory, where the prime number p have the property τ / p 0�<	
0 / modp 0 (e.g. p < 2041, p <1 2, 3, 5 and 7). The boundedness property is the subject of

a recent research by G.Stevens, B.Mazur and F.Q.Gouvêa. Note that other examples may

include Rankin products, Garrett triple products of elliptic and Hilbert modular forms and

standard L-functions of Siegel modular forms.
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To describe this conjecture more precisely, letM is a motive over Q of with coeffi-

cients in T i.e.

MB , MDR , Mλ, I 7 , Iλ,

whereMB is the Betti realization of M which is a vector space over T of dimension d en-

dowed with a T -rational involution ρ ; MB 1 M
>��

M 5 denotes the corresponding de-
composition into the sum of � 1 and 4 1-eigenspaces of ρ.

MDR is the de Rham realization of M , a free T -module of rank d, endowed with a

decreasing filtration � F iDR / M 0 � MDR � i ; Z � of T -modules;
Mλ is the λ-adic realization ofM at a finite place λ of the coefficient field T (a Tλ-

vector space of degree d over Tλ, a completion of T at λ 0 which is a Galois module over
GQ 1 Gal / Q/Q 0 so that we a have a compatible system of λ-adic representations denoted

by

rM ,λ 1 rλ : GQ @ GL / Mλ 0 .
Also,

I 7 : MB � T C @ MDR � T C
is the complex comparison isomorphism of complex vector spaces

Iλ : MB � T Tλ @ Mλ

is the λ-adic comparison isomorphism of Tλ-vector spaces. It is assumed in the notation

that the complex vector spaceMB � Q C is decomposed in the Hodge bigraduation
MB � T C 1 � i,jM i,j

in which ρ / M i,j 0 � M j,i and

h / i, j 0 1 h / i, j,M 0$1 dimCM
i,j

are the Hodge numbers. Moreover,

I 7 /
�

i � � iM i � ,j 0A1 F iDR / M 0�� C.

Also, Iλ takes ρ to the rλ-image of the Galois automorphism which corresponds to the com-

plex conjugation of C. We assume thatM is pure of weightw (i.e. i � j 1 w).
The L-function L / M , s 0 ofM is defined as the following Euler product:

L / M , s 0E1 2
p

Lp / M , p 5 s 0 ,
extended over all primes p and where

Lp / M , X 0 5 1 1 det / 1 4 X 	 rλ / Fr 5 1p 0 � M Ip
λ 01 / 1 4 α � 1 � / p 0 X 0 	 / 1 4 α � 2 � / p 0 X 0 	 . . . 	 / 1 4 α � d � / p 0 X 01 1 � A1 / p 0 X � . . . � Ad / p 0 X d ;
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here Frp ; GQ is the Frobenius element at p, defined modulo conjugation and modulo

the inertia subgroup Ip � Gp � GQ of the decomposition group Gp (of any extension of

p to Q). We make the standard hypothesis that the coefficients of Lp / M , X 0 5 1 belong to
T , and that they are independent of λ coprime to p. Therefore we can and we shall regard

this polynomial both over C and over Cp . We shall need the following twist operation: for

an arbitrary motiveM over Q with coefficients in T an integerm and a Hecke character χ

of finite order one can define the twist N 1 M / m 0 / χ 0 which is again a motive overQwith
the coefficient field T / χ 0 of the same rank d and weightw so that we have

L / N , s 0E1 2
p

Lp / M , χ / p 0 p 5 s 5 n 0 .

7. The group of Hida and the algebra of Iwasawa-Hida

Now let us fix a motive M with coefficients in T 1 Q / � a / n 0 n 
�0 of rang d and of
weight w, and let EndT M denote the endomorphism algebra ofM (i.e. the algebra of T -

linear endomorphisms of anyMB , which commute with the Galois action under the com-

parison isomorphisms). Let

Gp 1 Gal / Qabp, 7 /Q 0 
@ Z =p
denotes the Galois group of the maximal abelian extension Qabp, 7 of Q unramified outside

p and C . Define � T,p 1 � T � Zp .
D. — The group of Hida GHM 1 GHM ,p is the following product

GHM 1 GM ,p
�
Gp ,

where GM ,p 1 / EndT M 0 = / � T,p 0 denotes the p-adic group of � T,p-points of a maximal

torus of the algebraic T -group / EndT M 0 = of invertible elements of EndT M (it is implicitly

supposed that the group EndT M = possesses an � T -integral structure given by an appro-
priate choice of an

�
T -lattice).

Consider next the Cp-analytic Lie group

� M ,p 1 Homcontin / GHM , C =p 0
consisting of all continuous characters of the Hida group GHM , which contains the Cp-

analytic Lie group

� p 1 Homcontin / Gp , C =p 0
consisting of all continuous characters of the Galois group Gp (via the projection of GHM
onto Gp .
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The group � M ,p contains the discrete subgroup � of arithmetical characters of the
type

χ 	 η 	 xmp 1�/ χ, η,m 0 ,
where

χ ; � torsM ,p

is a character of finite order of GHM , η is a T -algebraic character of GM ,p , m ; Z, and xp
denotes the following natural homomorphism

xp : Gp 1 Gal / Qabp, 7 /Q 0 �1 Z =p @ C =p , xp ; � p .

D. — The algebra of Iwasawa-Hida IM 1 IM ,p ofM at p is the completed

group ring
�
p � � GHM � � , where � p denotes the ring of integers of the Tate field Cp .

Note that this definition is completely analogous to the usual definition of the Iwa-

sawa algebra Λ as the completed group ring Zp � � Zp � � if we take into account that Zp coin-
cides with the factor group of Z =p modulo its torsion subgroup.

Now for each arithmetic point P 1 / χ, η,m 0E;�� we have a homomorphism
νP : IM ,p @ � p

which is defined by the corresponding group homomorphism

P : GHM @ � =p � C =p .

For a IM -moduleN and P ;�� we put
NP 1 N � IM ,νP

�
p

(“reduction of N modulo P", or a fiber of N at P). Therefore, for a Galois representation

rN : GQ @ GL / N 0
of the above type its reduction rNP 1 r mod P is defined as the natural composition:

GQ @ GL / N 0A@ GL / NP 0 .
Remark. — In his very recent work [HiGen] Hida gives another version of the

above definition, but he starts from a Galois representation ϕ : Gal / F/F 0&4*@ GLn / I 0 ,
where I 1 � K � � Tn / Zp � � and Tn the maximal split torus of Res � F /Z GL / n 0 for the integer
ring
�
F of F , and for the integer ring

�
K of a sufficiently large finite extension K ofQp . He

is interested in representationsϕ satisfying the following condition:

There are arithmetic points P “densely populated" in Spec / I / K 0 0 such that the Galois
representationϕP 1 P � ϕ is the p-adic étale realization of a rank n puremotive MP

of weight w defined over F with coefficients in a number field EP in Q.

We are trying to resolve an inverse problem and to include a given motive M in

a maximal possible p-adic family MP parametrized by arithmetic characters of a certain

group which we suppose to consist of an “algebraic part" GM ,p and of a “Galois part" Gp .
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8. A conjecture on the existence of p-adic families of
Galois representations attached to motives

Note first that the fixed embeddings T ↪@ C,

i 7 : Q @ C, ip : Q @ Cp

define a place λ / p 0 of T attached to the corresponding composition
T ↪@ Q

ip@ Cp .

C I. — For every M of rang d with coefficients in T there exists a free

IM -moduleMI of the same rang d, a Galois representation

rI : GF @ GL / MI 0 ,
a dense subset � � � � of characters, and a distinguished point P0 ;�� such that

(a) the reduced Galois representation

rI ,P0 : GF @ GL / MI ,P0 0
is equivalent overCp to theλ / p 0 -adic representation rM ,λ � p � ofM at the distinguished place

λ / p 0 ;
(b) for every P ; � � there exists a motiveMP over Q of the same rang d such that

its λ / p 0 -adic Galois representation is equivalent over Cp to the reduction
rI ,P : GQ @ GL / MI ,P 0 .

We call the moduleMI the realization of Iwasawa ofM .

A generalization of theHasse invariant for amotive. — Wedefine the generalized

Hasse invariant of a motive in terms of the Newton polygons and the Hodge polygons of a

motive. Properties of these polygons are closely related to the notions of a p-ordinary and

a p-admissible motive.

Now we are going to define the Newton polygon PNewton / u 0E1 PNewton / u,M 0 and
the Hodge polygon PHodge / u 0 1 PHodge / u,M 0 attached to M . First we consider (using
i 7 ) the local p-polynomialLp / M , X 0 5 1 1 1 � A1 / p 0 X � 	�	
	 � Ad / p 0 X d1�/ 1 4 α � 1 � / p 0 X 0 	 / 1 4 α � 2 � / p 0 X 0 	 . . . 	 / 1 4 α � d � / p 0 X 0 ,
and we assume that its inverse roots are indexed in such a way that

ordpα � 1 � / p 0 � ordpα � 2 � / p 0 � 	
	�	 � ordpα � d � / p 0
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D. — The Newton polygon PNewton / u 0 / 0 � u � d 0 of M at p is the

convex hull of the points / i, ordp Ai / p 0 0 (i 1 0, 1, 	�	
	 , d).
The important property of the Newton polygon is that the length the horizontal

segment of slope i ; Q is equal to the number of the inverse roots α � j � / p 0 such that
ordpα � j � / p 0 1 i (note that i may not necessarily be integer but this will be the case for

the p-ordinary motives below).

The Hodge polygon PHodge / u 0$/ 0 � u � d 0 of M is defined using the Hodge de-

composition of the d-dimensional C-vector space

MB 1 MB � T C 1 � i,jM i,j

whereM i,j as a C-subspace.

D. — The Hodge polygon PHodge / u 0 is a function � 0, d � @ R whose

graph consists of segments passing through the points/ 0, 0 0 , . . . , / 9
i � �

i

h / i � , j 0 , 9
i � �

i

i � h / i � , j 0 0 ,
so that the length of the horizontal segment of the slope i ; Z is equal to the dimension
h / i, j 0 .

Now we recall the definition of a p-ordinary motive (see [Co], [Co-PeRi]). We as-

sume thatM is pure of weightw and of rank d. ThenM is called p ordinary at p if the the

Hodge polygon and the Newton polygon ofM coincide:

PNewton / u 0$1 PHodge / u 0 .
If furthermoreM is critical at s 1 0 then it is easy to verify that the number dp of the inverse
roots α � j � / p 0 with

ordpα � j � / p 0 < 0 is equal to d
> 1 d > / M 0 ofM >B .

However, it turns out that the notion of a p-ordinary motive is too restrictive, and we have

introduced the following weaker version of it.

D. — The motiveM over F with coefficients in T is called admissible at

p if

PNewton / d > 0A1 PHodge / d > 0
here d

> 1 d > / M 0 is the dimension of the subspaceM > � MB .

In the general case we use the following quantity (a “generalized slope") h 1 hp

which is defined as the difference between the Newton polygon and the Hodge polygon

ofM :

hp 1 PNewton / d > 0 4 PHodge / d > 0 .
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ofM at p. Note the following important properties of h:

(i) h 1 h / M 0 does not change if we replaceM by its Tate twist.

(ii) h 1 h / M 0 does not change if we replaceM by its twistM 1 M / χ 0 with aDirich-
let character χ of finite order whose conductor is prime to p.

(iii) h 1 h / M 0 does not change if we replaceM by its dualM � .
In the next section we state in terms of this quantity a general conjecture on p-adic

L-functions.

A conjecture on the existence of certain families of p-adic L-functions. — We are

going to describe families of p-adic L-functions as certain analytic functions on the total

analytic space, the Cp-analytic Lie group

� M ,p 1 Homcontin / GHM , C =p 0 ,
which contain the Cp-analytic Lie subgroup (the cyclotomic line) � p � � M ,p :

� p 1 Homcontin / Gp , C =p 0 .
In order to do this we need a modified L-function of a motive. Following J.Coates this

modified L-function has a formappropriate for further use in the p-adic construction. First

wemultiply L / M , s 0 by an appropriate factor at infinity and define
Λ � 7 � / M , s 0E1 E 7 / M , s 0 L / M , s 0

where E 7 / M , s 0 1 E 7 / τ,RF/QM , ρ, s 0 is the modified Γ-factor at infinity which actually

does not depend on the fixed embedding τ of T into C. Also we put

cν / M 0$1 / cν / M 0 � τ � 0E1 cν / RM 0 / 2πi 0 r � RM � ; / T � C 0 =
where

ν 1 / 4 1 0 m, r / M 0E1 9
j<0

jh / i, j 0E1 9
j<0

jh / i, j 0 ,
cν / M 0 is the period ofM . Note that the quantity r / M 0 has a natural geometric interpreta-
tion as the minimum of the Hodge polygon PHodge / M 0 .

We define

Λ � p, 7 � / M / m 0 / χ 0 , s 0E1 G / χ 0 5 d
ε0 � M � m � � χ � � 2

p
�
p

Ap / M / m 0 / χ 0 , s 0 	 Λ � 7 � / M / m 0 / χ 0 , s 0 ,
where

Ap / M / χ 0 , s 0E1
������� ������

d�
i : d I > 1 / 1 4 χ / p 0 α � i � / p 0 p 5 s 0 d I�

i : 1 / 1 4 χ 5 1 / p 0 α � i � / p 0 5 1ps 5 1 0
for p < � 	 / χ 0

d
I�

i : 1
�

ps

α � i � / p 0 � ordp � � χ �
, otherwise.
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Let � be the discrete subgroup � of arithmetical characters,

χ 	 η 	 xmp 1 / χ, η,m 0$;�� ,

� � � � a certain “dense" subset of characters, P0 ; � a distinguished point of conjecture
I. Let � � � � � � be the subset of critical elements, which consists of those P , for which
the corresponding motivesMP are critical (at s 1 0). Now we are ready to formulate the

following

C II. — There exists a certain choice of complex periodsΩ 7 / P 0�; C =and p-adic periods Ωp / P 0�; C =p for all P ; � � � such that “the ratio” Ωp / P 0 /Ω 7 / P 0 iscanonically defined, and there exists a Cp-meromorphic function

ŁM : � M ,p @ Cp

with the properties:

(i)

ŁM / P 0$1 Ωp / P 0 Λp, � 7 � / M / m 0 / χ 0 , 0 0Ω 7 / P 0for almost all P ;�� � � ;
(ii) For arithmetic points of type

P 1�/ χ, η,m 0$;�� � �
with η fixed there exists a finite set Ξ � � M ,p of p-adic characters and positive integers

n / ξ 0 (for ξ ; Ξ 0 such that for any g0 ; Gp we have that the function2
ξ � Ξ

/ x / g0 0 4 ξ / g0 0 0 n � ξ � ŁM / x 	 P 0
is holomorphic on � p ;

(iii) For arithmetic points of type

P 1�/ χ, η,m 0$;�� � �
with η fixed the function in (ii) is bounded if and only if the invariant h / P 0 1 h / MP 0
vanishes;

(iv) In the general case the function ŁM / P 	 x 0 of x ; � p is of logarithmic growth
type o / log / 	 0 h0 0 with

h0 1 � h � � 1.
(v) For arithmetic points of type

P 1�/ χ, η,m 0$;�� � �
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with χ and m fixed the function in (ii) is always bounded if the Hasse invariant h / P 0 1
h / MP 0 does not depend on η.

Note that the assertion (v) means in particularly that the values of the function

P ?@ Ωp / P 0 Λ � p, 7 � / MP , 0 0
Ω 7 / P 0satisfy generalised Kummer congruences in the following sense: for any finite linear com-

bination
�
P

bP 	 P with bP ; Cp which has the property �
P

bP 	 P 	 0 / modpN 0 we have
that for some constant C <1 0 the corresponding linear combination of the normalized

L-values

C
9
P

bPΩp / P 0 	 Λ � p, 7 � / MP , 0 0
Ω 7 / P 0 	 0 / modpN 0 .

In the case of families of supersingular modular forms studied by R. Coleman [Col]

the invariant h / P 0 reduces to the slope of a modular form in such a family.
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