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1. Introduction

Let p be an odd prime number. Let 5 : Gal(Q/Q) — Gl,(F,) be an odd con-
tinuous representation unramified outside a finite set Sq of rational primes.
In that situation p factors through Gs = Gal(Ks,/Q) where K denotes the
field fixed by Kerp in Q, S a finite set of places of K containing the places

over Sq in K and K, the maximal pro-p-extension of K, unramified outside
S.

Mazur’s deformation theory of Galois representations shows the existence of a
(uni)versal deformation ring R, (p) and the associated (uni)versal represen-
tation pg, which allow us to parametrize all deformations p : Gg — Gly(R)
of p: Gg — Gly(F,) where R stands for any complete noetherian local ring
with residual field F,.

To our knowledge, there is not yet any general method for computing the
(uni)versal deformation ring R, (p) although partial results suggest that the
structure of this ring is closely related to the adjoint representation Ad(p).
By application of Schlessinger’s criterion [Sc] Mazur ([Ma] subsection 1.2)
shows that Rg,(p) is a quotient ring of a formal series ring whose mini-
mal number of variables is d’ = dimg, H*(Gs, Ad(p)). To be more specific,
Rig(p) = Zp[[Y1,- - -, Yy]]/I where I will be called the ideal of relations of
R4 (p), so that the determination of Rg,(p) amounts to that of I.

The knowledge of I would allow to discuss Mazur’s question on the Krull



dimension of Rg,(p)/pRas(p) (in the case dimp = 1, this is the celebrated
Leopoldt conjecture, [Ma] subsections 1.6 and 1.10). The general theory of
obstructions shows that I = 0 (i.e the (uni)versal deformation ring is free) if
H?(Gs, Ad(p)) = 0. Almost all explicit examples that we know of rely on the
latter assumption ([Bol],[Ra]), which occurs for instance if the maximal pro-
p-quotient Pg, of G is a free pro-p-group or if some irreducible components
of the representation Pg’; ®F, are prime to the irreducible components of the
representation Ad(p). This suggests a precise connection (via p) between the
relations of the pro-p-group P, and the relations of the (uni)versal deforma-
tion ring R, . It should be stressed though, that even the precise knowledge
of the relations of Py, does not imply straightforwardly the knowledge of the
ideal 1.

In this paper, we present an approach for determining I, via Iwasawa theory,
built on an example studied by Boston. In [Bol] subsection 9.3 Boston con-
siders representations p which factor through pg : G — Gly(F,), where G is
a natural quotient of Gs which occurs in Iwasawa theory. By construction
there exists a surjective morphism of local rings Rg,(p) — Rae(pe) making
R;(pi) an approximation of R, (p). We make more precise this morphism
in the sequel. Moreover if the order of Imp is prime to p (this is the tame
case), then Rg,(p) and Re(pe) have the same minimal number of variables.

In the sequel we shall develop Boston’s example along two directions: First
we present a systematic way of deriving, from a minimal system of relations
of the group Pg,, a minimal set of relations for the ring Re(pe), using the
method of Fox derivatives described in [Ngl]. Second we extend the frame-
work of Iwasawa theory to study not only the Z,-cyclotomic extension, but
also pro-p-free extensions, which allows us to enlarge the group G which
approximates Gs and to replace the classical Iwasawa algebra by the (non
commutative) Magnus algebra as in [Ng2].

More precisely it will be shown that the computation of Rg(pg) is possible
*
0
characters (i.e Borel case).
If the relations of Pg, are known, [Bol] proposition 6.1 allows us in principle
to determine Rg, (p) in the tame case, though in most cases the computations

provided that Imp C ( :) with an additional hypothesis on the diagonal



involved cannot be carried out. Our method here works fine even if the
relations of P, are not explicitly known.

The method involves two steps: first (sections 4-5) we find the images of the
generators of G using the action of G/Pg (where Pg is the p-Sylow subgroup
of G). We proceed exactly as if P; were free. Second (sections 6-7) we
express the relations between selected generators (the images of which are
simple).

In the special case considered by Boston, we obtain a presentation of the
universal ring Rg(pa) = Z,[[Y1,- -+, Ya, ]|/I where di; = dimp, H'(G, Adpe)
and [ is the ideal of relations generated by

UX o ‘
1+Y)" - )
( E( +Y5) 1<j<t
and
(T Y (a2 (F e ) %)
(CL +Z 1 T Ydl + 1+Z a; +Zl 1,k 1 + Yd’G 1<j<t
1= UX o0 =

where the coefficients a?, bf .. are derived from the relations of Pg, (see theo-
rem 7.2.1 and compare [Bol] subsection 9.3).

The comparison between the universal deformation rings R;(pg) and Re ()
is done in theorem 7.4.2, where we make precise the natural surjective mor-
phism Rg,(p) — Rg(pg) :

Lastly (sections 7-8) we give some applications of our results to represen-
tations associated to elliptic curves or to modular forms. For the latter
representations, cyclotomic fields (we correct an imprecise result of [Bol]
proposition 9.2 and [Bo2] section 6) or fields having a so-called Wingberg

presentation appear naturally.

The author wishes to thank Professor Gillard for many valuable discussions
and Professor Nguyen Quang Do for his constant help and enjoyable ad-
vices. The author also acknowledges G. Boeckle’s critical comments on the
manuscript.



2. Notations

Let p : Gal(Q/Q) — Gly(F,) be an odd continuous representation unrami-
fied outside a finite set of primes Sq of Q.
Assume that Imp is upper triangular: Imp C S *
Let K denote the subfield of Q fixed by kerp. Hence, one has Gal(K/Q) &
Imp (finite). Let F be a subextension of K such that Gal(K/F) (possibly
trivial) is the Sylow p-subgroup of Gal(K/Q).

We assume the extension K/F is ramified at p.

Let Sr be a finite set of places of F' containing the places over Sq in F. Sup-
pose S contains the primes over p in F' and the archimedean primes. Let
Sk be the places in K over Sp. We write S for S or Sx when no confusion
can arise.

The maximal algebraic pro-p-extensions of F' or K unramified outside Sy or
Sk are the same: Kg, = Fg,. We work with the following setup

KS,p

e
M

y

Al

Q

where Fy, is a free pro-p-extension (not necessary abelian) of rank £ > 1
of F: this means that I' = Gal(F/F) is pro-p-free on k-generators. We
assume that A acts on I' by conjugation.

The field M is the maximal abelian pro-p-extension of F,, unramified outside

S,
and H = Gal(Ks,/Fy),



and X, = Gal(M/Fy) = H®.
Remark 2.2 We assume that K and F, are linearly disjoint.

Define furthermore G = Gal(Ks,/Q),

PGS = Gal(Ksyp/F),

G = Gal(M/Q),

Ps = Gal(M/F);

The group Pg, (resp. Pg, resp. I') is the quotient of Pg, (resp. Pg, resp.
I') by its Frattini subgroup.

Remark 2.3 Even if G and P have no index S, they depend on Sz and on
the choice of T.

In the sequel we will work in particular with

-the Z,-cyclotomic extension of F, (then we denote I' = I';y.) in order to
maximize information on the module X,

-a maximal free pro-p-extension of F', (then we denote I' = TI',,4,) in order
to maximize the size of G. Note that such a maximal free pro-p-extension is
not necessary unique (see [Ya2] remark).

In these cases it is clear that A acts on I'.

After Schur-Zassenhaus theorem (see proposition 2.1 [Bol]) the group G
contains a subgroup A mapping isomorphically to G/ Pg.
We assume

_ X1 0

pa= such that x1 # +xo,

0 xo

where X1, x2 : A — F are the diagonal characters defined by Imp. The case
where Imp is upper triangular and x; # x2 is termed the Borel case.

We denote by Ad(p) the vector space My(F,) equipped with the action of
Gs defined by conjugation by p (or the action of G). Depending upon the
context we shall instead of Ad(p) write Ad(pg) when necessary, to avoid con-
fusion.

At last we define I'y(R) = ker(Gly(R) — Glo(F))) for all R € C where C is
the category of the complete noetherian local rings of residual field F,. We
denote by Mz the maximal ideal of R.
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Two liftings p and p' to R of p are strictly equivalent if there exists M’ € I'y(R)
such that p' = M'pM'~L.

Mazur’s functor of deformations of p, F : C — Sets defined by F(R) is the
set, of the strict equivalent classes of liftings of p onto R. One takes p € F(R).

There exists a canonical surjective morphism G — G and, by construction,
the representation p factors through Gj; after [Ma] subsection 1.3 there exists
a surjective morphism of local rings R, (p) — Ra(pe)-

Remark 2.4 By definition we have the exact sequence:
0— Pg, —» Gs — Gal(F/Q) — 0

In the tame case the order of Gal(F/Q) is prime to p then H'(Gg, Ad(p)) =
H'(Pg,, Ad(p))9s/Fes. Moreover in the tame case, Py, C Kerp, i.e the
action of Pg, on Ad(p) is trivial; hence

H'(Pgy, Ad(p))®s/"s = Hom(Pgg, Ad(p))“/™es = H'(Gs, Ad(p))-

This reasoning is also valuable if we replace Gs and Ad(p) by G resp. Ad(pc),
and since Pg, = P; we obtain

H'(Gs, Ad(p)) = H'(G, Ad(pq))-

Hence Rg,(p) and Rg(pg) have the same minimal number d’ of variables in
the tame case (for example if Imp is diagonal).

Recall at last that, following [Ra] theorem 1.1, if Ad(p)“s = F,Id there exists
a universal deformation ring; otherwise Rg,(p) will merely stand for a versal
deformation ring.

3. Strategy

We use the notation p for pg whenever no confusion shall arise.

The profinite group G has a normal p-Sylow subgroup Pg of finite index and
finite type. After lemma 2.4 [Bol] there exists exactly one semi-direct prod-
uct G = A x Pg with given action of A on Pg, where Pg = Pg/P%[Pg, Pql-
One then writes p(G) = p(A) x p(Pg). To be more precise (proposition 2.3
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[Bol])

Lemma 3.1 If V is an F,[A]-submodule of Pg, then there exists an A-
invariant subgroup B of Pg with dimg,V generators mapping onto V.

Since (§4,p) =1 and p: A — Gly(F,) is injective, p(A) is known by propo-
sition 3.1 [Bo3]; the universal deformation ring of p 4 is Z, and p(A) is given
by the canonical homomorphism Z, — R.

Boston replaces the functor F by the functor £ : C — Sets defined by
E(R) = Homy(Pg, T's(R)) which is always representable. To be more spe-
cific:

o If K =F, F = Homu(Pg,I'2(R)).

e Otherwise p(Pg) ¢ T's(R) but to compute the universal representation p
it suffices to know p(A), Homa(Gal(M/K),T'5(R)), the images p(Gal(K/F))
and p(Gal(M/K)), as well as the action of p(Gal(K/F)) on p(Gal(M/K)).

Remark 3.2 These considerations are also valid if we replace G and M by
Gs and Kg,,.

Remark 3.3 The above considerations justify the method announced in the
introduction: on the one hand we find the image of the generators of Pg
1+ Y,
YE’} 1 + n): Y; S MRa
1 < i < 4; this image introduces four variables. Expressing the action of A
allows to reduce this number of variables. We begin exactly as if P; were
free. We choose a system of generators the images of which are particularly
simple.
On the other hand we express the relations between selected generators. We
need the relations of Pgz. For this, we use that [' & Pg/X, is free so we
merely have to determine the relations of X, as a Z,[[I']]-module. These re-
lations will yield relations between the variables in a straightforward fashion.

using the action of A; for x € Kerp, p(z) = (



4. Preliminary computations

Following Boston’s approach, we begin by expressing the action of p(A) on
p(@G). In particular, subsection 4.2 shows that A possesses a uniquely deter-
mined complex conjugation c¢. This complex conjugation plays an important
role because it allows to reduce the number of variables. We then express
the action of the other elements of A, if there are any. When p(A) acts on a
commutative group, its action is expressed in terms of basic linear algebra.
We therefore find it convenient to work with Pg.

4.1. Image of the residual representation

To express the action of A, informations on the image of the residual represen-
tation p are needed. In the following lemma we show that Gal(K/F) = p(Pg)
and A are abelian.

Lemma 4.1.1 One has p(Pg) C (é I) and A is isomorphic to a subgroup

of invertible diagonal matrices.
PROOF : The group Pg is a pro-p-group, thus p(Pg) is a p-group which acts

1
0
<(1) 5,) € p(Pg), then there exists s € N such that v”° = 1 since Gal(K/F)
is a p-group; yet b’ € F,, hence ¥’ =1 and

p(Pa) C (é I)

One has A = Imp/p(Pg), hence A is isomorphic to a subgroup of the group
of invertible diagonal matrices. O

on the p-group Ms(F,), hence p(Pg) C (for a valuable basis). If

Remark 4.1.2 As pis odd and A is abelian, A possesses a uniquely deter-
mined complex conjugation.



4.2. Action of complex conjugation on Fg

plc) = (é _01)

because we want p up to strict equivalence.

U U
U, U4> € Gly(R), then

o If x is invariant under complex conjugation then

We can assume

Lemma 4.2.1 Let x € Pg, p(x) = (

o(z) = (“(F)Y 14:)1/') with Y, Y' € Mg,

e If x is inversed by complex conjugation then

_(@+UU)? U . ,
plx) = < U (1+uune ) with U € R, U" € Mgp.
PROOF : It suffices to compare p(x) or p(z)~! to

ple-z) = p(c)p(x)p(c) ™" = (—Ul}g _U[f)

and to use lemma 4.1.1 to fing the values of the introduced coefficients. O

4.3. Action of A

If z € Pg, = denotes the image of z in Pg.

Since A is abelian, the group Pg decomposes into A-invariant subgroups
< z > of dimension 1. After lemma 3.1 there exists x € P that maps onto
z and ¥, a character of A such that

r€Pgy={uePs:ra-u= uw¥@ Va € A}
In the Borel case the action of p(A) on p(X) is known explicitly.

, one has

Recall that p(A) is abelian; since it contains (1) 1

_(x1 O :
p|A—<0 X2> and:

10



Proposition 4.3.1 Let v € Pg, with x an odd character; then the action
of A on x imposes:

plx) = (é [1]) if X =x1x3

1 0Y\ . _
o) = (o 1) 3@ =,
p(x) = Id otherwise.

PROOF : Let a € A; we denote by

a0 *
p(a):(o1 a4),a,~€R.

Recall that p(x) = ((1) ll)) with b € F,. One writes p(a - z) = p(z)X® and
one uses the invariance of the trace by conjugation in order to obtain that if
x(a) # £1 then UU’ = 0. Then the action of a on z imposes one condition

out of the four following ones:

e Prime-to-adjoint condition U = U’ =0
if x(a) = £1 and a1 # *ay,
if x(a) # £1 and a; # x(a)*tay.

e Condition-free
if x(a) = £1 and a; = *ay.

o U'=0
if x(a) # £1, and a; = x(a)aa.

o U=0
if x(a) # +1 and a4 = x(a)a;.

Recalling that pj4 # (%1 :I:(;( ), there must exist a € A such that p(a) =
1
(%1 U? ) with a; # £a4, which shows the lemma in all cases. O
4
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One notices that the conditions imposed by the action of A reduce the
number of deformation variables, but introduce no relations between these
variables.

Remark 4.3.2 In subsection 3.B [B61] Bockle solved the Borel case for an
even representation (p(c) = +Id). If pis odd, the deformations can introduce

such images as
(1+UU")/? U
U’ (1+UU")Y?

which render the computation inextricable. To avoid this ugly image, we

have imposed
_ X1 0
pla # ( 0 iX1> -

If x € Pg,, with x even, we obtain in the same fashion

Proposition 4.3.3 Let x € Py, with x even; then

1+Y 0
p(x):( 0 1+Y’> Y, Y' € Mg.

Moreover if x(A) # 1, p(z) = Id.

If [ =T, =<~ > then 4 (image of y in Pg) is invariant by the action of
A. Hence one can lift it to an element s4 in Pg 4iy-

Lemma 4.3.4 One has

p(Sd): (1—5}/ 1—|E)Y'> withY,Y’EMR.

PROOF : The element s; € Ker p is invariant by the action of A; the expres-
sion of the action of the complex conjugation allows us to conclude. a

4.4. Choice of representatives of the strict equivalence
classes

The chosen form above for the image of complex conjugation under p does
not completely fix a unique representative of a strict equivalence class. The

12



representation p can be replaced by its conjugate p' = MpM~! for some
M = 1d mod My without changing the strict equivalence class of p provided
M commutes with p(c). The matrix M can be chosen in the form (see lemma

4.2.1)
1+ Z 0
M_< ) 1+Zg) 70, 7y € Mp.

This remark allows us to establish

Lemma 4.4.1 If Imp is not diagonal, there exists x,, € Pg such that we can

1mpose
1 1

Moreover if x € Pg,, commutes with x,, and
) _ 1 U
_ZfX = X1X2 ' th’en p(.’[)) = (0 1 )7

) 1+Y 0
fx =1 thenp(x)z( 0 1+Y)’

-p(x) =Id otherwise.

ProOF : If Imp is not diagonal, there exists x, such that p(z,) = ((1] 1) .

Hence x,, € Py is inversed by ¢ and using proposition 4.3.1,

p(x,) = (é [{"> where U, = 1 mod M.

Take M as before. One has

1+71
Mp(fL'n)M_l — ((]]‘ 1—|—Z12Un) .

As U, is invertible one can impose U, = 1 by fixing the representative of the
strict equivalence class of p.

The conditions of commutativity with x,, give the results announced in the
lemma. O
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5. Images of the generators

5.1. Minimal system of generators
Let d = dimg, H'(G, F,)) = dimg, H'(Pg, F,) and k = dimg, H'(T', F,,).

Lemma 5.1.1 A minimal system of (A = Z,[[I']])-generators of the A-
module X, contains n = d — k elements.

PRrROOF : We write the inflation-restriction sequence of
0>Xe—Pg—>T—0

using I is free. The obtained exact sequence allows to conclude
0— H'(I,F,) = H'(Pg,F,) = H'(Xs,Fp)" — 0.

|

In the next paragraph we fix some notations.

If X is a p-group and z € X, X denotes the quotient of X by its Frattini
subgroup and z the image of  in X.

As T and (Xu)r are invariant by A, we can decompose Pg as an F,[A]-
module into:

PG == (Xoo)F@f‘

To be more specific I' is a F,-vector subspace of Pz with a F,-basis of eigen-
vectors for the action of A (5,41,...,54) which admits as a complementary
vector space (X )r. Let (51,...5,) be a basis of (X )r composed of eigen-
vectors for the action of A. Using lemma 3.1 we can lift these vectors to a
minimal system (si, ..., sq) of generators of Pg.

We denote by I the closed subgroup of Py generated by (sps1, ..., Sq).
With these notations lemma 5.1.1 reads: since the quotient Pg/Xo = I is
pro-p-free, there exists a section I' — Py with image I’ and we have

P;=Tx X,.

14



5.2. Definition of the special generators

By the previous subsection, there exists some minimal systems generators of
I, P; and a minimal system of A-generators of X, for which we control the
action of A. Thus we know the image under p of such generators. In this
subsection, we rearrange these sytems following the images by p.

Definition 5.2.1 If Imp is not diagonal, for the subgroup X, of Pg, there

exists a minimal system of generators (si, ..., s,) and some integers ux__, vx, €
N such that:

1+Y 0 .
°p(5i): 0 1+Y ,YEMR,].S'LS'U;XOO

0,0(80:((1) }1/ ,YEMR,UXOO+1§iSUXOO
e p(s;) =1d, vx +1<i<n,

1 1
.,O(Sn): 0 1

These generators are termed special generators.

Remark 5.2.2 If (s;....,s,) is a minimal system of special generators then
s; € Pg . where x; = 1d if 1 <i <wux,, x; = xixg ifux, +1<i<wx,
or i = n (see propositions 4.3.1 and 4.3.3).

Definition 5.2.3 If Imp is not diagonal, let (sq, ..., sq) be a minimal system
of generators of Pg such that:

-the system (si,...,5s,) is a minimal system of special A-generators of X,
and

-the system (S;41,...,54) is a minimal system of T and ur, o, w, € N such
that

1+Y :
.IOSTH-Z < 1+Y/>7Y%Y,€MRa1SZSUF
$n+z (

) YEMR,UF+1<Z<UF

.p(sn-l-z):(Y 1) YEMR7UF+]-<Z<U)F

® p(spyi) =1d, wr +1<i<k. )
The generators (Sp41,...,Sq) of I' are termed special generators of T

15



The generators (si, ..., sq) of Pg are termed special generators of Pg.

At last, a minimal system of generators of Pg,, the image of which in the
quotient Py is a minimal system of special generators of Py is termed minimal
system of special generators of Pg,.

Remark 5.2.4 Since Gal(F/Q) is abelian, Leopoldt’s conjecture holds for
F'. It implies that upr < 1.

We denote by Y; the variable introduced by p(s;), 1 < i < vx_; we denote
by Y1y, and Ypi,, the variables introduced by

1+ Yis, 0 .
) = oo <1<
p(sn-l—'l) ( 0 1+ YYZ-HJXOO ’ 1 <i<ur

and by Yiiyr1vx the variable introduced by p(Siyn), ur +1 <4 < wr.

Remark 5.2.5 If Imp is diagonal, we can define the special generators of
X as for I' and assume that wy = 0 in order to recover an situation
analogous to the previous one.

6. Determination of the universal deforma-
tion ring

The study of sections 3-4-5 allows us to choose a minimal system of special
generators of Pg, the images of which are simple. Since Pg is not always
free, we have to express the image by p of the relations between selected
generators in order to obtain the ideal of relations I of Rg(p). For this, we
use the decomposition Pg 2 T x X,

6.1. Action of I' on X,. Choice of I.

Let I' be pro-p-free on k generators. Let m denote the projection P — T’
and (7(Sp41)s .-, T(Sptk)) the image in I' of a minimal system of special
generators of I'. It is known that the correspondance that maps 7(s,;) onto
1+7T; induces an isomorphism of Z,-algebra A = Z,[[']] = Z,[[T1, - - ., Tk]|nc:
this is the so called Magnus algebra which is non commutative except for

16



k =1, in which case it coincides with the usual Iwasawa algebra.
We can express the image under p of the action of A on X:

p(Tiz) = p((s; — 1) - z) = p(si)p(x)p(s:) P p(z)™!, n+1<i<d, v € Xu.
To be more specific:

Lemma 6.1.1 Let s (resp. ) be a special generator of T (resp. Xoo);
o (14Y 0 . (1 U
(z)zfp(s)-( 0 1+Y’) andzfp(x)—(o 1) then
14y
pl(s—=1)-z)= <(1) (1+Y’1 1)U>

(i) if p(s) = (}1, ?) and if p(z) = (é ?) then

1-YU YU?
ps=1-2)={ _yay yep2ypan

(#ii) p((s — 1) - ) = Id otherwise.

This lemma shows that the action of A on X, is very simple provided that
wr = 0 i.e for all special generators s of I'

p(s) # (}1/ (1)>

If I' = T'¢ye then wr,,, = 0.

We first assume that I' = T',,0, and (Sp41,- - -, Sq) is a system of special gen-
erators of T'.,. We define v, ,wp,,.. as in subsection 5.2. Let I be a
subgroup of the subgroup of ['jma isomorphic to the quotient of I'pqp by the
normal subgroup generated by (Snyor, 41, Swp,..)-

It suffices also to replace G by G’ defined through 7(I"), where G’ is defined
by 7(I") in the same way as G is by 7(T").

17



6.2. Expression of the ideal of relations

We first need to express the relations of Rg(p) in terms of the relations of
the (A = Z,[[I']])-module X,. We shall propose here a generalization of
Boston’s method ([Bo2] subsection 9.3).

Let (f )1<,<n 1<j<¢ be the matrix of relations for a chosen system of special
generators of the A-module X, where ¢ denotes the number of relations of
X for the above chosen system of special generators. To be more precise,
the matrix of relations defined the endomorphism ¢ such that

AL A" 5 X =0

Proposition 6.2.1 Let (sq,...,Sq4) a minimal system of special generators of
Pg (see subsection 5.2 for notations wr, ur, ux_ ,vx,, ). Ifwr =0 andur =1,
(i.e T contains the cyclotomic Zy-extension, then Ra(p) = Z,[[Y1, -+, Ya]l/1,
I being the ideal of relations generated by

UX oo '
[Ta+v)iO -1 1<j<e
i=1

and for 1 < j </,

A=

—1,0,...,0)+
]‘+YUX +2

VX o0

1+Y,
Z f]< e +1_150,"'510)Y;

1+Y,
Zl_l_Xoo + VX o0 +2

where (30, fI(T, ..., Ti)si)1<j<e s a system of relations of the A-module
Xoo-

PROOF : As in [Bo2] subsection 9.3 apply p to the relations of the A-module
Xoo, using lemma 6.1.1 (iii) and (i). O

6.3. Computation of the relations of the A-module X

The relations of the A-module X, are in general not known. We shall give a
way to derive them from the relations of Pg,. To this end we shall proceed
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as follows: first the Fox derivative allows one to describe an intermediate
A-module Y., with the help of generators and relations; second the diagram
of lemma 6.3.1. yields a description of X, from that of Y.

We want to emphasize that the ideal of relations of Rg(p) results directly
from the relations of Py, along a systematic line.

In [Ngl] (proposition 1.7) Nguyen Quang Do proposes a description of the A-
module Y, = Hy(Gal(Ks,/Fw),I(Ks,/F)) based upon the exact sequence:

0= A(F) = Z,[[Gal(Fa/F)||" -2 Z,[[Gal(Fao/F)]|* = Yoo — 0

where ¢ denotes the composition of the projection of I' by the Fox deriva-
tive of the relations of Gal(M/F), and where d = dimg,H'(Gs,F,), and
r = dimg, H*(Gg,Fp). One also denotes by I(Kg,/F) the augmentation
ideal of Gal(Kg,/F).

Moreover one has A(F,,) = H*(Gal(Ks,/Fy), Qp/Z,)* = 0 since, (see the-
orem 2.2 [Ngl]), Leopoldt’s conjecture holds in view of Gal(F/Q) being
abelian. The matrix of ¢ has rank r — d and describes the relations of Y. In
our case these relations give the relations of X, using the following lemma
(see [Ja] lemma 4.3):

Lemma 6.3.1 In the commutative diagram below the two horizontal se-
quences and the two vertical sequences are exact:

0 0
Ad—n Ad—n
0 AT p\d Yoo 0
|
0 AT A" Xoo 0
0 0
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PROOF : In the diagram

N <

S,p | Ra

PGS

— sl
o7

F,; denotes a free presentation of rank d of Pg,; we assume Fj is too a free
presentation of I' and Ry is defined by

0—=+Ry—=F;—=1—=0
The augmentation ideal of Fy is defined by the exact sequence:
0— I(Fy) > Z,[[F4]] > Z, — 0

One applies to this exact sequence the functor H;(Rg4,.). The freeness of
Z,[[Fy4]] implies the Lyndon exact sequence ([Ngl] proposition 1.1):

0— Hl(Rd, Zp) — H()(Rd,I(Fd)) — H()(Rd, Zp[[Fd]]) — H()(Rd, Zp)

We deduce:
0 — R® — A — I(A) — 0

where R = R,/[R4, Rg]. Similarly one applies the functor H;(H,.) to the
exact sequence which defines the augmentation ideal of Pg, so that ([Ngl]
proposition 1.7)

0— Hl(H, Zp) — H()(H,I(PGS) — Ho(H, Zp[[PGS]]) — H()(H, Zp) — 0

Hence,
0— Xoo — Yy — I(A) — 0

The following commutative diagram
Ry, — H
) Y

Fd — PGS
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yields functorial morphisms
Ho(Ra, I(F4)) = Ho = (H,1(Pgy)) and Ho(Rq, Zy[[Fu]]) — Ho(H, Zy[[Pa,]));

this proves the commutativity of the following diagram

0 0
I(A) —=1I(A)
A Yoo 0
R Xoo 0
0 0

We shall complete the horizontal sequences by identifying them with known
exact sequences.
By the equalities

A= Z,[[T)|* = Ho(Rq, I(Fy)) = Ho(Gal(Fs,p/ Foo), Ho(U, I(Fy)))

the arrows between these modules and Y, identify by functoriality. The cor-
responding line is completed by the Fox derivative: recall that the morphism
'Fox’ is obtained thanks to the exact sequences:

0 — Ho(H,U™) — Hy(H, Hy(U, I(Fy)) 2 A* = Y, — 0
The same reasoning applies to the horizontal line which then identifies to
0 — H\(U,Zy) — R — X, — 0

where Rgb = Rd/[Rd, Rd]
Recall k¥ = dimg, H'(T',F,) we can use the corollary 1.2 of [Ngl], to show
that R% = R%® x A% where R® = Ry/[Ry, Rx] and Ry, is defined by a

presentation of I':
0—>R,—>F,—-T—=0
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Since I is free, one knows ([Br| lemma 5.1) that I(A) is a free Z,[[A]]-module
of rank k. Hence R?® = 0, which yields the bottom horizontal exact sequence:

Hy(H,U®) = A" and H,(U,Z,) = A"
and IT(A) & AF = A4, O

6.4. General presentation by generators and relations

We now apply our results using a presentation of P;, by generators and
relations. The pro-p-group P, has a minimal presentation by the exact
sequence:

0—=+R—Fy— Pg, =0

where F, is a free pro-p-group of rank d and R is the pro-p-group of the
relations of Pg,.

Let {s;, 1 < i < d} be a minimal system of generators of Pg, and {r;,1 <
j < r} a minimal system of relations of Pg, .

In order to render the injective morphism X, — Y, explicit, it is necessary
to choose judiciously the generators of Py . To this end we notice that the el-
ements of X, are characterized by their image being trivialin the quotient I'.

As in subsection 6.1, 7 denotes the projection P; — I' and if z € Py, we
denote T its projection on Pg.

Let (s1,.-.,Sq4) be a minimal system of special generators of Py, such that:
7(8;) =1, 1 <i < n (recall that (5,...,5,) is a minimal system of genera-
tors of Xo).

or; ) )

%51 ) 1<j<i, 1<i<d
as well. To obtain X it suffices to omit the last k lines of My, which gives
the matrix My of ¢’ describing the exact sequence

We can now compute the Fox matrix M, = (w( , hence Y

0= A" 5 A" 55 X0 — 0
thus describing X, as a A-module.

Proposition 6.4.1 Let

0O—=+R—Fy— Pg, =0
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be a minimal presentation of Pg,, with {r;, 1 < j < r} a minimal system
of relations and {s;, 1 < i < d} a minimal system of special generators such
that 7(5;) =0, 1 <i <n. Then the A-module X, is described by

0—>AT£’>A”—>XOO—>O
the matrizc My of ¢' being

or;
Mo = (7(357)) -
¢ 4 0s;/ / 1<i<n, 1<j<r

Remark 6.4.2 Recall that the injectivity of ¢’ is obtained thanks to the
weak Leopoldt conjecture. In order to discuss Mazur’s conjecture (see [Ma]
subsections 1.6 and 1.10) we remark that this injectivity means that the
relations of X, obtained in this way are independent.

7. Explicit universal deformation ring

7.1. General computation of the Fox matrix
We define by induction
PO = P, and P™) = [P Pg].

There exists a decomposition with coefficients in Z,, using the "Hall collecting

process’:
r; mod P =

d p ] 13,..,in €[1,d] '
/ j i
H S?Z H [Si’ sk]ai’k T H [ T [[8i17 Siz]a Sis]a cee Sin]all’m’m'
=1 1<i<k<d 1<iy<ia<d

Remark 7.1.1 Let p' be the lcm of the orders p' or co of the elements
si[Pag, Pagl, 1 <4 < d, with the wild convention that p* = 0.

The coefficients ! mod (p')? and aik mod p' are known ([Kol] proposi-
tion 7.23). They are related to the transgression map H?*(R,Z/p'Z) —
H'(Pg4,Z/p'Z) and to the cup product of elements of H(Pg, Z/p'Z).

The following two lemmas (which are straightforward) allow to compute the
Fox derivative of r;.
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Lemma 7.1.2 Let u,v € F;, a € N* then

ouwv) Ou , Ov ou® < L OU
55 —E-I—u%, hence 95 —;u 95

Lemma 7.1.3 Let u € Fy, i,j € [1,d], then

0 ou ou™t
g[u,sj] = a—sz.—i—uij if i # j

[ 7

0 ou ou~!

——[u, 8] = — + U+ us;——— — us;u" sy
0s; S4

7.2. The Z,-cyclotomic extension of F

We make precise the computation of Rg(pe) in the case I' = I'pye =< v >
(recall wr,,, = 0). We may assume that 7(sq) = v, m(s;) =1, 1 <i <d—1.
After lemma 7.1.3 the Fox matrix reads

M, = (W(gg)) - (a{ LA Dk)lgs(z, 1<j<r

oo
k=1

where bf,c denotes the coefficient of [---[[s;,7],7],---,7] € P® — Pk+1) in
the relation r;.

Recall lemma 4.3.4 and the notations of subsection 5.2; for I' = I';y. the
variables introduced by s; are Yy_1,Yy in Rg(pg) (see introduction: the
number of variables of R (p) is d' = dimg, H*(G, Adpc)), hence:

- 1+Yy_ 0 .
pG(Sd) = ( Od 1 1+ Yd/> with Yd’—l,Yd’ € MR

We can also apply proposition 6.2.1 so as to obtain Rg(pg):

Theorem 7.2.1 In the Borel case, if Imp is not diagonal and if I' = I'¢y.,
we obtain

Ra(pe) = Lyl[Yi, - ., Yall/I
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where I s the ideal of relations generated by

UX 5o

[Ja+v)%-1,1<5<¢
i=1
and
1+Yd/ . k VX oo ) oo ] 1+Ydl_1 k .
J b’ ( 1) (? b’ (7—1> )Yi,1< < /.
a +Z 1+Y;1’ + ]; az+; 1,k ].+Ydl >J >
1= U‘Xoo =

7.3. Free pro-p-extension of rank k of F

Let us assume I' has rank k.
If I'eye =< v >C I' and wr = 0, the computation of R (pe) is analogous to
that of the previous case I' = I'¢,.
After lemma 6.1.1 the image by pg of the action of A = Z,[[T,-- -, Tk]|nc
is commutative, and even trivial if ¢ > 1; i.e, if f € Z,[[T1,---, Ti]lnc is
monomonial and 7 > tr

pc(Tifz) = 1d.

hence only the commutators of the form r = [---[[s;,7],-..,7] have a non
trivial image by r — p(;(’ﬂ'(g—;)x).

The theorem 7.3.1 also holds in the latter case (note the coefficients ux,_,d’
have changed) and gives a better approximation R;(pg) of Ra,(p).

Remark 7.3.1 Our method can also give an approximation of the ideal
I: if the relations of Pg, are known modulo P™"*!) theorem 7.2.1 allows
us to control the approximation of I. Moreover, even if the computations
are inextricable if wr # 0, we can also work modulo P"*! (for a given n
depending on our patience).

7.4. Comparison between Rg (p) and Rg(pg)

The study carried out in section 3-4 also applies when GG, Pg are replaced by
Gs, Pgg. Since P; = PGS, if < Z > is an A-invariant subgroup, we can not
only lift Z to £ € P but also to x € Pg,. The computations of 4.2 and 4.3
give the image of p(x) as if Pg, were free.

Let us recall how to compute the universal ring in order to make precise the
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surjection R, (p) = Ra(pa)-
After remark 3.1, if £ € Kerp then

. <1+Y1 Y,

= . <7< 4.
pG(x) }/}) 1+Y;1>’Y;€MR’1_2_4

This image a priori introduces four variables (depend upon Z); the action of
A allows to reduce the number of variables to

e 1 or (0 if 7 is inverted by complex conjugation,

e 2 or ( if 7 is invariant by complex conjugation.

These computations apply to pg or p.

Taking G instead of Gg introduces additional conditions of commutativity
which allow us to cancel the lower triangular images and to render scalar the
diagonal images.

Then we express the image by pe (resp. p) of the relations of Py (resp. Pgy).
The universal deformation ring R (pg) (resp. Rag(p)) is the quotient of the
ring of formal series in the introduced variables by the images of the special
generators of Py (resp. Pg,), by the image of the relations of Py (resp. Pg,)
by pg (resp. p).

The relations of P; are obtained from the relations of Py, using the Fox
derivative.

The pro-p-group P, has a minimal presentation by the exact sequence:

0O—=+R—Fy— Pg, =0

where F, is a free pro-p-group of rank d and R is the pro-p-group of the
relations of P, .

Let {s;, 1 <14 < d} a minimal system of special generators of Pg,.

Let r be a relation of Pg; we can think of r as a word in Fy. Let 7 € Py the
element obtained from r when we remplace the letters s; by 5;, 1 <17 < d.

We observe that .
potd) = o (37 (20)5).

i=1
Hence we obtain

Theorem 7.4.1 There erists a minimal system {s;,1 < i < d} of (special)
generators of Pg, and choice of the representatives of the strict equivalence
classes p, pg such that the surjective morphism

Rgs(p) = Ra(po)

26



maps the variables introduced by p(s;) onto the variables introduced by pg(3;).

Remark 7.4.2 The surjection Rg,(p) = Ra(pe) yields

This could allow to discuss Mazur’s question ([Ma] subsection 1.10).

7.5. Examples
Cyclotomic fields

The first examples of representations p : Gal(Q/Q) — Gly(F,) in the Borel
case appear in the study of elliptic curves. These representations introduce
the cyclotomic fields F' = Q((,), where (, denotes a primitive p-root of unit.
We can find some examples of such representations associated to elliptic
curves for p = 5,7 in [Se| subsection 5.5. In these cases Rg,(p) is known
because p is regular hence Pg, is free.

In [Bo3] section 6, Boston gives an example of such a representation with
F = Q((,) for the irregular prime p = 691; this representation is associated
to the unique normalized cusp form of weight 12.

We would like to correct an imprecision in [Bo2] proposition 9.2 and [Bo3|
section 6, where a confusion seems to arise because ’Spiegelung’ is overlooked
(see below).

Let p: Gal(Q/Q) — Gly(F},) be a continuous odd representation unramified
outside Sq = {p, oo} with Imp = ((1) :) and F' = Q({)-

We denote by a a generator of A = Gal(F/Q) and w : A — Z; the
Teichmiiller lift of the cyclotomic character. There exists k' € N even de-
pending upon the representation such that

pla) = (é wk’—l(a()) mod p> '

Assume that Vandiver’s conjecture holds for p. Let Sr be the set of places
in F over Sq, I' =I'¢y. and ¥ denotes a lift to Py of a generator of I'.
Since we assume Vandiver’s conjecture to hold, we know the structure of X,
as a A-module. For any n > 1, let A,, be the p-class group of Q({y»),

Ay, =1limA,, Z,=1limA,.
— «—
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Then:

-It is well known that Vandiver’s conjecture implies A" = 0 for any n > 1, so
that the natural maps A, — A are injective. It follows that the A-torsion
free part of X, is actually A-free, and hence we have an isomorphism of
A-modules (and not only a pseudo-isomorphism)

Xoo = A2 D tOI"AXoo

where 79 = (p — 1)/2 is the number of complex places in F' and tory X
denotes the A-torsion of X.
-The structure of tory X, can be given by a 'mirror’ (’Spiegelung’) version
of Z. More precisely, using the fact that each Q({,») admits only one place
above p and verifies Leopoldt’s conjecture, we get (for details, see [Ng3|
section 3):

tory Xoo & liin Homyp, (Zso, fipe)

where I', = Gal(Q((p=)/Q((r)). Because A} = 0 for any n > 1, it follows
that X = tora XS = torp X, and that X (which admits Z,, as a quo-
tient) is a A-free on r, = (p—1)/2 generators (1, ..., Tp—2) Where Z; € Pg i,
1 <i<p-—2 (see [Wa] corollary 10.15).

Recall A = Gal(F/Q) is cyclic of order p—1 prime to p. Hence the subgroup
of invariants by A of X, is isomorphic to image of the norm v of X:
XA ~2uX,.

By class field theory, vX,, is isomorphic to the analogue of X, for the
cyclotomic Z,-extension Q. /Q, hence is trivial. Recall that if z € X
and i even then p(z) = Id if 7 Z 0 mod p. Thus the image of X by p is
trivial by using subsection 4.3 we get

Proposition 7.5.1 In the Borel case, if I' = I'¢ye, if Imp not diagonal such
that F = Q((,) and p < 1+4.10° (so that Vandiver’s conjecture holds), then

Ra(pe) = Z,[[Y1, Y2

and the universal representation is given by

pol@ = (5 e ) e = (15 1 ).
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polir = (5 1)

and all other given generators of Pg have a trivial image by pg.
Using theorem 7.4.1 we obtain

Proposition 7.5.2 In the Borel case, if Imp not diagonal such that F' =
Q(¢y) and p <1+ 4.10° (so that Vandiver’s conjecture holds), then

Ry (p) = Zy[[Y1, Yo, Y3]]/ 1

the universal representation (with obvious notations) is given by

p(a)z(é wk:_ol(a))p(v):(lzyl 14?}3)’

)= (g 1) e = (4 1),

and all other given generators of Pg, have a trivial image by p. Moreover if
r € I we have r =0 mod Yz, and I = (0) if p is regular.

Remark 7.5.3 For these representations, we have

dimg,uuRas(p)/pRas(p) < 3.

A reasoning analogous to that of [Ma] subsection 1.10 proves that the latter
Krull dimension is greater than 3 ([Bol] remark 5.1). Thus this dimension
is 3 and Mazur’s question ([Ma] subsection 1.6) still holds in these cases.

Increasing the ramification

The problem of increasing the ramification has been studied by Boston [Bo4]
theorem 1 and Bockle [B61] subsection 3.C (for even representations).

Let p be a regular odd prime, F' = Q((,) and S, be the set of places over p
and archimedean places.

In this case G'g, = I'jqg is uniquely determined by [Ya2] proposition 2.2 and
is free with (p+ 1)/2 generators (see previous description). Remark that the
quotient I';,,,; of Gg does not depend on S with S, C S.

If we increase the ramification (i.e we consider S instead of S,), Neumann
[Ne] corollary 5.3 gives a presentation of Gg:

29



Lemma 7.5.4 Let (x;, i € I) be a minimal system of topological generators
of Gs, and (s;, i € I) be a system of elements of G with

s; mod Gal(Ks/Ksg,) =, i € I.

Further let t, € Gal(Ks/Ksg,) for ¢ € S — S, with N(q) = 1 mod p, such that
tq generates the inertia group of some prolongation of q.
Then the set

{si,tg, i €1, g€ S—S5, N(q) =1 mod p}
forms a set of generators of Gg where the subset {t,} is free.

Hence I'pnqy is generated by (s;, i € {0}U{1,3,--- (p—1)/2}) with s; € Peg,,,-
Let p: Gg — Gly(F}) in the Borel case, such that F' = Q((,) and there exists

go € S — Sp such that
_ 11
p(tQO) = <0 1)
(see remark 2.2).

After the previous description, in order to have wr = 0 (see subsection 6.1),
we choose I' = T'yaz/ < Spr—1 >normar (With &' as in the previous paragraph).
Hence we have the universal representation:

- 1+4+Y] 0 - 1 Y,

and pg(5;) = Id for the other i € I;
1
1 ?

- 1 Y - 1+Y, 0
pG(tq): (0 111) or PG(tq):< 0 K 1+Y;]>

where ¢ € S — (S, U{qo}) and some variables Y, can vanish depending of the
action of A.
In this particular situation we can easily apply theorem 7.3.2.

pc(lg) = <(1)
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8. Wingberg’s presentation

Recall the notations of the section 2: p : Gal(Q/Q) — Gly(F,) is an odd
continuous representation in the Borel case unramified outside a finite set
of primes Sq of Q, K denotes the subfield of Q fixed by kerp, and F is a
subextension of K such that Gal(K/F) is a Sylow p-subgroup of Gal(K/Q).
The finite set Sr of places of F' containing the places over Sq in F', allows
us to define G'g¢ and Pg; from here on S denotes Sg.

8.1. Using Wingberg’s explicit presentation

Our method is most effective whenever the relations of P, are known.
Explicit results are known (see [Bol]) in the case where Pg, is free. We shall
now solve in a simple way the case where the relations of P, do not contain
any threefold commutator. Then we can compute Rg4(p). A particular case
of this corresponds to what we call a Wingberg presentation

Let F, denote the v-completion of F' for v € S.
Let p, denote the set of p-roots of unity.

[ 1 ifp,CF, _J1ifpch
Let 9, = { 0 otherwise and 0 = { 0 otherwise.

Let Sy C S be a maximal subset of finite primes such that:
> 6, =6
vESy

Let

Vsi:{OJEF*\aEF:pforUESO,CVEUvF*p v SHEF®

v I

where U, denotes the group of units in the ring of integers of F,,.
In [Wi] Wingberg proves the following proposition:

Proposition 8.1.1 The condition V§ = 0 is equivalent to Py being the free
product of the decomposition groups P,, v € S — Sy and a free pro-p-group

of rank ry =1+ ZvesanO[Fv 2 Q) — #(S — So).

Remark 8.1.2 Leopoldt’s conjecture for F' implies that the rank & of I,
verifies 1 < k < ro+ 1 where 75 is the number of complex places in F'. In the
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situation of proposition 8.1.1, Yamagishi [Yal] has determined k explicitely
in terms of local datas; in particular £ < ry 4+ 1 (see also subsection 8.3).

Remark 8.1.3 If y, ¢ F then the decomposition groups P,, v € S — S
are free; hence Pg, is free. The latter case is well known, so we now turn to
iy C F; in this case Sy contains only one element.

If p # 2 then places that ramify in a pro-p-extension of a number field are
primes ¢ of the form N(g) =1 mod p or ¢ divides p. So we assume that Sq
and Sg contain only places of this type.

Let S’ denote a set of 7y places different from the elements of S. Hence Pg
is described

e by free generators s,, v € 5,

e by tame generators s,,t, v € S — Sy such that v =1 mod p,

e by tame relations r, = (t,)%[ty, s,] With ¢, = |u(F,)| v € S — Sp such that
v =1 mod p,

e by wild generators s,,t,,s2,t2...,s™ t™ with v € S — Sy such that v di-
vides p,

e and by wild relations r, = (t,)% [ty, so|[t2, s2] - - - [t™, s™] with q, = |u(F,)| =
p, v € S — Sy such that v divides p, 2n, = [F, : Q,] + 2 (see [Se2] corollary
4.3).

The archimedean places do not appear because p is odd.

Let u,(F) and p,(F,) be the set of p™-roots of unity in F' and F, respec-
tively. Let A’ be the subgroup of A of order two generated by ¢ and let 1~7‘p
be the non trivial irreducible F,[A’]-module.

Let V5 = V5. Then we have V5 C V§ and after [BoU] proposition 3.2, if
V=0 )
Py, = Ind%4F, ® F, & Coker(u,(F) — ®yespip(F,))

as an F,[A]-module. It allows to prove
Lemma 8.1.4 Assume thatI' contains the cyclotomic Z,-extension and that

Vs =0, then
Xoo = X
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PROOF : Recall that a generator of the cyclotomic Z,-extension is invariant
by complex conjugation.

Using [BoU] proposition 3.2, in order to prove the lemma it suffices to show
that the action of ¢ on Ind4,F, and on Coker(u,(F) — @yesip(F,)) is not
trivial. It is clear for the induced representation and for yu,(F)) if v divides
.

Let v € S be a place over [ a prime number distinct of p. Since we have
assumed N(v) =1 mod p, p divides [ — 1, hence p, C Q.

All decomposition subgroups of A at all v|l are conjugate. Since A is abelian,
these subgroups are the same, we denote them by A;. The local action of 4,
on P, is known and A acts on ®,;P, by the induced representation Indﬁ’ Po;
then ¢ € A permutes @y s,y ptp(Fy).

The lemma follows. a

Remark 8.1.5 Wingberg’s presentation yields a system of generators of Py
but this system is not special. We have to work in order to obtain a ’good’
system of generators, i.e for which we know enough informations about the
A-action.

8.2. The Z,-cyclotomic extension of F

Let us assume I' = I';y. =< 4 >. Recall that if z € Py, we denote Z its
projection in Pg.

Choice of the generators of Fg;

We have to choose a lift of 4 in Pg. Recall that a tame generator s, comes
from a generator of the local Z,-cyclotomic extension. We assume there ex-
ists w € S — Sy such that N(w) = 1 mod p and N(w) #Z 1 mod p? hence
¢w = P, so that we can assume that 7 (5,) = 4 generates the Z,-cyclotomic
extension of F'; if such a w does not exists we can choose a wild generator
Sy such that 7(8,) = 9. We denote v = s, and 7 = §,,.
1 .. :

We fix p(tl) = (é 1 ); this image depends upon the representation, but
this choice does not change the method of computation.
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In order to choose a 'good’ minimal system of generators of Py let us express
the image by the projection onto [' of the system of generators of Pg:

e The images by 7 of £, or i, 5}, 2 < i < n, are trivial by definition.

e To find the projection of the tame generator s, in I'; it suffices to compute
the number of p**-roots of unity in the localization of F' in v; by Hensel’s
lemma it suffices to compute the number g, of p**-roots of unity in the residue
field. Hence the image of 5, in I is 4% and ¢, has the same p-adic valuation

as gy /p.. ,
e The projection of the wild generator §,, in I" is 4%.

Then Pg, admits the following 'good’ system of generators (only the element
v has a non trivial image by ):

{8y, vE S TU{y,t,}U
{s'y =7 sy, ty, v €S —(SoU{w}) U
{sv,t;, veS—>Sy, vp, 2<i<n,}
with the relations
o = (tw)"[tw, 7]
= (ty)® [ty, qz’s'], veS—3Sy, v [p,
= (tu)® [to, Y5, ][t5, 53] -+ [147, 53], v € S = So, vlp.

Fox derivatives

For v € S — {w} the Fox derivatives of a tame relation are

87“:] K . ’ _
S = D (t) = (1) sl (1)
v i=0
87‘I q"u_l ) q;) .
L= 3 ) = Do) s (6) ()
0
LA i=1
or!
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Since m(¥) = 4 and all the other elements of the good system of generators
of Pg have a trivial image by 7, the columns of the Fox matrix are of the
form (for wild or tame relations):

(07"'707q’u_ (’S/q:’ - 1)707"'a0)a v e S_SO
Image of the generators

By lemma 8.1.6 we have X,, = X_ . Then all the images by ps of the
elements of X, are upper triangular. We denote:

po) = (157 1 ) et = (5 1),
pal@) = (o ) vesus -l el = (o ) ves-(u)

and for wild generators with v € § — Sp, 2 <1 < n,

1y, 1Y,
IOG(SU):<0 1 )apG(tv):<0 1 )

possibly with some relations between the Y,, V! Y, Y’f, depending upon the
action of A. Let us discuss these relations.

Action by A

Let [ be a prime. To each v|l, v € S—Sy, there corresponds a Demtskin group
P, one which we would like to determine the action of the decomposition
group A;.

Let ¢ be the highest power of p such that F, contains a primitive ¢**-root
of unity. Then V, = Ff/F}? is a symplectic space relatively to the ¢g-Hilbert
symbol < -, - >, and A; acts on this space as a group of similarities, i.e

< a(z),a(y) >=w(a) < z,y >, Ya € A,

where w denotes the Teichmiiller character.
Since the order of A; is prime to p, we have both tame ramification and
semi-simplicity. Results of Borevi¢, Jakovlev and Koch ( [Ko2] proposition
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6, [Ko2] proposition 9) on simplectic spaces with operators then allow us to
decompose V; as a direct sum of 'hyperbolic planes’ (in an obvious sense),
V, = @, Hy, where H, is generated by a hyperbolic pair sy, -1 € V.-
Taking this into account and replacing the Demtiskin refining process, is not
enough to obtain a system of generators of P, which verify the Demiiskin
relation (see [B62| proposition 2.5). We can also obtain such a nice relation
in terms of generators with the desired action of A; via characters modulo
F{*9 where F{"" is defined by induction

FCSLQ) — Fd and chz'f']-;Q) — (thiaQ))q[Fd(i7Q)’ Fd];

(see [B62] remark 2.4). For the wild generators, the action of A is more am-
biguous. We can easily be convinced of the difficulty of describing the action
of A upon recalling that in the Wingberg presentation, we forget a place Sy
over S.

To find the form of the ideal of relations I we do not need to know precisely
the action of A:
Using the images of the elements of X, we have linear relations between the
Y,,Y, of the form

Y, = f(variables)

where f(variables) denotes a linear combinaison of the variables introduced
by the images of the elements of X, (write pg(a-r) = pg(a)pg(z)pc(a) ' a €
A,z € Xy). Then the action of A allows us to eliminate some variable. To
summarize:

Lemma 8.2.1 In the Borel case, if Imp is not diagonal, if Vgs; = 0 and if
I' = ¢y, then a presentation by generators and relations of Pgy ts known
and the universal deformation ring of pg reads

RG(ﬁG) = ZP[[Ya Yla Y;H 'ul" 'ui”’ Yli ]]/I

!

withv' € SUS" — (SoU{w}) andv € S — (SoU{w}) and v" € S — Sy, v"|p,
2 <4 < ngny; where I is the ideal of relations generated by

(1= ()" = ))po e s =00
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)

and some linear combinaisons between the variables Yy, Y, , Yi, Y", depend-
ing upon the action of A.

andp—(

Let replace Y, Y’ by Y3,Y/ with Y] = 111);’ — 1 = p which can be remove;
then we have
Ra(pa) & Zy[[YV1, -, Yo I/ T’

where d" = dimg, H'(Pg, Adpg) and I' is an ideal generated by relations of
the form pY with r > 1.

Remark 8.2.2 Let Rg(pg) = Ra(pg) ® Fp. Then Rg(pg) is free. It shows
that some deformations of the residual representation p cannot lift to char-
acteristic zero rings, while others can (see [Ti] subsection 5.2).

Example: Imp diagonal

In [Sa], Sauzet gives some examples of fields with a Wingberg presentation.
Let F = Q(+6,(5), p =5, S = {00, p,p'} with p,p’ the two places in F which
divide 5, Sy = {p}. In this case V& = 0, we can apply the previous results
to the representation p : Gal(Fs,/Q) — Glo(F5) given by

* 0

Gal(F/Q) — (0 *> .
Then this representation satisfies the Borel case.
Since Gal(Fs,/F) is a pro-p-group, if we suppose Gal(Fs,/F) C Kerp, then
p is well defined.
In this case Pg, has six generators (si,t1, So, %o, S3,t3) and a wild relation:
r = 13[t1, s1][t2, s2][ts, s3)-
o If I' = I',,, then

Re(c) = Zy[is- Yol ((5 - (152 — 1)) %)

where d" = dimp, H' (G, Adpg).

Remark 8.2.3 This example does not correspond exactly to the situation
explained in the introduction: the set S does not contain all the places where
p is ramified: 2,3 & S.
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8.3. The maximal free pro-p-extension of F

If P;, admits a Wingberg presentation, is not needed wr = 0 because then
the relations are simple, though the action by A on the generators introduced
by Wingberg’s presentation is not easy to write.
Let I' =T 2.
We use the presentation of Pg, and the notations of paragraph 8.1. Then
we can choose I';,,, such that

(m(3,)veS'US—Sy, & )v €SS-SV |p2<i<ny,)

v

is a minimal system of generators of I' (see lemma 4.7 [Yal]).
Fox derivatives

The computation of the Fox derivatives as above gives the columns of the
Fox matrix for a wild relation:

0,---,0,¢,—(7m(8,)—1), —(7(55)—1),...,—(w(58)*)—1),0,---,0),v € S—Sp.

Action by A

Using the (previous discussion on the action by A we have a good description

modulo F} ) of Pq, by generators and relations with action by A:

e Tame generators

Let [ be a prime [ # p. We assume that S contains all places over [ in F' and
that A/A; = Gal(Q((y)/Q). Then A= A; x F;.

Let v be a place over [ in F. The local action by A4; on P, =< t,, Sy|Ty > is

known and A acts on @, Py by the induced representation IndﬁlP;}b. We

can lift the local generators to s,,t, keeping the action by A; modulo F 52”’ );

hence modulo Féz’p ). A permutes the t,, v|l (resp. s,).

e Wild generators

We assume there are at most two places over p in S, i.e we have at most
one wild relation. In the same way as for the tame generators, we can lift
modulo F f’p ) the wild generators with the action by A described in the pre-
vious subsection: wild generators t,, s,, 2, s2,...,t", s" where t, € Pg,

v T
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Sy € Pgrin, th € Pyt st € Pg,, modulo F@P (you get image by pg
modulo Gly(R)®P) with a relation 2[t,, s,][t2, 52 - - - [t", s™] modulo F*P).
Knowing the Fox derivatives and the action of A we can now compute an

approximation of the universal deformation ring Rg(p) (for a discussion of
this approximation see [B62]).

39



9. References

[B61] G. Bockle Ezplicit Universal Deformations of Even Galois Representa-
tions, preprint (1996).

[B62] G. Bockle Demaishkin groups with group actions and applications to
deformations of local Galois representations, preprint (1997).

[Bol| N. Boston Ezplicit deformation of Galois representations, Invent. math.
103 (1991), 181-196.

[Bo2| N. Boston Deformations of Galois representation associated to the cusp
form A, Séminaire de Théorie des Nombres de Paris (1987), 51-62.

[Bo3| N. Boston Deformation Theory of Galois representations, Thesis, Har-
vard University Cambridge, Massachusetts (1987).

[Bo4| N. Boston Families of Galois representations. Increasing the ramifica-
tion Duke Mathematical Journal 66 (1992), 357-367.

[BoU] N.Boston, S.V Ullom Representations related to CM elliptic curves,
Math. proc. Camb. Phil. Soc. 113 (1993), 71-85.

[Br] A. Brumer Pseudo-compact algebras, profinite groups and class-formations,
J. of Algebra 4 (1966), 442-470.

[Ja] U. Jannsen Iwasawa Modules up to isomorphism, Adv. studies in Pure
math. 17 (1989), 171-207.

[Kol] H. Koch Galoissche Theorie der p-Erweiterungen, Springer-Verlag,
New-York, Heidelberg, Berlin, 1970.

[Ko2] H. Koch Uber Darstellungsrdume und die Struktur der multiplikativen
Gruppe eines p-adischen Zahlkorpers, Math. Nach. 26 (1963), 67-100.

[Ma] B. Mazur Deforming Galois representations, in: Galois groups over Q
Y. Thara, K. Ribet, J-P Serre eds., MSRI Publ. 16, Springer-Verlag, New-

40



York, Berlin, Heidelberg, 1989, 385-437.

[Ne] O. Neumann On p-closed number fields and an analogue of Riemann’s
existence theorem, in: Algebraic Number Fields, Proc. Symp. London math.
Soc., Univ. Durham 1975 (1977), 625-647.

[Ngl] T. Nguyen Quang Do Formations de classes et modules d’lwasawa,
Number Theory Noordwijkerhout 1983, Lecture Notes in mathematics 1068
(1984), 167-185.

[Ng2] T. Nguyen Quang Do Sur la structure galoisienne des corps locauz et
la théorie d’Iwasawa, Compositio Mathematica 26 (1982), 85-119.

[Ng3] T. Nguyen Quang Do Sur la Z,-torsion de certains modules galoisiens,
Ann. Inst. Fourier 36 (1986), 27-46.

[Ng4] T. Nguyen Quang Do Lois de réciprocité primitives, Manuscripta Math.
72 (1991), 307-324.

[Ra] R. Ramakrishna On a variation of Mazur’s deformation functor, Com-
positio Math. 87 (1993), 269-286.

[Sa] O. Sauzet Sur les corps l-rationnels, Thesis, Bordeaux 1 (1997).

[Sc] M. Schlessinger Functors of Artin rings, Trans. Am. Soc. 130 (1968),
208-222.

[Sel] J.P Serre Propriétés galoisiennes des points d’ordre fini des courbes el-
liptiques, Inventiones math. 15 (1972), 259-331.

[Se2] J.P Serre Structure de certains pro-p-groupes, Sém. Bourbaki 252
(1963), 145-155.

[Se3] J.P Serre Modular forms of weight one and Galois representations, in:
Algebraic Number Fields, Frohlich eds., Acad. Press (1977), 193-268.

[Ti] J. Tilouine Deformations of Galois representations and Hecke algebras,

41



Metha Research Institute (1996).

[Wa] L.C Washington Introduction to cyclotomic Fields, Springer Verlag 83,
New-York, Heidelberg, Berlin 1980.

[Wi] K. Wingberg On Galois groups of p-closed algebraic number fields with
restricted ramification II, J. reine angew. Math. 416 (1991), 187-194.

[Yal] M. Yamagishi A note on free pro-p-extensions of algebraic number
fields, Journal de Théorie des Nombres de Bordeaux 5 (1993), 165-178.

[Ya2] M. Yamagishi A note on free pro-p-extensions of algebraic number fields
II, Manuscripta Math. 91 (1996), 231-233.

Ariane MEZARD

Université de Grenoble I

Institut Fourier

UMR 5582 CNRS-UJF

UFR de Mathématiques

B.P. 74

38402 ST MARTIN D’HERES Cedex (France)

e-mail: Ariane.Mezard@Qujf-grenoble.fr

42



