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Introduction

Let G be a connected complex reductive group, B C G a Borel subgroup and H C G
a spherical subgroup, that is, the homogeneous space G/H contains a dense B-orbit. Then
any equivariant embedding X of G/H contains only finitely many B-orbits (see [Kn| for
a simple proof of this result). A natural question is to describe the B-orbit closures in a
smooth complete embedding X of G/H, and their classes in the Chow ring A*(X); recall
that A*(X) is then isomorphic to the cohomology ring of X, and is generated as a group
by classes of B-orbit closures. A related question is to describe the H-orbit closures in the
flag variety G/B, and their classes in A*(G/B).

A classical example is the case where G/H is complete, that is, H is a parabolic
subgroup of G; then the B-orbit closures in G/H are the Schubert varieties, and their
classes (the Schubert cycles) form a basis of the group A*(G/H).

In this article, we obtain partial answers to both questions above in the general setting
of a spherical homogeneous space, and more precise results when the space is G and the
group is G x G acting on G by left and right multiplication. In this case, the first question
asks for the behaviour “at infinity” of the closures of B-double cosets in G.

To any B-orbit closure Y in a spherical homogeneous space G/H, we associate a
subset W (Y') of the Weyl group of G, and a function d(Y,-) on W(Y) with values in
integral powers of 2 (see 1.1). Given a smooth complete embedding X of G/H which is
regular in the sense of [B-D-P], and a closed G-orbit Z C X, we show that the closure of Y
in X has proper intersection with Z; moreover, the components of Y N Z are the Schubert
varieties in Z parametrized by W (Y'), and the corresponding intersection multiplicities are
the values of the function d(Y,-) (up to twists, see 1.4). On the other hand, any H-orbit
closure V' C G/ B defines obviously a B-orbit closure Y C G/H; the decomposition of the
class of V in A*(G/B) on the basis of Schubert cycles turns out to be determined by W (Y')
and d(Y,-) (see 1.5).

In the case of the homogeneous space G under G x G, the function d(Y,-) turns out
to have constant value 1 (see 2.1). It follows that all closures of (B x B)-orbits in any
regular completion X of G are smooth in codimension one. We ignore whether they are
Cohen-Macaulay, like Schubert varieties. Actually, any closure in X of a B-double class
in G is singular in codimension two, apart from trivial exceptions (see 2.2); this uniform
result contrasts with the situation for Schubert varieties, where the characterization of
smoothness is quite delicate (see e.g. [Cal, [Ku] and [La]). The behaviour “at infinity”
of (B x B)-orbit closures is described in 2.1, and the case of parabolic subgroups of G
is treated in more detail in 2.3. As an application, we construct a degeneration of the
diagonal of a flag variety to a sum of Schubert cycles.
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These results are then applied to a study of the Chow ring A*(X) where X is a regular
completion of G. For this, we use Edidin and Graham’s equivariant intersection theory
(see [E-G] and also [B]); it could be replaced by equivariant cohomology but we prefer a
purely algebraic approach. In 3.1, we describe the equivariant Chow ring of X in terms
of the closed (G x G)-orbits, generalizing results of Littelmann and Procesi (see [L-P]).
Then we give closed formulae for the equivariant classes of (B x B)-orbit closures (see 3.2).
Finally, in the case where X is the canonical regular completion of a semisimple adjoint
group, we exhibit a basis of the equivariant Chow ring, and the dual basis as well. This
picture of the Chow ring confirms the idea that the geometry of regular completions of G
is governed by the closed (G x G)-orbits and by the closure of a maximal torus.

Using the general methods of Part 1, several results of the present work can be ex-
tended to other spherical homogenenous spaces, e.g. to split symmetric spaces; this will
be developed elsewhere.

The structure results for regular group completions which are used in our article are
gathered in the Appendix. These results are due to DeConcini and Procesi in the case
of a semisimple adjoint group (and, more generally, of an adjoint symmetric space, see
[D-P]). For a connected reductive group, they can be deduced from embedding theory of
spherical homogeneous spaces. Here we follow a direct, characteristic-free approach based
on one-parameter subgroups. As a consequence, all results of the present work which
concern regular completions of G are valid in arbitrary characteristics, provided that each
(G x G)-orbit map is separable.

1. Orbit closures of Borel subgroups in spherical varieties

1.1. Preliminaries

We begin by fixing notation, defining the set W (Y) and the function d(Y,-) and
studying their first properties.

Let G be a connected complex reductive group, B C G a Borel subgroup, and T'C B
a maximal torus of dimension r. Denote by W the Weyl group and by R the root system
of (G,T). We have the subset R* of positive roots and its subset X of simple roots. For
a € Y we denote by s, € W the corresponding reflection and by P, = B U Bsy,B the
corresponding minimal parabolic subgroup. The length of w € W is denoted by I(w).

Let P D B be a parabolic subgroup with Levi subgroup L D T. Denote by Wp the
Weyl group and by Rp the set of roots of (L, T). Set

WP = {weWw |l(wv) >1l(w) VYwe Wp}={we W | w(Rp) C R} .

Then W7T is a system of representatives of the quotient W/Wp. The space G/P is the
disjoint union of the BwP/P (w € W¥). Moreover, the dimension of BwP/P is the length
of w. Denoting by B~ the Borel subgroup of G such that B~ N B =T and by @ D B~
the parabolic subgroup opposed to P, we have Wp = Wy and we use the notation we
for WP. Then the length of w € W@ is the codimension of BwQ/Q in G/Q.

Consider now a variety X with a G-action (by variety we mean a reduced and ir-
reducible algebraic complex scheme, and by subvariety, a closed subscheme which is a
variety). Folllowing [Kn|, the set of B-invariant subvarieties of X is denoted by B(X). For
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Y € B(X) and w € W, the set BwY is in B(X) (this set is denoted by w * Y in [Kn],
where the resulting operation on B(X) is studied). The map

BwBxY — BwY
(9,y) = gy

is invariant under the B-action defined by b(g,y) = (gb—!,by). Denoting by BwB xp Y
the quotient, we obtain a map

Tyw : BwB xgY — BwY .

Because BwB/B is complete, Ty, is proper and hence surjective.
Definitions. Let d(Y,w) be the degree of my,, if this map is generically finite; otherwise,
set d(Y,w) = 0.

Let W(Y') be the set of all w € W such that 7y, is generically finite and that BwY
is G-invariant,.
Lemma. Let Y € B(X).
(i) For any 7 and w in W such that l(Tw) = I(7) + l(w), we have

d(Y, rw) = d(Y,w) d(BwY, 1) .

(ii) For any w € W such that BwY contains only finitely many B-orbits, the integer
d(Y,w) is 0 or a power of 2.
(iii) For any w € W such that d(Y,w) # 0, we have

W(BwY)={r e W | l(tw) =I(1) + l(w) and Tw € W(Y)} .

(iv) The set W(Y') is not empty.

(v) If X =G/P with P> B and Y = BrP/P with 7 € W, then W (Y) = {wowo p771}
where wq (resp. wo p) denotes the longest element of W (resp. Wp). Moreover, we have
d(Y, wowo,p7 1) = 1.

Proof. (i) By the Bruhat decomposition, the canonical map

BB xp BwB — BTrwB

is birational. It follows that the degree of 7y ;,, is equal to the degree of the map

BTB xgp BwB xpY — BrwY .

But the latter factors as

BTB xgp BwB xpY — BTB xp BwY

of degree d(Y,w), followed by

BTB xp BwY — BrwY
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of degree d(BwY, 7).
(ii) Write w = 754 where 7 € W, a € ¥ and l(w) = I(7) + 1. Then Bs,Y C BwY
and, by (i):

d(Y,w) =d(Y, sa) d(BsaY,T) .

By [Kn] 3.2 (see also [B] 6.2), we have d(Y, s,) < 2. We conclude by induction over {(w).
(iii) If 7 € W(BwY') then

I(1) + l(w) = dim(BrBwY) — dim(Y) < dim(BT7BwB/B)

which implies that {(7)+{(w) = I(7w) and that BrBwB = BrwB. Therefore, 7w € W(Y).
The converse is similar.

(iv) We argue by induction over the codimension of ¥ in GY. If Y = GY then
W(Y) = {1}. Otherwise we can find a minimal parabolic subgroup P, D B such that
P,Y #Y. Then W(P,Y) is not empty, and we conclude by (iii).

(v) Because w € WP, we have BwP = Bwwgy pB. Let 7 € W(BwP/P). Then the
map

BTB XB B’w’wo,pB -G

is generically finite and surjective. By the Bruhat decomposition, this map is birational
and T = U)()U)()’P’Ll)_l.

Remark. If X = G/Q with Q D B and Y = BrQ/Q with 7 € W?, then W(Y) = {1}
and d(Y,771) = 1.

1.2. Cancellative and induced actions

This section contains technical results which will play a key role in the study of regular
group completions.

Definition. The action of G on a variety X in cancellative if for any distinct Y7, Y> in
B(X) and for any o € ¥ such that P,Y; # Y7 and P,Y, # Y2 we have P,Y; # P,Y5.

Equivalently, for any distinct Y7, Y3 € B(X) such that GY; = GYa, the sets W (Y1)
and W (Y3) are disjoint. In particular, any Y € B(X) is uniquely determined by GY and
W(Y).

For example, the G-action on G/P is cancellative for any parabolic subgroup P of G
(this follows e.g. from Lemma 1.1). The (G xG)-action on G by left and right multiplication
is cancellative, too. But the diagonal action of G = PGL3 on P! x P! is not cancellative.
Indeed, let B be the standard Borel subgroup of G' and let co be the B-fixed point in P*.
Then Y; := P! x {00} and Y5 := {o0} x P! are B-invariant subvarieties with Y; # GY; =
GYs # Y.

Definition. Let P D B be a parabolic subgroup with Levi subgroup L D T and let X’ be
a L-variety. The induced variety X is the quotient of G x X’ by the diagonal P-action
where P acts on G by right multiplication, and on X’ through its quotient group L. We
denote X by G xp X’ and we identify X’ to the P-invariant subvariety P xp X’ C X, the
fiber at P/P of the canonical map p: G xp X' — G/P.
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Lemma. Notation being as above, any Y € B(X) can be written uniquely as BwY' where
w € W?F and Y' C X' is a (BN L)-invariant subvariety. Then

W(Y)={reW | 1w € wowy pWr(Y') and I(t) = codimx (Y)}
and for any w € W(Y'), we have
d(Y,w) = dr(Y', wo pwotw) .

Furthermore, the G-action on X is cancellative if and only if the L-action on X' is.

Proof. Let Y € B(X). Then there exists a unique w € W¥ such that BwP/P is dense
in p(Y). Moreover, Y N p~!(wP/P) is invariant under B N wPw~!. This group contains
w(BNL)w™?! because w is in WF. Therefore, we have Y Np~(wP/P) = wY' for a unique
(B N L)-invariant subvariety Y’ C X'. Tt follows that BwY’ =Y Np~1(BwP/P) is dense
inY.

For the second statement, consider first the case where w = 1; then Y = Y’. Let
7€ W(Y'). Write 7 = 7F7p where 77 € WP and 7p € Wp. Because BTY' = GY',
we must have 7 = wowo p and 7p € W (Y’). Therefore, W(Y') = wowo pWr(Y").
Moreover, d(Y,7) = d(Y', 7p).

In the general case, it follows from Lemma 1.1 that 7 € W(Y) if and only if (1) =
codimx (Y) and 7w € W(Y’). The latter amounts to: 7w = wowp pu for some u €
Wr(Y'). Because w € W¥ we have d(Y',w) = 1. Therefore, we have by Lemma 1.1:
d(Y,7)=d(Y',7w) = d(Y', u).

If the G-action on X is cancellative, then it is easy to see that the L-action on X' is,
too. For the converse, let Y7, Y5 be distinct B-invariant subvarieties of X and let o € X
such that Y7 # P,Y1 = P,Ys # Ys. For ¢ = 1,2, write ¥Y; = Bw;Y; as above. Then
P,Y; = Bsqw;Y] because P,Y; #Y;. We distinguish three cases.

(i) sqw1 ¢ WT and sqws ¢ WP. Then s,w;(81) ¢ RT for some simple root 3;
of (L, T). It follows that wq(f1) = o and that sqwi = wisg,. So sg, Y{ # Y/ (because
P,Y: # Y1) and P,Y1 = Bwisg, Y1. Similarly, sqws = wysg, for some simple root 3, of
(L,T). Therefore, w1 = wy and Pg, Y/ = P3,Y,;. Because the L-action on X' is assumed
to be cancellative, this implies Y{ =Y.

(i) squwi € WP and sqwy € WP, Then sqaw; = sqwy whence wy; = ws, and Y{ = Y7,

(iii) sqwi ¢ WF and sqws € WFP. Write sqw1 = wisp, as in case (i). Then
Bwisg, Y1 = BsawaY, whence wi = sqawy. Therefore, sqwi; = wy € WP a contradic-
tion.

Remark. Let (Q D B~ be the parabolic subgroup opposed to P. Consider the induced
variety G xg X'. Then, for w € W? and Y’ € B(X'), we have

W(BwY')={reW | tw e Wr(Y') and I(7) = codimx (BwY")}
and d(BwY',7) = dp(Y',7w) whenever 7 € BwY’. Thus, the formulation of the Lemma

above is much simpler; note however that Y’ (viewed as a subvariety of G x¢g X') is not
B-invariant .



1.3. Intersection multiplicities of invariant subvarieties

In this section, we give a geometic interpretation of W (Y) and d(Y, w).

Let X be a complete, non-singular G-variety, let Y C X be a B-invariant subvariety
such that GY = X, and let Z C X be a G-invariant subvariety. We assume that the
intersection of Y and Z is proper, that is, any irreducible component C' of Y N Z satisfies
dim(C) = dim(Y) + dim(Z) — dim(X). The intersection multiplicity of ¥ and Z along C
is denoted by i(C,Y - Z).

Lemma. Notation being as above, the set W (C) is contained in W (Y') for any irreducible
component C C Y NZ. Conversely, if the G-action on Z is cancellative, then any C € B(Z)
such that W (C') meets W(Y') is an irreducible component of Y N Z. Morever, we have for
any w € W(C):

d(C,w)i(C,Y - Z) =d(Y,w) .

Proof. If C is G-invariant, then C' = Z whence Y = X and there is nothing to be proved.
Otherwise, we can find o € ¥ such that P,C # C. Then P,Y # Y; indeed, P,Y =Y
implies that P,C' C Y N Z which contradicts the assumption that C is an irreducible
component of Y N Z. It follows that the intersection of P,Y and Z is proper, and that
P,C is an irreducible component of P,Y N Z. By induction over the codimension of Y in
GY, this implies that W(C) c W(Y).

Assume now that the G-action on Z is cancellative. Let C' € B(Z) such that W (C)
meets W(Y') and let o € ¥ such that P,C # C. We claim that

d(C, 32)i(C,Y - Z) = d(Y, sq) i(PaC, PY - Z)

where we set i(C,Y - Z) = 0 if C is not an irreducible component of Y N Z. To check the
claim, consider the map

nm: P,xpX — X
(9,2)B  — gz
a proper, flat morphism. We have in the Chow group of X: m,[P, X5 Y| = d(Y, sa)[PaY]
and m, [Py xpC| = d(C, s4)[PaC]. Moreover, n*[Z] = [Py X p Z] because Z is P,-invariant.
It follows that

d(Y, sa)[PaY][Z] = mi([Pa ¥ Y]r*[Z]) = m([Pa XB Y][Pa X5 Z])
in the Chow group of P,Y N Z. Observe that P, xp Y and P, xXp Z intersect properly
along P, x g C with multiplicity i(C,Y - Z). Morevoer, by assumption, if C’ # C is another
irreducible component of Y N Z, then n(P, xp C') = P,C" # P,C or m[Py xp C'] = 0.

This implies our claim.
From this, it follows by induction over [(w) that

d(C,w)i(C,Y - Z) =d(Y,w) i(BwC, BwY - Z)
for any w € W such that m¢,, is generically finite. This implies readily our statements.
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Corollary. If moreover Z is a closed G-orbit with isotropy group () O B~, then the
irreducible components of Y N Z are the BTQ/Q where 7 € W® and 77! € W(Y).
Moreover, the intersection multiplicity of Y and Z along BTrQ/Q is d(Y,771).

1.4. B-invariant subvarieties in regular G-varieties

We begin by recalling the notion of a regular variety, due to Bifet, De Concini and

Procesi (see [B-D-P]).

Definition. A G-variety is regular if it satisfies the following conditions

(i) X is smooth and contains a dense G-orbit X whose complement is a union of irreducible
smooth divisors with normal crossings (the boundary divisors).

(ii) Any G-orbit closure in X is the transversal intersection of the boundary divisors which
contain it.

(iii) For any = € X, the normal space T, X/T,(Gz) contains a dense orbit of the isotropy
group G.

Any complete regular variety X is spherical, that is, X contains a dense B-orbit X%.
Conversely, any spherical homogeneous space admits a regular completion X. Moreover,
all closed G-orbits in X are isomorphic to G/Q where () D B~ is opposite to the parabolic
subgroup P D B consisting of all g € G which leave invariant X% (see [B-B] 2.2).

Theorem. Let X be a regular G-variety and let Y C X be a B-invariant subvariety.

(i) For any w € W (Y), we have w™! € W@,

(ii) For any G-invariant subvariety Z C GY, the intersection Y N Z is proper in GY .

(iii) If moreover Z is cancellative, then Y N Z is the union of all C € B(Z) such that
W (C) is contained in W(Y'). Moreover, the intersection multiplicity of Y and Z along C
is d(Y,w)d(C,w)~?! for any w € W(C). In particular, this multiplicity is a power of 2.
Proof. Replacing X by the regular G-variety GY, we may assume that ¥ meets X2.

We first prove (ii). Write Z = X; N ---N X, where Xy, ..., X, are boundary divisors
and ¢ = codimx (7). Let ¢ be the greatest index such that the intersection YNX;N---NX;
is proper. If ¢ # ¢ then there exists an irreducible component C' C Y N X; N---N X; such
that C' C X;11. Observe that C' is B-invariant and that dim(C) = dim(Y) — . Choose
w € W(C). Because GC C X1 N---N X;41, we have {(w) + dim(C) < dim(X) —i— 1 and
therefore:

dim BwY < l(w) +dim(Y) = l(w) + dim(C) + i < dim(X) — 1 .

So BwY is contained in X \ X%. The latter has pure codimension 1, because X9 is
affine. Thus, there exists an irreducible B-invariant divisor D C X containing BwY. In
particular, D contains BwC = GC and meets X2. Therefore, we can find an irreducible
component D; of D N X7 such that Dy contains GC'; then D; is B-invariant and meets
the open G-orbit in X;. Continuing this way, we arrive at a contradiction.

Now we prove (i). Let w € W(Y). The generically finite, surjective map

7I'y7w:BwB xpY — X

induces a surjective map
BwB xp(YNZ)— Z

7



which is generically finite because Y N Z is equidimensional of dimension dim(Z) — {(w).
It follows that Y N Z contains an irreducible component B7()/Q such that the map

BwB xp BTQ/Q — Z

is generically finite and surjective. We conclude by Lemma 1.1.
(iii) follows from (i), (ii) and Lemma 1.3.

1.5. Orbit closures of spherical subgroups in flag varieties

Let H C G be a spherical subgroup and let P C G be a parabolic subgroup; then
G/ P contains only finitely many H-orbits. We express the classes of H-orbit closures in
the Chow group A,(G/P) in its basis of Schubert cycles [BwP/P] (w € WT).

First we associate to each H-invariant subvariety V' C G/P a P-invariant subvariety
V C G/H, as follows. Denote by gp : G — G/P and qg : G — G/H the quotient maps,
and by ¢ : G — G the map g — g~ '. Set

V= qmrgp (V) .
Then V C G/H is a P-invariant subvariety (which implies that W (V) ¢ W) and
V =qpgz (V) .

If moreover H is connected, then any P-invariant subvariety of G/H is obtained in this
way.

Theorem. Let H be a spherical subgroup of G, let B be a Borel subgroup of G such that
BH is open in G, and let P D B be a parabolic subgroup. Finally, let V C G/P be an
H-invariant subvariety.

(i) For any w € W¥ such that l[(w) = codimg,p(V'), the Schubert variety BwP/P meets

V in d(f/, w) points of multiplicity one, and these points are contained in BwP/P.
(ii) We have in A,(G/P):

Vi= Y d(V,w)[BwwP/P].
weW (V)

In particular, the coefficient of any H-invariant subvariety on any Schubert cycle is zero
or a power of 2.
Proof. (i) By Kleiman’s transversality theorem (see [KIl|), there exists a non-negative
integer d and an open dense subset U C G such that for all ¢ € U, the intersection
(gV) N BwP/P consists of d points of multiplicity one, contained in BwP/P. Because
U meets BH and V (resp. BwP/P) is invariant under H (resp. B), it follows that
V N BwP/P consists of d points of multiplicity one.

To show that d = d(V, w), we first reduce to the case where P = B, as follows. Let
p: G/B — G/P be the canonical map. Then p~!(V) is an H-invariant subvariety of G/B;
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on the other hand, restriction of p to BwB/B is an isomorphism onto BwP/P because
w € WT. Therefore, we have by the projection formula:

d= /G VI TP P = /G P WIBB/B).

Write w = 75, with o € 3, 7 € W and {(w) = I(7) + 1. Let ¢ : G/B — G/ P, be the
canonical map. Then ¢ is a P!-fibration and [BwB/B] = q*q.|BTB/B]. By the projection
formula, we have

i= [ WieBus/s= [ aVBmE/E = [ @B,

Setting ¥ := V, we have q_l/q\(V) = P,Y and q*;TV] = d(Y, so)[PrY]. By induction over
[(w), this implies d = d(Y, w).

(ii) follows from the fact that the [BwP/P] (w € WF) are a basis of A,(G/P) and
that the dual basis for the pairing

(z,y) — zy
G/P

comsists of the [BwowP/P] (w € W¥).

1.6. Degenerations of orbit closures to B-invariant cycles

The results of 1.4 and 1.5 are related by the following construction. Let X be a regular
completion of the spherical homogeneous space G/H and let V' C G/P be an H-invariant
subvariety with corresponding P-invariant subvariety Vca /H. Denote by Y C X the
closure of V. Consider the maps

Y[ GXPY - X
(g, )P — gy

and
p: GxpY — G/P

(9, y) P — gP
Because ™ factors as
GxpY — (G/P)xX — X
(g9)P —  (9Pgy) — gy,

the fibers of 7 identify to closed subschemes of G/P via p, .

Denote by x € X the base point of G/H. Choose a closed G-orbit Z C X and denote
by z € Z the fixed point of B~. By [B-B] 2.3, for a suitable choice of T, there exists
a T-invariant affine subvariety A C X which is transversal to Z at z. It follows that A
is T-equivariantly isomorphic to a T-module with linearly independent weights. So we
can choose a smooth curve v C X isomorphic to affine line, transversal to Z at z and
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containing x (for example, the closure in A of a generic one-parameter subgroup of 7' will
do).

Proposition. Notation being as above, the map w is equidimensional. Moreover, we have
in A,(G/P):

plr @] = V], pulr ()] = Y d(V,w)[BwowP/P].
weW(Y)

Proof. Observe that

@) ={(g,9)P |yeY, gy=a}={(g,97'x)P | g 'z €Y}

(as sets) so that
p(n (@) ={gP | g7z €Y} =V .

Similarly, we obtain
p(n Y 2)={g9P | g '2€eYNZ} = Uwew (v) QWP /P = Uyew ) B~wP/P

by using Theorem 1.4. It follows that 7 is equidimensional and that p.[r~!(z)] = [V].
Using Theorem 1.4 again, we obtain

pl i @l= Y dV.w)BwP/P).
weW (Y)

Set 4 :=+\ {2z} and ' := n=1(%). Then T is irreducible so that restriction = : I' — ~
is flat and that p,[n~1(2) NT| = pu[r~ ()] in A,(G/P). But p,[r~1(2)] = p.[r ()] by
Theorem 1.4. Because 7~!(z) is equidimensional, it folllows that 7=1(z) is contained in T
We conclude that m=1(y) is equal to I' and hence is irreducible.

Question. Is m flat 7 Because 7 is equidimensional and X is smooth, the answer would be
positive if Y were Cohen-Macaulay. Is the latter true ?

2. Orbit closures in regular group completions

2.1. Regular group completions

Consider the connected reductive group G' as a homogeneous space under G x G for
the action given by left and right multiplication: (g1,g2)y = 91795 ©. Then the isotropy
group of the identity is the diagonal A(G). By the Bruhat decomposition, G is a disjoint
union of the (B x B~ )-orbits BwB~ (w € W). In particular, G is spherical with open
(B x B~ )-orbit BB~.

Let X be a (G x G)-equivariant completion of G which is regular in the sense of 1.4.
We describe the (G x G)-invariant subvarieties Z of X. By Proposition A1l below, there
is a unique z € Z such that z is the limit of a one-parameter subgroup of 7', and that the
orbit (B x B~ )z is open in Z; we refer to z as the base point of Z. Moreover, there exists
a unique parabolic subgroup P(Z) = P D B with opposite parabolic subgroup @ D> B~
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and Levi subgroup L = P N @ such that the isotropy group (G x G), is the semi-direct
product of R,(Q) x R, (P) with A(L) x (C x {1}), where C denotes the connected center
of L. It follows that

Z = (G X G) X(QxP) A

where Z' = (L x L)z is a regular completion of a quotient of L by a central torus. In
particular, all closed (G x G)-orbits in X are isomorphic to G/B~ x G/B.

Now we describe the (B x B~ )-invariant subvarieties Y in X. Let y be the base
point of the (G x G)-invariant subvariety (G x G)Y and let P(Y') be the corresponding
parabolic subgroup. Then, by 1.2, we have Y = (B x B~)(o, 7)Y’ for 0,7 € WPX) and a
(BN L) x (B~ N L)-invariant subvariety Y’ in Z’. Moreover, because y is fixed by A(L),
we have Y/ = (BN L) x (B~ N L)(p,1)y for p € Wp(y). Observing that Bo(BN L) = Bo
and that B~7(B N L) = B~ because 0,7 € WP we conclude that

Y =(BxB7)(w,7)y

where w = op € W and 7 € WF () are uniquely determined. If moreover Y meets G,
theny=1,7=1and Y = BwB~.

Having these descriptions at hand, we can state the following
Theorem. Let X be a regular completion of G, let Y C X be a (B x B~)-invariant
subvariety, and let Z C (G x G)Y be a (G x G)-invariant subvariety.
(i) The intersection Y N Z is proper in (G x G)Y, and all intersection multiplicities are
equal to one.
(ii) If moreover Y = (B x B~)(w,T)y as above and Z has base point z and associated
parabolic subgroup P(Z), then

YNnZ= U (B x B™)(wv, mv)z

(decomposition into irreducible components) where the union is over all v € Wp(yy such
that 7v € WP and I(w) + 1(1) = l(wv) + I(7v). In particular,

BwB—NZ = U (B x B™)(wv,v)z

union over all v € WP%) such that I(w) = I(wv) + 1(v).

Proof. We apply the results of 1.2 and 1.4 to the group G X G with Borel subgroup Bx B~,
maximal torus 7' X T and Weyl group W x W. Observe that Z is induced from a regular
completion of a central quotient of a Levi subgroup. Using 1.2 and induction over the
semisimple rank of G, it follows that the (G x G)-action on Z is cancellative.

In the case where Y = (B x B~)(w, )y, decompose w as

w=o0pc WP(Y)WP(y)

and set

Y':=(BNL)x (B-NL)p,1)y.
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Let (w1, ws) € W x W such that [(w1) + l(w2) = codimx (Y) = l(w) + I(7). Then we have
by 1.2:

(w1, wz) € (W x W)(Y) & (wio,wsT) € (Wr, x Wr)(Y')

& wer € Wi and p = (wy0)  'weT < wer € Wy, and w = wl_lng .

Moreover, d(Y, (w1, wz)) = 1 for all such (wy,wsy). Therefore, by Theorem 1.4, the in-
tersection Y N Z is proper in (G x G)Y with all multiplicities equal to one. Moreover, a
(B x B~ )-subvariety C C Z is an irreducible component of Y N Z if and only if W(C)
meets W(Y); then W(C) is contained in W(Y). We can write C = (B x B7)(u1,u2)z
where u; € W and uy € WFP@) . By 1.2 again, (W x W)(C) contains (uj',uy'). It
follows that uy ' € Wp(zy, wr™! = uyuy " and I(uy) +I(uz) = {(w) + (7). Thus, we have
(u1,ug) = (wv, 7v) where v satisfies our conditions. The converse is obtained by reversing
the previous arguments.

Corollary. Notation being as above, any (B x B~ )-invariant subvariety of X is smooth in
codimension one. Moreover, (B x B~)(w, T)y is smooth at all points of (Bx B~ )(wv, Tv)z.

Proof. Let Y € B(X) and let Z C X be a boundary divisor of (G x G)Y. Because the
intersection Y N Z is proper with multiplicity one, the non-singular locus of ¥ meets all
components of Y N Z by [F] 7.2. Therefore, it is enough to show that Y N (G x G)y is
non-singular in codimension one, where y is the base point of Y.

We use the notation of the proof of the theorem, and we set for simplicity P(Y) := P.
Then the map

BoQ x B-tPxY' — Y
(91792,-73) = (91792)37

is surjective. It follows that any irreducible (B x B~ )-invariant divisor in Y N (G x G)y
can be written as (B x B~)y’ where
(i) ¥ = (op',7)y with p' € Wp such that (BN L) x (B~ N L)(p',1)y is a divisor in
Y'N (L x L)y, or
(ii) y' = (o'p, 7)y with o’ € WF such that Bo’Q is a divisor in Bo(, or
(iii) ¥’ = (op, )y with 7/ € W such that B-7'P is a divisor in B—7P.

In case (i), the point (p’, 1)y is non-singular in Y’ by normality of Schubert varieties
in L, see e.g. [M-S]. Moreover, the map

(BonoR,(P)) x (BTTNTR,(Q)) xY" — Y
(91792a$) = (91792)',1;

is an open immersion, and its image contains y' = (¢, 7)(p’, 1)y. This implies our claim.
In case (ii), the point ¢’ is non-singular in Bo@ by normality of Schubert varieties in
G. Therefore, the set

G(o,0'") :={g € R,(P) | 0’9 € BoQU Ba'Q}

is a locally closed, smooth subvariety of G' containing 1. Moreover, the map

G(o,0') — BoQ/Q
g = 0'gQ/Q
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is an open immersion. It follows that the induced map
G(o,0") x (BTTNTR,(Q)) X (BNL)x (B~ NL)(p,1)y =Y’

is an open immersion as well, which implies our claim.

Finally, case (iii) is similar to case (ii).

The second assertion follows from the fact that (B x B~)(u,v)z is an open orbit of
B x B~ in (B x B™)(w,7)yN Z and from the criterion for multiplicity one (see [F] 7.2).

Question. Is it true that all (B x B~ )-invariant subvarieties of regular group completions
are normal 7 By the Corollary above, this would hold if they were Cohen-Macaulay.

2.2. Tangent spaces to closures of double classes

The group PGL(2) has a unique regular completion X: the projectivization of the
space of 2 x 2 matrices where GL(2) x GL(2) acts by left and right multiplication. Moreover,
the closure in X of the standard Borel subgroup B C PGL(2) is the projectivization of the
subspace of upper triangular matrices. So B is non-singular; but this case is exceptional,
as we will see. To state our result, we need the following

Definition. A simple root « is isolated (in the Dynkin diagram of G) if « is orthogonal to
all other simple roots.

Observe that G' has no isolated simple root if and only if the adjoint group of G does
not contain PGL(2) as a direct factor.

Theorem. Let X be a regular completion of G, let w € W and let x € X be a fixed point
of Bx B™.

(i) If w(a) € Rt whenever « is an isolated simple root, then the tangent space of BwB~
at = is equal to the tangent space of X at x.

(ii) If w is not a product of reflections associated to isolated simple roots, then BwB~ is
singular at .

Proof. (i) Set Z := (G x G)x. Observe that the tangent space T, BwB~ contains
T.(BwB~NZ) and that x = (wg, wp)z where z is the base point of Z. Applying Theorem
2.1, we obtain

BwB~NZ > (BxB7)(w,1)zU(BxB~)(L,w1)zD(1xGxU(Gx1)z.

It follows that T, BwB~ contains T,Z. We show that the quotient space T, BwB~ /T, Z
is equal to the normal space T, X/T,Z.

By Proposition A1 below, the point = has an open affine (T x T')-invariant neighbor-
hood X, in X, and X, is (T x T')-equivariantly isomorphic to the space of a representation
of T xT. Let Xi,...,X, be the boundary divisors of X which contain Z. Then, for
1 < ¢ < r, the divisor X; N X, has an equation f; € k[X;] which is unique up to scalar
multiplication. In particular, each f; is an eigenvector of T' x T'; let x; be the opposite of
its weight. Because X is regular, the characters xi,..., X, are linearly independent, and

T:EX:T:,;ZEBGTB L;

=1
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where each L; is a (T' x T')-invariant line with weight x;. Moreover, the weights of T' x T
in T, Z are the (—(,0) and (0,3) for 8 € R™.

Let Mx , be the ideal of z in k[X,]. Because T, X is the dual of MX,:I:/M?X@, we
can choose (T x T)-eigenvectors fz.0, fo,—p in Mx , (for 3 € R*) which lift a basis of the
dual of T, Z. By the graded Nakayama lemma, the ideal Mx ;, is generated by the fg o,
fo—p (8€RY) and by fo,.... fy.

Because BwB~ meets all orbits of G x G in X, restriction of each f; to BwB~ N X,

is a non-zero element of M the ideal of z in k[BwB~ N X;]). Using the linear
2BwB—,a:'
Otherwise, x; is a sum of two weights of the form (—2,0), (0,5) or x1,...,Xxr. But the
intersection of the convex cone generated by xi,..., X, and the span of R X R contains
the convex cone generated by the weights (—a, a) (o € X)) and is contained in the span of
these weights (see Proposition A2 below). So we must have

BwB~,z (
independence of xi,..., Xy, it is enough to show that no f; is contained in M

Xi = (—a,0) + (0, @)

for some « € Y. Then this decomposition is unique; therefore, we have up to a multiplica-
tive constant:

fz' = fa,O fO,—a

in restriction to BwB~ N X,. But (f; = 0) = X; N X, where X; is (G x G)-invariant.
It follows that (fe,0 = 0) N BwB~ is (B x B~ )-invariant. Therefore, the same holds for
(fa,0 = 0) N BwB~ N Z and in particular for (fa,0 =0)N (G x 1)z.

We claim that « is isolated. To check this, choose root vectors 25 (8 € R™) in the Lie
algebra of G. Denote by 7 the tangent space to (fa,0 =0)N (G x 1) at z. Then a basis
of T consists in the (z_g,0)z where 8 € RT and 3 # «; by the previous discussion, 7 is
invariant under the Lie algebra of B. If « is not isolated, then there exists o/ € ¥ such
that a 4+ ' is a root. Then [Z4/, Z_o_o’]| is @ non-zero multiple of z_,. Therefore,

Lo (-’Ea—a’a 0)37 = ([ma’ ) -'E—a—a’], 0)-77

is a non-zero multiple of (z4,0)z. But (z_4—q,0)z € T and (2_,,0)z ¢ T, a contradic-
tion.

Finally, we claim that w(a) ¢ R*. Let Z, C X be the (G x G)-invariant subvariety
such that Z, contains Z as a divisor and that the normal space to Z in Z, at = has weight
Xi = (—a,a) (existence of Z, follows from Proposition Al below). Let z, be the base
point of Z,, then the associated parabolic subgroup of G is P,. By Theorem 2.1, we have

BwB~ D (B x B™)(w, 1)z, -

If w(a) € RT, then w™(a) € R* (because « is isolated) and therefore

(B x B-)(w, 1)z O (0, 1)(BNLa) X (B~ NLa)2a = (0,1)(La X La)za

where L, is the Levi subgroup of P, which contains 7. It follows that the normal space to
BwB~ in X at any point of Z contains the normal direction to Z in Z,, a contradiction.
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(ii) Let I be the set of isolated simple roots a such that w(a) ¢ RT. Then we have

by (i):
dim T, BwB~ > dim(Z) +r — |I| = 2|R"| +r — |I| .

On the other hand, we can write

w = (H Sq)w'

a€l

where w' is a product of simple reflections associated to non-isolated simple roots. Then
l(w) =|I|+ (w") and therefore:

dim BwB~ = dim(G) — l(w) = 2|RY| +r — |I| — I(v') .

Thus, if BwB~ is smooth, then w' =1 and w =[], ¢; Sa-

Corollary. Let Y C X be a (B x B~ )-invariant subvariety. Write Y = (B x B~)(po, )y
with p,7 € WPY) and 0 € Wp(y); denote by L(Y) the Levi subgroup of P(Y)) which
contains T'.

(i) If o(a) € RT whenever « is an isolated simple root in the Dynkin diagram of L(Y),
then for any x € Y, the composite map

T.Y - T,(G x Q)Y = T, (G xQ)Y/T,(G x G)x

is surjective.
(ii) If o is not a product of reflections associated to isolated simple roots in the Dynkin
diagram of L(Y'), then Y is singular in codimension two.

Proof. Because (G x G)Y is induced from a regular completion of a quotient of L(Y') by
a central torus, we easily reduce to the case where (G x G)Y = X. Then Y = BwB~ for
some w € W.

(i) For 1 < i <, let Zx, be the ideal sheaf of X; in X. Then the set

E; := {$ ey | IXi,m C IY,:I: + M%{,m}

is closed and (B x B7)-invariant. By the theorem above, F; does not contain any fixed
point of B x B~. Therefore, E; is empty: the image of Zx, , in Oy is never contained in
M5, .. So the map

T.Y = T, X/T. X;

is surjective whenever z € Y N X;.

(ii) We show that there exists a boundary divisor Z of X such that Y N Z contains
two irreducible components C; and Cs which meet along a divisor in C; and Cs, and that
T,Y is not contained in T, 7. Then, for any x € C; N Cy, the tangent space T,,Y contains
T.(C1 U Cy) and surjects to T, X /T, 7. Therefore, we have

dim(7,Y) > dim T, (C, U Cs) + 1 > dim(C;) + 1 = dim(Y)

15



and Y is singular along C; N Cs.

By assumption, there exists a non-isolated simple root « such that w(a) ¢ RT. Then
we can write w = Ts, where a € ¥ and l(w) = I(7) + 1. Let P O B be the maxi-
mal parabolic subgroup such that —a is not a root of P; then s, € W¥. By Theorem
2.1, Y N Z contains (B x B~)(w, 1)z and (B x B~)(7,s4)z as irreducible components.
Moreover, both components contain (B x B~)(w, s4)z as a common divisor. Indeed, the
one-parameter unipotent subgroup 1 x U,, fixes z, because U, C R, (P). Therefore,

(Bx B7)(8a,1)2D (1 Xx U_4TUy)(8q,1)z

contains (sq, Sq)%, as U,TU, contains s,. So (B x B~)(w,1)z = (B x B~)(784, 1)z con-
tains (w, sq)z. Similarly, (UaTU_q,1)(1, s4)z contains (sq, Sq)2, whence (B X B~)(7, sq)2
contains (w, sq4)z. Finally, as « is not isolated, T, X is not contained in T, Z, by the argu-
ment of proof of the theorem above.

Remark. The results of this section do not extend to regular completions of arbitrary
spherical homogeneous spaces. For example, let G = SO(n) act on k™ by its standard
representation and let X = P™~! be the projectivization of k®. Then X is a regular
completion of the spherical homogeneous space SO(n)/O(n —1) by a homogeneous divisor
7, the quadric in P"~!. Choose a Borel subgroup B C G and a B-fixed point z € Z. Let
Y C P"! be the tangent subspace of Z at z. Clearly, Y is non-singular, B-invariant and
not contained in Z; but T, Y is equal to T, Z.

2.3. Closures of parabolic subgroups

We describe how the closure of a parabolic subgroup meets a closed orbit in a regular
completion of G. As an application, we construct a degeneration of the diagonal of a flag
variety to a sum of Schubert cycles.

Proposition. Let X be a regular completion of G, let P D B be a parabolic subgroup of
G and let Z C X be a closed (G x G)-orbit with (B~ x B)-fixed point z. Then

PnZz= U (B x B)(w,wo pw)z = U (P x P)(w,w)z
weW,w-lew?r weW,w—lew?r

(decomposition into irreducible components), where wo p denotes the longest element in
Wp. If moreover G has no isolated simple root, then

P®nz= U (P x P)(w,w)z
weW,w-1lew?r

where P'® denotes the non-singular locus of P.
Proof. Observe that

ﬁ = B’IUO’PB = B’U)O’p’woB_wo .

Applying Theorem 2.1, we obtain

Pnz= U (B x B)(u,wyv)z
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union over all (u,v) € W x W such that wo pwo = uv™! and that {(wo pwo) = I(u) +1(v).
This amounts to wov = wo pu and (wo p) + L(u) = l(wo pu), that is, u=* € WF. This
proves the first assertion.

For the second assertion, let z € P ° N Z. Then, because P is (P x P)-invariant,
(P x P)z is contained in P' ° N Z. Moving « in its (P x P)-orbit, we may assume that
r = (u,v)z with u, v in W and v, v~ in WP. The irreducible components of PN Z
which contain z are exactly the (B x B)(w,wy pw)z, such that w=! € WP u > w and
v < wp pw. By [De|] Lemma 3.5, this amounts to: w=! € WP and v < w < u. If moreover
u # v then we may take either w = u or w = v. In other words, z belongs to at least two
irreducible components of PN Z. Arguing as in the proof of Corollary 2.2 (ii), we then
obtain dim T,,(P N Z) > dim P, a contradiction. So u = v and = = (u, u)z.

Remark. Identifying Z with G/B x G/B instead of G/B~ x G /B, we obtain

PnZz= U PwwoB/B x PwB/B .
weW,w—1leWw?r

Using the construction in 1.6, this leads to a geometric interpretation of a well-known
formula for the class of the diagonal in A,(G/P x G/P):

A(G/P)= Y [BwP/P x BuqwP/P]
weEW?P

(see [G] for more on the class of the diagonal). Indeed, consider the canonical map

T (GXG) xpxpmP — G=X
(91,92, 2) (P x P) —  (g1,92)%

Then, as in 1.6, 7 is equidimensional and its fibers identify with closed subschemes of
G /P x G/P via the projection

p: (GxG)Xppxpy P = G/PxG/P .

Moreover, the fiber of 7 at the identity of G is the diagonal A(G/P), and the class of the
fiber over the (B x B)-fixed point in Z is

Y [BwP/P x BwowP/P].
weW?P

Therefore, the fibers of 7 realize a degeneration of the diagonal to the cycle above.

3. Equivariant intersection theory in regular group completions

3.1. Equivariant Chow rings of regular group completions

Let X be a smooth, projective variety with an action of a torus 7. To describe the
Chow ring A*(X), it is useful to introduce the equivariant Chow ring A%.(X) (see [E-G]).
Indeed, A%(X) is a graded algebra over the symmetric algebra S of the character group
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X*(T). Moreover, A*(X) is the quotient of A%(X) by its homogeneous ideal generated by
all characters of T (see [B] Corollary 2.3.1).

In turn, the equivariant Chow ring A% (X) can be described via the localization theo-
rem: the inclusion of the fixed point set ¢ : X7 — X induces a S-algebra homomorphism
¥ 1 A%(X) — A%(XT) which is injective over Q and whose image is determined by the
fixed point sets of codimension one subtori of T' (see [B] Theorem 3.3). In the case where X
is a regular embedding of GG, we consider the action of T'x T with corresponding symmetric
algebra S x S. Then, by Proposition Al, the set X7*7 is contained in the union X, of
the closed (G x G)-orbits in X; moreover, all such orbits are isomorphic to G/B~ x G/B.
Therefore, A} (X) embeds into A%, ;- (X.) and the latter is a product of copies of the
ring A% (G/B~ x G/B) (see [K-K1], [K-K2] and [B] §6 for descriptions of this ring).

To analyze further X7*7T and X,, we consider the torus embedding T where T acts
by left multiplication. Let F be the associated fan in X,(7T) ® R and let F(l) be the
set of maximal cones of F. Because T is invariant under A(W), the fan F is invariant
under W, too. Thus, F = W JF, where F, is the set of cones of F which are contained in
the positive Weyl chamber. Then F, is a subdivision of this chamber. Moreover, F. ()
parametrizes the closed (G x G)-orbits in X, by Proposition A1. So XT*T is parametrized
by.7:+(l)><W><W

For o € F(l), we denote by Z, ~ G/B~ x G/B the corresponding closed orbit with
base point z,, and by

lo : Apyr(X) = A7y 7(Zo) = A7y r(G/B~ x G/B)

the restriction map. Moreover, for f € A}, p(Z,) and u,v € W, we denote by f,, the
restriction of f to the point (u,v)z,. Then f, , is in S ® S (the equivariant Chow ring of
the point).

Theorem. For any projective regular embedding X of G, the map

[T @ Aper(X) > [] Aber(G/B xG/B)
O'Ef+(l) O'E.'F+(l)

is injective and its image consists in all families (f,) (o € F1(l)) such that

() fousqvsea = foun (mod (u(a),v(c)) whenever a € ¥ and o € F,(l) has a wall
orthogonal to «,

(ii) fouw = for up (mod x) whenever x € X*(T) and 0,0’ € F(l) have a common wall
orthogonal to x.

Proof. We begin by describing all (T' x T')-invariant irreducible curves in X. Let « be
such a curve. Then there exists a unique (G X G)-orbit O in X such that v N O is open
in 7. Let z be the base point of O and let P be the associated parabolic subgroup. Then
(G x G), contains a conjugate of the isotropy subgroup of a general point of ~y; thus, the
rank of (G x G), is at least 2l — 1. By Proposition Al, it follows that one of the following
three cases occurs.

(1) P = B and z is fixed by T x {1}.

(2) P =P, for some o € ¥, and (T'x {1}), = C x {1} (recall that C denotes the connected
center of L).
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(3) P = B and (T x {1}), has codimension one in 7' x {1}.

In case (1), the orbit O is closed in X. It follows that v is conjugate in W x W to a
curve joigning z to (sS4, 1)z or to (1, s4)z (see e.g. [B] 6.5).

In case (2), (L x L)z := X' is an equivariant completion of the group L/C and
the latter is isomorphic to (P)GL(2). Moreover, (G x G)y = (G x G)z is isomorphic to
(G x G) x(@xp)y X'. Thus, o has a wall orthogonal to «, and v is conjugate in W x W
to a (T x T)-invariant curve 4/ C X’ which is not contained in the closed (G x G)-orbit
O, C O and which contains the base point z, of O,. So 7/ joins z, t0 (54, 5a)%s-

In case (3), (T'x T)z := +' is a projective line joigning the base points of two closed
orbits (G x G)-orbits Oy, O,r. Thus, the cones 0,0’ € F,(I) have a common wall.
Moreover, v is conjugate to v in W x W.

In particular, the set of irreducible (T x T')-invariant curves is finite. Thus, we can
apply [B] Theorem 3.4 to describe the image of

7:* : A;“XT(X) - A;“XT(XTXT) :

it is defined by linear congruences f; = f, (mod x) whenever z,y € X TXT are connected by
an invariant curve where T' x T acts through the character x. In our case, the congruences
associated to curves of type (1) define the image of [],cx, ;) %5, Whereas curves of type
(2) and (3) lead to congruences (i) and (ii).

To obtain a simpler description of A*(X), we consider the (G x G)-equivariant Chow
ring A%, o(X). The latter is isomorphic over the rationals to the ring of (W x W )-invariants
in A% 7(X) (see [E-G]). Moreover, the rational Chow ring A*(X)q is isomorphic to the
quotient of Af, (X)q by its ideal generated by all homogeneous elements of S&V ® S&V
(see [B] Corollary 6.7).

Corollary 1. The ring A%, o(X)q consists in all families (f,) (o € F4(l)) of elements of
Sq ® Sq such that:

(1) (8as8a)(fs) = fo (mod (, @) whenever o € F has a wall orthogonal to o € 33, and
(2) fo = for (mod x) whenever 0,0’ € F(l) have a common wall orthogonal to x € X*(T).

Proof. By [B] 6.6, the ring A%, »(G/B x G/B™) is isomorphic to S ® S via restriction to
Zy. Moreover, restriction of f € S® S to (u,v)z, is equal to (u,v)f, where f, denotes
restriction of f to z,. So relations (i) and (ii) of the Theorem reduce to (1) and (2).

In the case where G is a torus, both statements above reduce to the known descrip-
tion of the equivariant Chow ring of a smooth, complete torus embedding, as the ring of
continuous, piecewise polynomial functions over the corresponding fan (see e.g. [B] 5.4).
Back to arbitrary G, we have the following relation between A%, o(X) and A% (T), due
to Littelmann and Procesi for semisimple adjoint groups and equivariant cohomology (see
[L-P] Theorem 2.3).

Corollary 2. There is an isomorphism of Sq ® Sq-algebras

Agxc(X)q = (Sq ® AF(T))g -
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Proof. Let N be the closgre in X of the normalizer gf T in G. Observe that N is the
disjoint union of the (w, 1)T for w € W. In particular, N contains all fixed points of T'x T'.
It follows that restriction

A;—’XT(X) — A;—’XT(N)

is injective. Furthermore, by the proof of the Theorem above, N contains all (T x T)-
invariant curves which are not in a closed (G x G)-orbit (that is, which contribute to
relations (i) and (ii)). Thus, restriction to N induces isomorphisms

Al (X)W = AL p (N)WW o AL, 7 (T)Y = (S ® AL(T)™

3.2. Equivariant classes of (B x B~ )-invariant subvarieties

Let X be a projective regular embedding of G. Recall that the S®S-module A%, (X)
is generated by equivariant classes of (B x B~ )-invariant subvarieties Y C X (see [B]
6.1). By the previous section, the description of these classes reduces to calculating their
restriction 7% [Y] to any closed (G x G)-orbit Z = Z,.

For this, we write Y = (B x B~)(w, 7)y as in 2.1 and we denote by oy € F, the cone
associated to (G x G)Y. Then we may assume that oy is contained in o; otherwise Z is
not contained in (G X G)Y and therefore i%[Y] = 0. We denote by oy (1) C o(1) the sets
of edges (or extremal rays) of these cones. Each e € o(1) determines a character x. of T
the unique primitive character which vanishes at all edges of oz except at e where it takes
non-negative values.

We identify Z to G/B~ x G/B. For w,7 € W, we denote by Q(w, 7) the equivariant
class of BwB~ /B~ x B—7B/B in A%, .(G/B~ x G/B). These Schubert classes are a
basis of the S ® S-module A%, (G/B~ x G/B). Finally, we denote by

T X*(T xT) = Aryr(G/B x G/B)

the characteristic homomorphism (see e.g. [B] 6.5).

Proposition. Notation being as above, we have

Z:[Y] = H CTXT(Xea _Xe) Z Q(’LU’U, TU)

e€oy (1)

(sum over all v € Wp(yy such that l(w) 4 I(v) = l(wv) + I(1v)).

Proof. Recall that (G x G)Y is the transversal intersection of the boundary divisors of X
which contain it, and that these divisors are indexed by the set oy (1); we denote by X,

the boundary divisor corresponding to the edge e. Thus, by the self-intersection formula,
we have in A} (G x G)Y):

i;(,(GxG)Y[Y]: H CriFXT(Xe)[Y]-
ean(l)
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Moreover, we have

ioY]= i},Z[Y] = i?GxG)Y,Z i;(,(GxG)Y[Y]

= H CTXT(Xe)iszG)Y,Z[Y]: H el T (X )Y N Z]
eeay(l) ean(l)

where the latter equation holds because Y and Z intersect properly in (G x G)Y. Finally,

Ynz = Z Q(wv, Tv)

by Theorem 2.1, and each cI *T (X,) restricts to A%, 1(Z) as ¢cT*T (x., —x.) by Proposition
A1 below.

Using the equivariant Chevalley formula (see [K-K1] or [B] 6.6), one can obtain an
explicit but complicated expansion of i¥[Y] in the basis of Schubert classes. Rather than
developing this, we will describe the image of ¢, in terms of the ring D of operators of
divided differences. Recall that D is the ring of endomorphisms of the abelian group S
generated by multiplications by elements of S, and by the operators D, := a~(1 —s,) for
a € 3. The left S-module D has a canonical basis (D,,) (w € W) where D,, is composition
of the D, associated to a reduced expression of w.

For any scheme X with an action of GG, the ring D acts naturally on the equivariant
Chow group AT(X), and we have D, [Y] = d(Y,w)[BwY] for any Y € B(X) (see [B] 6.3).
It follows that D ® D acts on A%, -(X) for any regular completion X of G. For brevity,
the D, ® D, will be called the operators of divided differences.

Define a class 6g € A%, (Z) by setting

dg = Z Qwow, w) .

weW

Identifying Z with G/B~ x G/B, we see that d¢ is the equivariant class of the reduced
subscheme
|J BwowB~/B~ x B-wB/B .
weWw
By 2.3, d¢ is closely related to the class of the diagonal in G/B x G/B.
More generally, for any parabolic subgroup P D B, define dp € A%, (Z) by

op = E Q(wow, wowo, pw)
weWp

so that dp is the equivariant class of the reduced subscheme

\J B~wB~/B~ x BwypwB/B CQ/B~ x P/B .
weWp
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This interprets dp as the class 0 associated to a Levi subgroup of P.

Corollary. Notation being as above, the images under ¢, of the equivariant classes of
(B x B™)-invariant subvarieties in X are obtained by applying the operators of divided

differences to the classes
H CTXT(Xe: _Xe) 5P(<I>)
e€o(l)

where ® is a face of the cone o, and where P(®) D B is the parabolic subgroup associated
to the set of simple roots which are orthogonal to ®.

Proof. Let Y be a (B x B™)-invariant subvariety of X and let P D B be the corresponding
parabolic subgroup. Observe that P = P(oy): indeed, it follows from Proposition A1 that
a Levi subgroup of P is the centralizer of a general element of oy N X, (T).
Let y be the base point of Y as in 2.1. Observe that (G x G)y contains a unique closed
(B x B~ )-orbit, that is,
O := (B x B™)(wo, wowo,p)Y -

Moreover, it follows from Theorem 2.1 that

ir]O] =dp .

Finally, we have

Y = (B x B™)(wwg, Twp, pwo)O
and dim(Y') = l(wwo) + l(Two, pwo) + dim(O). Thus, we have

[Y] = (waO & ‘DTWO,PWO)[@]

in A%, 7(X). We conclude by recalling that the action of D ® D commutes with % (see
[B] 6.3).

3.3. The case of the canonical completion of an adjoint semisimple group

In this section, we consider a connected semisimple adjoint group G and its mini-
mal regular completion X constructed by De Concini and Procesi (see [D-P]). Using the
Bialynicki-Birula decomposition, we construct a basis of the S ® S-module A%, (X)) con-
sisting of equivariant classes of certain (B x B~ )-invariant subvarieties.

Recall that X contains a unique closed (G x G)-orbit Z, isomorphic to G/B~ x G/B,
and that the fan F associated to T consists in all Weyl chambers and their faces. In
particular, the cone o asociated to Z is the positive Weyl chamber, and the characters
Xe associated to edges of o are the simple roots. So the faces of o are indexed by the
subsets of ¥. For such a subset ®, we denote by zg the base point of the corresponding
(G x G)-orbit and by P(®) D B the associated parabolic subgroup; then ® is the set of
simple roots of a Levi subgroup of P(®).

Theorem. Notation being as above, the S ® S-module A}, (X) has a basis consisting
of the equivariant classes

X(w,7):=[(Bx B7)(w,7)z3]
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where w,7 € W and ® = {a € ¥ | 7(a) € R*} (in particular, € W(®)). Moreover, the
dual basis for the equivariant intersection pairing

A}XT(G) X A;‘XT(G) - S®S5
(u,v) = [z uv

consists of the

X (wow,wot) = [(B~ x B)(w, T)zs)\ 8]

with w, 7 and ® as before. In particular, the dual class of [BwB~] = X(w,1) is
[B~wB~ /B~ x B/B] = X(wow, wp).

Proof. Let p be the one-parameter subgroup of 7' such that (p,&) =1 for all & € 3. Then
wo(p) = —p. Define a one-parameter subgroup A of T x T by

A(t) = (p(t), p(t™™))

where n is a positive integer. Then (wp, wp)(A) = —A.
We check that the fixed point set of A in G is XT*T and that the closures of the
corresponding cells
G(z,A) = {pe G| imA(t)p =z}

(where £ € XT*T) are the (B x B~)(w,T)zs as above. Then our statements will be
immediate consequences of results of Bialynicki-Birula (see [Bil], [Bi2], [Bi3]).

Given p € G, we determine lim;_,o A(t)p. We can write p = (b,b”)(w,T)ze with
obvious notation. Then

() (b, bT)AETT) = (p(t)bp(t™1), p(t™™)b™ p(t"))

converges as t — 0 to a point of T'x T'. Therefore, we may assume that p = (w, 7)ze. Now
we consider zg as a point of the Grassmanian Grass(G @ G) of subspaces of the Lie algebra
of G x G, see [D-P] or the Appendix below. Choose root vectors g (8 € R) in G. Then
it follows from Proposition A1 below that the linear space (w, 7)z¢ has a basis consisting
of: the (z_,(g),0) and (0,z,(5)) (6 € Rt \ Rs), the (), z,(3)) (B € Rs) and a basis
of A(T) where T denotes the Lie algebra of T. For 8 € Rg, observe that the limit of the
line generated by

A(t) (ﬂfw(ﬁ), 'TT(ﬁ)) — (t(p,ww))xw(ﬁ), t—n(p,T(ﬁ))xT(ﬂ))

is the line 0 x G,(g) if 7(8) € R* (that is, if 3 € R, because 7 € WP®), and the
line G, (3) x 0 otherwise. It follows that the linear space lim;_,o A(t)(w, T)zs has a basis
consisting of: the (z_,(g),0) and (0,z,(5)) (8 € RT) and a basis of A(7). In other words,

we have
lm A(t)p = (w, 7)ze .

t—0
Thus, the cell G(A (_w, T)zg) consists of the orbits (B x B™)(w, 7)zg such that 7 € wh@®),
Similarly, the cell G(—A, (w,T)zs) consists of the orbits (B~ x B)(w, T)zs\s such that
T e WP®),
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Remark. Notation being as in 3.2, restriction to G/B~ x G/B of X (w, 7) is equal to

(Dw®D;) [[ ¢™"(a,—a) > [B~wB~/B~ x BwypwB/B].

Appendix: the structure of regular group completions

We denote by X,.(T) the group of one-parameter subgroups of 7. An element A €
X« (T) is called dominant if the scalar product of A with any positive coroot is non-negative.
The group W acts on X,(T') and the set of dominant one-parameter subgroups is a fun-
damental domain for this action, as it is the intersection of X, (7)) with the positive Weyl
chamber.

To any A € X,(T) we associate the subset G(A\) C G of all g such that A(t)gA(t)~!
has a limit in G when ¢ — 0. Then G(\) is a parabolic subgroup of G with unipotent
radical R,G(\) = {g € G | limy_,0 A(t)gA(t]~* = 1}. Moreover, a Levi subgroup of G())
is the centralizer L()\) of the image of A, and the parabolic subgroups G(\), G(—\) are
opposite. Finally, G(\) contains B if and only if A is dominant (see e.g. [M-F-K] 2.2).

Proposition Al. Let X be a regular completion of G and let O C X be a (G x G)-orbit.
(i) The closure T is smooth and meets O transversally into a union of (T x T)-orbits
permuted transitively by A(W).

(ii) There exists a unique z € O such that (B x B™)z is open in O and that z = lim;_,o A(%)
for some A € X, (T). The isotropy group (G x G), is the semi-direct product of R,G(—\) x
R,G(X) with AL(X\) x (C(X) x 1),, where C(\) denotes the connected center of L()). In
particular, G()\) depends only on O.

(iii) The orbit O is closed in X if and only z is fixed by T x T. Then

X, ={zeX| tli_r)%)\(t)xz z}

is an open affine (B~ x B)-invariant subset of X. Moreover, T, := T N X, is isomorphic
to affine [-space where T x T acts linearly through | independent weights, and the map

o: U xUxT, — X,
(91792,-73) = (glagZ)-T

is an isomorphism.

Proof. Observe that T is the fixed point set of A(T) in G. It follows that T is a component
of the fixed point set X2(T). Therefore, T is smooth.

Denote by k[[t]] the ring of formal power series in ¢, and by k((t)) its field of fractions.
By [M-F-K] 2.1, any point of Gy(«)) can be written as g (t)A(t)g2(t) for some g1(t), ga(t)
in Gy and A € X, (T). It follows that there exists A € X, (T) such that lim;_,0 A(t) := 2
exists and belongs to O. Replacing A by w(A) for some w € W, we may assume that A is
dominant.

Let g € R,G(A). Then

At) = (A1), 1)(g,9)1 = (A(B)gA(t) ™, g)(A(1), D)1
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Taking limits at 0, we obtain z = (1, g)z, that is, 1 x R,,G(\) fixes z. Similarly, R, G()\) x 1
fixes z. Moreover, for g € L()), we have A(t) = (g,9)A(t) and therefore z = (g,g9)z. So
(G x @), contains R,G(—A) X R,G(\), AL()\) and of course (C'(A) x 1), (which in turn
contains A(k*) x 1). Because the product (B x B™)(R,G(\) x R,G(—A))A(L) is open in
G x G, it follows that (B x B™)z is open in O = (G x G)z.

To show that (G x G), is the semidirect product of the groups above, we first consider
the case where O has codimension one in X. Then dim(G xG), = dim(G)+1 and therefore
the connected component (G x G)? is the product of the groups above. It follows that
the unipotent radical of (G x G), is R,G(—\A) x R,G(X). Thus, (G x G), is contained
in G(—A) x G(A) (the normalizer in G x G of its unipotent radical). So (G x G), is the
product of R,G(—A) x R,G(A) with (L(A) x L(A)),. Moreover, the latter group contains
(AL(M))(C x 1), as a component, and hence it normalizes the diagonal of the derived
subgroup of L(A). It follows that (L(\) x L())), is equal to A(L) x (C[A) x 1),.

In the case where the codimension of O is arbitrary, we replace X by the blow-up
X of O in X; then X is a regular completion of G. Let O be the open (G x G)-orbit
in the exceptlonal divisor of X and let 2 € O be a point as above. Then (G x G); is
the kernel of the action of (G X G), in the normal space ot O at z. So (G x G); is the
intersection of kernels of independent characters of (G x G),. In other words, (G x G), is
a normal subgroup of (G x G); and the quotient is a torus; in particular, both groups have
the same unipotent radical. Arguing as above, we obtain that (G x G), is the product
of R,G(—A) x R,G(A\), AL(\) and (C(A) x 1),. It follows that the orbit (7' x T)z is a
component of TN O C OAT), This proves assertions (i) and (ii).

For (iii), if O is closed, then (G x G), is parabolic in G x G, that is, G(A) = B and
z is fixed by T x T. Conversely, if z is fixed by T' x T, then we must have C(A\) = T,
ie. L(A) =T and (G x G), = B~ x B. Thus, O is closed in X. Moreover, T, is an
affine (T x T)-invariant neighborhood of z in the smooth torus embedding 7. Thus, T,
is isomorphic to affine I-space where T x T acts linearly through | independent weights.
Moreover, X, is (B~ x B)-invariant and contains 1. Thus, X, is the open cell of the
Bialynicki-Birula decomposition defined by A. In particular, X, is isomorphic to affine
space. Moreover, the map ¢ restricts to an isomorphism over U~ x U x T, and ¢~ !(2) is a
single point. Because z is the unique closed (T x T')-orbit in X, it follows that ¢ is finite.
So ¢ is an isomorphism by a version of Zariski’s main theorem.

Let Z be the center of G and let G,4 := G/Z be the corresponding adjoint group.
Then G,q has a canonical regular completion G,4 which can be constructed as follows:
for the adjoint action of Guq X G4q4 in its Lie algebra G,q @ Gu4, the isotropy group of the
diagonal AG,q is equal to Goq. Then G4 is the closure of the (Guq X Gaq)-orbit of AGuq
in the corresponding Grassmanian Grass(G @ G). Moreover, each regular completion X
of G,q dominates G,q, that is, there exists a morphism of X to G,4 which induces the
identity on G,q (then such a morphism is (G x G)-equivariant). These results are proved
in [D-P] and [St]; they can be slightly generalized as follows.

Proposition A2. For a non-singular (G X G)-equivariant completion X of G, the following
assertions are equivalent:

(i) X is regular.

(ii) X dominates G,q.
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If (i) holds, let z € X be a fixed point of B~ x B and let x1, ..., Xxr be the weights of T x T
in the normal space to (G x G)z at z. Then the intersection of the span of x1, ..., X, with
the span of R x R contains the convex cone generated by the weights (o, —) (o € ¥) and
is contained in the span of these weights.

Proof. (i)=(ii) For any € X, denote by (G X G) () the kernel of the action of the isotropy
group (G x G), in the normal space to the orbit (G x G)z at . We claim that

(G x Q)N (Z2° x Z2°) = A(Z°)

(where Z° denotes the connected center of Z). To check this, it is enough to consider the
case where x = z is the base point of its (G x G)-orbit. Then, by Proposition Al, the
normal space T, X/T,(G x G)z identifies to T,T/T,(T x T)z, and we have

(GXxG))N(Z°xZ°) C (T xT)) -

Moreover, it is easy to see that (T' x T')(,) = A(T) which proves our claim.

From this, it follows that the dimension of (G @ G) () + Z @ Z is independent of .
Therefore, identifying Grass(G®G) with the Grassmanian of subspaces of G,q® G,q which
contain Z @ Z, we obtain a (G X G)-equivariant map

T X — Grass(G® G)
z = (G86n (2 2).

Moreover, m(1) is identified with the diagonal in G,q @ Guq. Using Proposition Al, it is
easy to see that 7 is a morphism. Thus, 7 maps X onto Ggg4-

(i))=(i) By assumption, we have an equivariant morphism 7 : X — G,q. Let Z C X
be a closed (G x G)-orbit. Then m(Z) is the closed (G x G)-orbit in G4 which implies that
Z is isomorphic to G/B~ x G/B. Let z be the (B~ x B)-fixed point in Z. Then, as in the
beginning of the proof of Proposition Al, we obtain that z is contained in T and that T is
smooth. Moreover, the canonical map ¢ : U~ x U x T, is injective, because the induced
map U™ x U X (Tad),r(z) — Gaq is injective. It follows that ¢ is an open immersion; thus,

T is transversal to Z at z. This implies at once that X is regular. B
Denote by A (resp. Agq) the algebra of regular functions over the affine space T,
(resp. (Tad)x(z))- Observe that the semigroup of weights of T x T' in A (resp. Agq) is

freely generated by —xu1,...,—X» (resp. by the (—a, ), a € ¥). Because © maps T, to
(Tad)r(z), the convex cone generated by the (—c, &) must be contained in the convex cone
generated by —xi,..., —xr. Moreover, because restriction of 7 to T' = (T x T)/A(T) is

the quotient by Z x Z, the fraction field of A,4 consists in the (Z X Z)-invariants in the
fraction field of A. This means that the span of the (a, —«) is the intersection of the span
of x1,...,Xxr with the character group of (T'x T')/(Z x Z), that is, with the span of R x R.
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