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Let K be an algebraically closed field, let R = K[X,, X1, X2, X3]. A projective
monomial curve is a subvariety C' of P3, parametrized by

Xo=u?, X =t% Xo=1t4y", X3 =t2u",

where d, a1, as, by, by are all nonnegative integers, and a; + by = ay + by = d.
Without loss of generality we may assume that d > a; > ay > 0. Let I be the
defining ideal of C.

1 Characteristic zero

Moh [1] showed that for char K > 0 the curve C can always be defined by
two binomial equations. The next result is a generalization to the case where
char K = 0. In the proof we shall explicitely use the arguments developed in
[1]. We refer to this paper for more details.
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Proposition 1.1. The curve C' is defined set-theoretically by 3 binomial equa-
tions.

PROOF. Let ¢ = ged (aq, by, d), and set
f= Xéi/q _ Xfl/ngl/q

Then
IQK[XO,X1,X2] = (f)

Let p be a positive prime number, p # char K. Let
g =ged (d, aq), e = ged (g, as), gt ==
There are positive integers [y, [1, s, m such that
g'p"as =lid+1la; and  ¢g*'p™ =g+ 1 + lo.

Let
fi= X3 - XPXP X

Let p be a positive prime number, p # char K and p # p. Re-apply the above
construction with respect to p, and obtain a polynomial

fo = Xé}*ﬁm _ X{]ngX(l;o,
where the notation is self-defining. We show that

C:V(faflafZ)'

Since f fi1, fo € I, one inclusion is trivial. For the opposite inclusion let h =
M, — Ms be a binomial generator of I, where

My = XXX XS and M, = X XD xP2 XD,

Then
doy + a1 + asois = dfy + a1 B2 + agBs,
whence
as3 = agfs (mod g)
and
%ag, =2 (mod ¢*)
e e
and finally

ag = (5 (mod g%),



because ged (ag/e, g*) = 1. Therefore there are some nonnegative integers s, t
such that
a3 =sg" +c¢ and B3 =tg* + c.

Thus we can write
h= X§(XgoXPXE XG0 — XPXP XX,
where the second factor belongs to I. For all positive integers ¢ we set
A9 = M{ — M.
Then there is & € (f) such that
AP™) = XSh (mod fy).

Consequently
he™ € (£, fr)-
Similarly one concludes that

W) € (f, f2)-

Let P be a point in P% such that f(P) = f1(P) = fo(P) = 0. We show
that hA(P)=0. Since h is an arbitrary generator of I, this will imply that
C D V(f, f1, f2) and complete the proof. It holds:

M{"(P)=M§"(P) and MI"(P)=MJ"(P). (1)
Since p™ and p™ are relatively prime, there are integers A, o such that
Ap™ 4+ pp™ = 1.

It suffices to assume that M;(P) and M,(P) are non zero. In this case from
(1) we deduce that

My (P) = M?" " (P) = MP" T4 (P) = M,(P). O

2 Positive characteristics

In this section we assume that char K > 0. For the rest we refer to the notation
introduced in Section 1. Moh showed that if char K = p, then C = V(f, f1).
We suppose that char K # p and show that the variety V(f, fi) always has p™
irreducible components, whose defining equations do not depend on char K.
We first show the claim in the localized ring R' = Rx,x, x,- Let I' denote the
image of I in R'. We need a preliminary result.



Lemma 2.1. Let
F =X X" X2 X3 — X X7 X2

be a binomial of I'. Suppose that uz > 0 is as small as possible. Then us = g*.

PROOF. The exponent us is the smallest positive integer such that

uld + Ugay + UsGy = ’l)1d + voaq
Uod + U2b1 + U3b2 = ’Uod + ’Ugbl

for certain nonnegative integers ug, u1, Us, vg, v1, V3. The preceding two condi-
tions are equivalent to the following:

UzQg = ’U)ld + Woa (2)
U3b2 = wod + w2b1 (3)

for some integers wy, wy, wo. The smallest positive integer uz verifying (2) is

e SCm(9,02) _ gag _
3= = — = .
a9 €a9

On the other hand
g*bs = g*(d — a) = g*d — wid — weay = (¢* — wy)d — we(d — by)
= (g" — w1 — wy)d + wby,
hence we can replace wy = g* — w; — wy in equation (3), which shows that the
system is solvable.
Fix a binomial F' fulfilling the assumption of 2.1. Then it holds
Lemma 2.2. I' = (f, F)R.

PROOF. Let
G = XXM XX — XXX e I

If a3 =0, then G € (f). Suppose a3z > 0. In R’ it holds:
B X(?OX{MXQO& ??3*9*
XXX

1 .
ap+vo Y a1+v1 Y aztve Yy az—yg Botuo yPrtur v B2tuz
XuOXulXu2 (XO Xl X2 X3 - XO Xl X2 )7
0 1 2

G F+

where the binomial in brackets belongs to I, as it can be easily verified. The
rest is induction. O



Let w be a primitive p™-th root of the unity. For all 2 =10,...,p™ — 1 set
I; = (faF(Xo,Xl,XQ,wiX3))> I{ =LR.

Then
pm—1
N L= (f,F*)R,
i=0

where

e — Xgome?lmegzmeg*p — X X}nmegzpm.

Lemma 2.3.
pm—1

ﬂf' (f, )R

PRrOOF. Note that I; is the image of (f, F') via the automorphism of R that
is the identity on K[Xj, X;, X5] and maps X3 to w'X3. Since f and f; are
mapped to themselves, the inclusion “O” is true. We prove “C”. Note that

F(P ) — XO op Xl 1p X2 2P fl +
Xébopm-HoX;Alpm—l—ll X;upm (Xéuz—vz)pm-l-b . Xévo—uo)pm _ZOX](-’UI —ul)pm—ll)

We prove that the monomial in brackets belongs to (f). To this end it suffices
to show the following two numerical identities:

(ug — v2)p™ + Iy _ da
(v —u)p™—1; @
(Uo - Uo)pm -l d

-2 1 ¢
(n—w)p™ =l (5)

(4)

Now, since f; and F' are homogeneous elements of I, it holds:

g™ = lo+ 1+l gp"ax = dly + aily;
g+ us+ur+ug= ve+uv+vy, g as+ usa; +uid= veay + vid.
From this (4) and (5) can easily be deduced. O
Proposition 2.4. We have the following prime decomposition
p—1
(fh)= ﬂ I;.

PRrooOF. We have shown above that the claim holds for the images of the ideals
in R'. This implies that I; is an associated prime of I for all =0,...,p™ — 1.
There remains to show that I has no other associated prime. Suppose that P
is a prime ideal such that (f, f;) C P, and XoX;Xs € P. Then X3 € P, and
two among Xy, X; and X lie in P. But then height P > 3. Since (f, f1) is of
pure height 2, P is not an associated prime of I. O



In particular we have shown: the two binomial equations that in [1] define
C for a certain positive characteristic are not valid in any other characteristic.
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