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Introduction

The classification of all projective varieties of minimal degree is due to the
successive contributions of various authors, and spreads over a century. More
than hundred years ago, in 1886, Del Pezzo [3] solved the surface case, then,
in 1907, Bertini [1] extended the characterization to irreducible varieties of
any dimension. He found a class of rationally ruled varieties, for which Har-
ris [6] in 1976 gave a nice algebraic description: he proved that they are a
particular class of determinantal varieties, which he called scrolls. Finally,
in 1981, Xambé [9] completed the classification for varieties with more than
one irreducible component. De Concini-Eisenbud-Procesi [2] state that “the
precise equations satisfied by reducible subvarieties of minimal degree remain
mysterious”, hence they “stop short of giving a normal form for the equations
of each type” of them. This problem is solved in the present paper.

!The author was supported by an Institutional Fellowship from the Commission of the
European Communities, Contract ERBCHBG CT 94-0540.



1 Preliminaries

Let K be an algebraically closed field, and let T = {Ty, ..., T,} be a finite set
of variables over K. Let R = K[T]| be the corresponding polynomial ring.
For a subset S of R, by < S > we shall denote the linear subspace of R
generated by S. If A is a matrix with entries in R, we shall use the notation
< A > for the linear subspace generated by the set of all entries of A.

We recall some basic definitions.

A simple scroll matrix will be a matrix of the form

(lo I ... lm_1>
Lol o0 by )
where [y, ..., [, are linearly independent linear elements of R.
A scroll matriz will be a matrix of the form

(BulBal--- |8 ),
where for all = 1,...,s, the submatrix 3; is a simple scroll matrix and

<Bi>NQ_<B>)=0.
J#i

A projective variety defined by the vanishing of the 2-minors of a scroll matrix
will be called a scroll.

Let J be a reduced ideal of R having an irredundant prime decomposition

We shall throughout suppose that J is of pure dimension. Under this hypoth-
esis we say that J is connected in codimension 1 if — up to rearranging the
indices — for all £ =1,...,r it holds:

k—1
codim(Jy + ﬂ J;) = codim Ji, + 1.
i=1
This definition coincides with the one given by Hartshorne [8].
The following result is quoted from Eisenbud-Goto ([4], Th. 4.2 and 4.3):

Theorem 1.1. (Del Pezzo-Bertini-Xambd) Let J be a reduced ideal of R.
Suppose it is connected in codimension 1, and it has pure dimension d. Let

X be the variety of P" defined by J. Let degJ denote the degree of J. If
deg J < codim J + 1, then J is Cohen-Macaulay, and either:

(1) X is a quadratic hypersurface; R/J = K[Ty,...,T,]/(Q), for some quadratic
polynomial Q);



(2) X is a cone over the Veronese surface in P°; R/J is isomorphic to a
polynomial ring over K[Too, To1, Tog, 111, 112, Toa] modulo the ideal of 2-
minors of the generic symmetric matriz:

Too Ton T2
Too Tu T |,
Too Tia Ty
or
(8) P"™ contains linear subspaces L1, . .., L, and there are d-dimensional scrolls
X; C L; such that X = U X;, and for each k =1,...,r we have

=1

Xkﬂ(XlLJ"'UXk,l):Lkﬂ(Llu"'Ukal): (*)

which 1s a linear subspace of dimension d — 1.

We refer to the paper of Xambé [9] for a proof.
Our first aim is to provide an explicit description of the defining ideal J C R
of the variety X given in (3). This answers a question posed by De Concini-
Eisenbud-Procesi (cf. [2], p. 54).

Let J; be the defining ideal of X;, for all+ =1,...,r. Then
Ji = (Mi, Qi),
where
- @; is a set of linear forms defining L;, and

- M; is the set of all 2-minors of a scroll matrix B; consisting of ¢; columuns:
(M;) is the defining ideal of the scroll X; in its space of immersion L;

Note that the entries of B; can be considered as a system of coordinates of L;.
In particular
<B;>nN<@; >=0.

Up to replacing R with a polynomial ring S C R we may assume that

T

N <Qi>=0.

=1

Of course the entries of B; are defined up to linear combination with the
elements of ();. Any such modification - which of course leaves the ideal J;
untouched - will be called an admissible change.
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Condition () in 1.1 can be re-formulated as follows:

k—1 k—1
e+ () Ji=@Qr)+([) <Qi>) (%)
i=1 i=1
forall k =1,...,r — 1. In the sequel we shall stick to the notation just intro-

duced. We are now ready to state our main theorem.

2 The Main Theorem

Theorem 2.1. The following two conditions are equivalent:

(1) The ideal J is reduced of pure dimension d, is connected in codimension
1 and has minimal degree n —d + 1.

(II) There exist, for alli=1,...,r, two subsets D;, P; of < Q; > such that
<P >®<D;>=<Q; >,
and the following arioms are satisfied:
(a) Dy DDy D...2 D, =0, and < Dy >=< @1 >;

(b) |Di—1| = ci+ |Ds| foralli=2,...,r;

(c) < P,>N< Dy >=0, and |Pj| 4+ |Di—1| = n—d+1 for all
1=2,...,7;

(d)

k—1
) (Q:) € (Pi, Dy_1)
i=1
forallk=2,...,r,
and, up to admussible changes for By, ..., B,, one has that

(e) M; C (D; 1) foralli=2,...,r, and
(f) M; C(P;) foralli=1...,r—1andallj=1i+1,...,r.

We prove this Theorem in several steps. The first auxiliary result general-
izes Prop. 5.1 in [5]. The technique used in the proof is similar.

Lemma 2.2. Assume that the azioms (a), (e) and (f) of 2.1 are satisfied.

Then
K

ﬂ Ji = (M, ..., Mg, m(Qz))

=1 =1

forallk=1,...7.



PrROOF. For all k =1,...,r set

k
Hk = (MI: Ty Mka ﬂ(Qz))
i=1
It follows from (a), (e), (f) and the definition of J; that Af; C J; for all indices
i,j € {1,...,7}: this yields “2”. We prove “C”. Let

fe (k] J;.
i=1
Using induction on 7 = 1,...,k we show that for all j there is a decomposition
f=rfi+gqg for some f; € Hy and some ¢; € ﬁ(@z)
i=1
For j = k this will yield the claim. Since f € J; = (M7, Q1) we can write
f=hHh+a for some f; € (M) C Hy, and some ¢, € (Q1),

which proves our claim for 7 = 1. Now let 5 > 1, and suppose that
j—1
f=fia+gia for some f;_; € Hy, and some ¢; 1 € () (Q:)-
i=1
Now f € J;, and f;_; € J; by the first part of the proof, so that ¢;_; € Jj.
Hence

gji—1 =m; +p; +d; for some m; € (M;), p; € (P;) and d; € (D;).
But by virtue of (a) and (e)
j—1

m;j,d; € Dj—1 C () (Qs)-

i=1

Hence we also have that .
o

- ﬂ (Qs),

=1

and consequently

peN@InE)<N@)

=1
Furthermore
J
dj € ﬂ Qi) N (D;) € (@)
=1
Thus

J
fj:fj_1+mj € H, and q; =pj+dj € ﬂ(QZ)

give the required decomposition of f. O



ProoF oF 2.1 “(II) = (I)”. For all k = 1,...,7 one has

codim Jy = codim(My, Py, Dy) = ¢ + |Pe| + |Di| — 1
(1) = |Py| 4+ |Dx 1| —1=n—d,

where the last two equalities are due to (b) and (c) respectively. This proves
equidimensionality. In view of 2.2 for all kK =1,...,7 — 1 we have
k—1 k—1
Jo+ () i = (M, ..., M1, My, ()(Q:), P, D) € (Pg, Dy, Dy—1)
i=1 i=1

= (Pk:> ch—l)a

where the inclusion follows easily from (d), (e) and (f), and the last equality
is a consequence of (a). Since by (a)

k-1

k-1
Dy CN(Q)C ()
i=1

i=1
and P, C Ji, the above inclusion can be reversed, so that
k—1
Je+ [ Ji = (Py, Dy—1)-
i=1
Therefore
k—1
codim(Jy + ﬂ J;) = codim(Py, D) =n—d+1
i=1
because of (c). This together with (1) proves connectivity in codimension 1.
It is well known that the degree of the cylinder over a scroll is equal to the

number of its columns (see [7]). Hence for all ¢ = 1,..., 7 one has that
(2) deg J; = ¢,
and

dngdengi:Zci.

i=1 i=1
But in (1) we have seen that

n—d+1=c¢ +|P|+ |Di foralli=1,...,7

Summing up both sides of this equality over all  =1,...,r we get
rin—d+1) =) ci+ ) (1Bl + D) =Y ci+ Y (|1 B] + [Di-a)
i=1 i=1 i=1 i=2

=ici+(r—1)(n—d+1),
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where we used (c) and the fact that P, = D, = (). Thus
n—d+1=> ¢,
i=1

which shows the minimality of degree.
Now we turn to the proof of the other implication.

Definition 2.3. Let D; O Dy O --- D D, be a chain of sets such that for all

i=1,...,7 the set D; is a basis of N’_, < @Q; > . We rewrite condition (xx):
k—1
Je+ () Ji = (Qk, Di—1)- (%)
i=1
Note that axiom (a) is fulfilled. Now for alli = 2, ..., r there is a decomposition

<Qi,Di1>=<D; >0 < 4; > <(; >,

where D; U 4; is a basis of < D;,_; > and D; U C; is a basis of < ); >. In the
sequel we shall throughout stick to the notation just introduced. Note that as
an immediate consequence of the definition of A; we have that

(3) <Di>= P <4;> foralli=1,...,r — 1.
j=it1

Lemma 2.4. Assume condition (xx) is fulfilled. Then there are admissible
changes for By, ..., B, such that M; C (4;) for all i =2,...,r. In particular
aziom (e) is satisfied.

PROOF. Fix an index ¢ € {2,...,r}. Condition (**) implies that
(4) MZQJZ§(<Dz>@<AZ>@<C’Z>)

Choose a system of variables T such that D; U A; U C; C T. For all entries x
of B; write x = u + v, where

u= > aT and wv= Y  arT, (ar€K).

TED;UC; TeT\(D;UC;)

Replace x by v. This is an admissible change for B;, because u €< Q; >. After
this operation, condition (4) for the modified set M; implies that M; C (4;),
because no variable of D; U C; appears in the polynomials belonging to M;.

O



Now the sets D; are completely determined. Next we construct the sets
P;. To this end we shall again recur to admissible changes of B,..., B,.
Simultaneously we shall have to modify the sets A; (and, consequently, the sets
D;) in order to preserve the validity of the claim of 2.4. These modifications
will also be called admissible changes.

Let i € {2,...,r}. For our construction we shall consider subsets P; of < @Q; >
satisfying the following
Condition 2.5:

<P>®<D;1>=<Q@Q;,>+<D;_1>.

Lemma 2.5. Assume (I) is true. Set P, = () and for alli = 2,...,r let P,
be a minimal subset of Q; verifying Condition 2.5. Then aziom (d) is true.
Moreover, for all i1 =1,...,r it holds

(5) <P >®<D;>=<Q; >,

and the azioms (b) and (c) are verified, too.

PROOF. With the notation given above, and in view of 2.3, condition (*x*) can
be written in the form:

k1
Je+ () Ji = (P, Dg, Di—1) = (Pe, Dy—1).

i=1
Hence for all £k =1,...,r it holds:

k-1

N (Q;) C (Py, Di-1),

j=1
which proves (d). For i = 1 equality (5) follows from 2.3. Fix i € {2,...,7}.
Since D; C D;_1 by 2.3 and < P, > N < D;_; >= 0 by Condition 2.5, one has
that
(6) <P,>Nn<D;>=0.
Moreover by (xx) and connectivity in codimension 1

i—1

=1

This proves (b). From (2) and minimality of degree it follows that

(8) n—d+1=degJ=> degJ;=> c.

i=1 i=1



On the other hand, for allz=1,...,r,
n—d=codimJ; =¢; + |Q;| — 1.

Finally
(9) Qil=n—d+l-ca=3 ¢—a=3 ¢

i=1 =1

i
We show that forallt=1,...,r
j=it1

This will imply (¢). We prove the two inequalities. For “<” we proceed by
induction on 7 = 1,...,r. By definition < D; >=< @)1 >, so that the claim
follows from (9) for ¢ = 1. Now let ¢ > 1. By (7), (8) and induction

r r 1—1
Pl=n—d+1—|Di1[>) ¢;i=> ¢;=D ¢
i=1 j=i j=1
Hence, by (6) and (9)
r 1—1 r
1Di| <|Qil = [Bl < Y= ¢i= D ¢
j;l j=1 j=it+1
j#i

Next we show “>”. In view of (7) and (8) it suffices to show that

i—1
(11) Pl <> ¢; foralli=2,...,7.

j=1
We prove (11) using descending induction on i = 7,7 —1,..., 1. By definition

< P, >C< Q. >, so that by (9)
r—1
‘Pr| < |Qr| = Zcia
=1

which yields the claim for ¢ = 7. Let ¢ < r. Then by (7), (8) and induction

r i r
|D,~|=n—d+1—|PZ-+1|ZZCj—Zc]-= ZCJ'.
j=1

j=1 j=it+1

This, together with (6) and (9) implies that

1—1
1P| < |Qil — |Di < ¢y

=1



This completes the proof of (10). In particular it follows that

i—1
(12) |Pi|:n—d—|—1—|Di,1|:ch,

7j=1
so that |P;| + |D;| = |Qi| because of (9). In view of (6) this yields
<P>0<D;>=<Q@Q;>. O

Corollary 2.6. For alli=2,...,r it holds |A;| = ¢;.
PROOF. The claim follows from (3) and (10).

Lemma 2.7. Assume (I) is true. For all i = 1,...,r there is a subset P; of
< Q; > verifying Condition 2.5 such that after suitable admissible changes for
Bi,...,B, and Ay, ..., A, the following properties are satisfied.

(i) Forall j=2,...,r let
PjXAjZ{p5|p€Pj,(5€Aj}.

Set G1 =0, and .
j=1
forallj=2,....,r. Then G; C (Py1) foralli=1,...,7—1

(it) M; C (P;) foralli=1,...,r—1andallj=i+1,...,r.

(i1i) For alli=1,...,r —1 there is an index (i + 1), 1 < (i + 1) <1, such
that

< P >O< g1y i1 > + < Piy1) > © < Qg1 > - @ < 4; >,

where Il 11yi11 is a subset of < Qip1 > for which M1y C (Iyiiq1),41)-

PROOF. Set P, = (). We define the remaining P, and the subsets A; by
recursion. We proceed by induction on £ =1, ..., — 1 showing that there are
subsets P, ..., P, and admissible changes for By, ..., By and A, ..., A, such
that the statements (i), (ii) and (iii) are fulfilled for i <k —1 and i < j < k.
(Set Go = My = ). At the k-th step we assume that this is true, and construct
Py in such a way that (i) and (ii) are true for i = k and j = k + 1. To this
end we shall perform admissible changes on By,..., By and Ay, ..., A, and
also suitable modifications on Pi,..., Py, so that the claim is finally true for
1<kandi<j<k+1.

Let Pyi1 be a (minimal) subset of < Q.1 > satisfying Condition 2.5 for
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t = k. Since < Py > N < Dy >= 0, there is a system of variables 1" such
that P,y UDy CT. Leti € {2,...,k} and z € P;. Write x = u + v, where

u= Y arT and v= > oa7T, (ar€K).

TeEDy TeT\Dy,

Replace = by v in P;. Perform this substitution for all z € P; and all entries x of
B;, for i =1,...,k. Since Dy C D; C (Q;), these substitutions are admissible
changes and respect the condition P; C< @; >. Furthermore (ii) is preserved,
and so is Condition 2.5 for s = 1,...,k — 1 and j = i+ 1,...,k, because
D, C D;_;. Then perform the above substitution for all x € 4A;, i = 2,...,k.
Since Dy, C D; C D;_; for all 7 = 2,..., k, this respects the definition of A;.
Moreover also the inclusion M; C (4;) is still true for ¢ = 2, ..., k. Furthermore
(1) is fulfilled for ¢ =1,...,k — 1 with respect to the modified G;. Finally (iii)
is true forv =1,..., k—1 with respect to the modified subsets. We prove that

QQ(Q)

By finite induction we may assume

k-1
Gi-r C Q)N () CN(@

=1 =1

On the other hand Ay C (D;) C (Q;) fori=1,...,k—1 and P, C (Qy). It
follows that

D?r

Gk Gk 1U PkXAk

A 1

In view of (#*) and Condition 2.5 this implies
(13) Gr C (Pit1, Dy)-

But by construction none of the elements of G contains a variable T' € Dy,
and the same is true for the elements of P.;. Hence (13) implies

(14) Gr C (Pet1)

Whlchproves()forz—k Letie {1,...,k—1}. By (e) M; C (D;—1) C (D;) C
Jjforall j =1,...,i—1. On the other hand by induction M; C (P;) C J;,
for all j=i+41,.. .,k, so that, in view of (#x):

k
ﬂ i C (Prs1, Dy).



But by construction the elements of M; do not contain any variable from Djy.
Hence M; C (Py41). Furthermore by 2.4 for all i = 1,...,k — 1 it holds that
My, C (Dg-1) C (D;). Moreover M, C Ji. By virtue of (xx) it follows that

k
My C () J; € (Petr, Di),

=1

which implies that My C (Pg41), since the elements of M} do not contain any
variable of the subset Dj. This proves (ii) for i < k and j = k+ 1. Finally we
show (iii) for 4 = k. From (14) and the definition of G it follows that for all
j=1,...,k either Pj C< Pk+1 > or Aj <« Pk_|_1 >. Let

| = min{h | A; C< Pyyq >, for all j such that h < j <k} -1

If the set is empty set | = k. Since A; < Pry1 >, necessarily P, C< Priq >.
Now, in view of (3) and 2.5

<P>N<KA1>® <A >)C<P>n<D >=0.

Hence < Py 1 >D< P> ® < A1 > @@ < Ag > . On the other hand by
(ii) there must be a subset Ilj(11) k11 of < Pyiq > such that M; C (Hyer1)641)-
O

Corollary 2.8. With respect to the data of 2.7, axiom (f) is fulfilled.
PRrROOF. By induction on j = 2,...,7 we show that M; C (F;) for all ¢ =
1,...,7 — 1. By 2.7 (iii) we have that

< P, >D< II; >,

where M; C (II;,), so that the claim is true for j = 2. Let j > 2 and ¢ < j.
With the notation of 2.7 one has that M; C (4;) for i = I(j),...,j — 1, and
by induction M; C (Py;) for i =1,...,1(j) — 1. This implies the claim. O

The Theorem is completely proven now: the required subsets D; and P;
are those fulfilling 2.7.

3 A constructive method

In this last section we want to give an explicit description of the elements
of the subsets P; and D;. This will permit us to develop an algorithm for
the construction of the defining ideals of the irreducible components of any
projective variety which is connected in codimension 1 and has minimal degree.

Lemma 3.1. Let B be a scroll matriz with ¢ > 1 columns. Let M be the set of
its 2-minors. Let Q) be a set of independent linear forms such that M C (Q).
Let Ly, Ly be the row vectors of B. Then one of the following cases occurs:
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(1) There is (A, pu) € K*\ {(0,0)} such that < AL, + pLs >€< Q >,

(2) B contains an isolated column B such that < B >N<Q>=0, and for
every other small block 3 of B either

(i) < B>C<@Q>, or

(i1) B is an isolated column and < B+ afl >e< Q > for some a € K.

PROOF. We first prove the claim in the case where B is a simple scroll matrix,

say
(Lo lc_1>
B= (11 lo ... 1. )’
Let T be a set of variables such that T O Q. Foralli =0,...,cwrite l; = l;+1!,

where
L=> oyT and I!= > oT (og €K).

TeQ TET\Q
Let . "o .
B ( S )
L

be the image of B in the polynomial ring R = K[T]/(Q). All the 2-minors of
B are zero in R.
First assume that [{ = 0. Then

moo ) )
_ 1 2 | __ qmn n2 __ qn
0= ll2/ lg _lll?)_lQ _52 ’

so that I5? = 0. Suppose that Ij # 0. Let 7 € {3,...,m}. One has that

o

— | "0 i—1 | qmn My g

0= o - lolz - ll li—l - lolz ’
1 i

so that I} = 0. It follows that Lo = (I1,15,...,1.), whence < Ly >C< @ >.
Now suppose that [j = 0. We prove that [/ =0 foralli=3,...,m — 1. Fix
such an index i and assume that [ ; = 0. We have that

" "
Ly i

0=
i

n2 __ 2
- li - _li ’

g
_liflli—kl

so that I = 0. Hence Ly = (If, 14, ...,1l,_1), so that < L1 >C< @ >.

» 'm—1
Now assume that [} # 0. We prove that foralli =0, ..., m thereis a; € K\{0}
such that ! = o;l{. We proceed by induction on i = 0, ..., m. First note that
Iy U

0= = i1y — 1.

" "
ll ! 2
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Since R is a UFD, it follows that fj = ayl} and I} = a,l! for some ag, iy € K '\
{0}. Since a; = 1, this shows the claim for i = 0,1,2. Now let i € {3,...,m}
and suppose that I , = a;_olY, I!! | = ;1] for some ;_o,;_1 € K \ {0}. It

holds

" "
li—2 lz’—l

0= ir? it | =l = 1% = aualll = a2 I
11— 3

Hence )

l” _ ] l”

i = b

Q2
This completes the induction.
We have just proven that
B (aol’l' ol ... am_ll'l’>
arl] ol .. anll )

Since all minors of B are zero in R, its rows are proportional: there is A €
K \ {0} such that o; = A1 for all i =0,...,m — 1. Therefore (L; — A\Ly) =
(lh=Aly, ... Il — Al ), whose entries all belong to < @ >. This completes the
proof of the claim in the case where B is simple.

Now suppose that B consists of more than one small block. Let

- L
5=(z)
be a small block of B. If 3 is not an isolated column and M is the set of its

minors, then

McMc(Q),
so that by the first part of the proof there is (), i) € K2\ {(0,0)} for which

<ALy, Ly >C< Q > .

Let B' = (f1]...|Bs) be the submatrix of B’ formed by all small blocks with
the above property. Then B’ = B if B has no isolated column. We show that
the claim is true for B’. For alli =1,...,s let Lgi), Lg) be the row vectors of
B;. By assumption for all i = 1...,s there is (A®, u®) € K2\ {(0,0)} such
that
<AOLY 4 O sce Q> .

Suppose for a contradiction that the claim is not true for B’. Then there are
two indices 4, j, 1 < i < j < s such that there is an entry z of A0 LY 4 ) )
and an entry y of /\(j)Lgi) + u(j)Lg) such that x,y €< @ >. This implies that



Therefore there is an invertible row transformation mapping B into the matrix

B ( ADLy 4+ p @ Ly )
AL, + M(J)LQ :

In particular the ideals of the 2-minors of B and B coincide. Consider the
following minor of B:

T
T

!
m = ' z :my-x'y"

Then m € (M) C (Q). Note that #’ is an entry of A\DLY) + LY. Hence
' €< @Q >. But then zy € (Q). Since (@) is a prime ideal and z, y € (Q),
this provides the required contradiction.

Now suppose that there is an isolated column

- lo)
ﬁ - <l1 )
not belonging to B. We fix another small block of B:
ol 3 ... lm1>
ﬂ_<l3 ly .. ln )
By the first part of the proof up to inverting the rows of B we may assume
that either (3 is an isolated column or [;+vl;; €< Q > forallt =2,... m—1.

for some v € K'\ {0}. For alli =0,...,m let I} and [ have the same meaning
as above.
In R it holds

16' l;,,kl "y "y

mor o |= Lot — ., =0.

First we show that [{ and [{ cannot be proportional. Suppose that Alj+pul] =0
for some (\, ) € K2\ {(0,0)}. Then

No + iy = A(ly + 19) + p(ls + 1) = Nj + ull €< Q >,

against our assumption on B. Since R is a UFD, it follows that one of the
following cases occurs:

(1) 1 =1 _, = 0. We show that in this case < § >e< @) >. We have that
Iy b1 €< @ > . If B is an isolated column, there is nothing left to prove.
Otherwise [; + vl;1; €< @ > for all : = 2,...,m — 1 By finite descending
induction one concludes that [; €< Q > for i = 2,...,m — 1. In particular 3
belongs to B.

Now let v be another small block of B. We show that < v >e< @ >, too. Up
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to an elementary row transformation we may assume that the entries of the
first row of « all belong to < @ >. Let (z,y)* be a column of 7. Then

l() T
Loy

= l()y—.’I)ll e< Q >,

since this is a minor of B. Now z €< Q) >, and [y €< @ >. It follows that
Yy ESQ >.
(b) There is « € K \ {0} such that [ = ol _, and I{ = «l!’. Then

lo—alpy=ly+1lyg—all,  +1 ) =1l—al, ; €<Q >,

and
h—a,=10—al,e<Q>.

Hence < B—af3 >€< @ > . We prove that in this case 3 is an isolated column.
Suppose this were not the case. Then [, 1 + ul, €< @ > . But then

lo+ply = Iy + ply + 15 + ply =1+ pl] +a(ll_ +pll) €< Q >,

against our assumption on f3. O
As an immediate consequence we have:

Corollary 3.2. Under the assumption of 3.1 let I be a subset of < ) > which
is minimal with respect to the condition M C (II). Then < II >C< B >. If
B has no isolated columns, then II is the set of entries of a non trivial linear
combination of the row vectors of B.

Remark 3.3. In [7] it is proven that a d-dimensional scroll X € P" is a ruled
variety: if B is the associated scroll matrix, then X is the union of all (n — d)-
planes (rulings) defined by the annulation of a non trivial linear combination
of the row vectors of B. Note that the number of isolated columns of B is
equal to the number of linear components of X. Our corollary shows that if X
does not contain any d-plane, then it is “ruled” in a stronger sense: for every
linear subspace V' contained in X there is a ruling W C X containing V.

In the next result we determine all (n — d)-planes contained in a scroll X. It
follows easily from 3.1 and 3.2, and will be useful for the constructive algorithm
later on.

Corollary 3.4. Let B be a scroll matriz with ¢ > 1 columns. Let M be the set
of its 2-minors. Let @ be a set of linear forms such that M C (Q). If |Q| = ¢,
then either

(i) < Q > is generated by the entries of a non trivial linear combination of
the row vectors of B, or

(i) B = (B1|62), where 31 is an isolated column, and < Q >=< (s >, or
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(iii) B = (031|02), where By and By are isolated columns and < Q) > is gener-
ated by the entries of a non trivial linear combination of 31 and Ps.

Now we can precise the structure of the subsets P; introduced in Section 2.
Proposition 3.5. For all i = 2,...,r there is an index 1(i), 1 < (i) <i—1
such that we have a decomposition

< P, >=< Pl(i) >0 < Hl(i),i >0 < Al(i)-l—l >@- P < Al >,

where IIy;); is a subset of < By > for which |Ij;) ;| = ¢y and My C
(I 4)-

PRrOOF. Fix an index i € {2,...,r}. By 2.7 there is an index (i), 1 < [(7)
i — 1 and there is a subset ITy;); such that

IA

<P >2< Py > @ < Il > & < Ayip1 > @B < Aiy >,

and My C (IIy;)). By 3.2 this subset can be chosen in such a way that it is
contained in < By, >. Then

< Iy > N(< Py > @ < Ayiygr > @@ < Ajq >) C< By > N < Q) >=0.
On the other hand we have that
\ITy),5| > codim(My) = ¢y — 1.
Finally by (12) and 2.6
|Pil — ‘Pl(i)| - |Al(z’)+1| — A = Ci(i)-

This suffices to conclude. O

Next we want to present an explicit construction of the defining equations
of any projective variety satisfying the assumptions of 1.1 (3).

Theorem 3.6. Let R = K|[Ty,...,T,] be a polynomial ring over the field K.
Let r,cq,...,c. be positive integers such that ¢ + -+ 4+ ¢, +r < n+ 1. Let
Ay, Ao, ... A, be independent sets of linear forms of R, such that |A;| = ¢;
foralli=1,...,r. Set

Di=Ai1U---UA,,

foralli=1,...,r—1, and let D, = 0. Then set P, =0, and P, = A,. Apply
the following recursive construction.

1. Leti=3, II, = A,.

2. Choose an index | =1(i), 1 <1 <i—1. Ifl =1(j) and < IIj >#< A} >,
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for some j < i, then goto 5.
3. Choose a set II,; of ¢; independent linear forms such that

<I,>N(<KP;,>®< A1 >0 -- <A >)=0. (%)

If <II; >=< A; > or ¢ =1, then goto 6.
4. Choose a scroll matriz B, with ¢; columns such that the set M; of its 2-
minors is contained in (4;) and (II;;), and A, I1; C< B; >. Goto 6.
5. Choose a set I1; of ¢; independent linear forms such that M, C (I1,;), and
(%) is true.
6. Set

Po=PRUIL; UA L U---UA;.
If i < r, replace v with 1+ 1 and goto 2.
7. Foralli=1,...,7r, if i # l(j) for all indices j, choose B; to be a scroll
matriz with ¢; columns such that the set M; of its minors is contained in (4;),
A, C< B; >, and < B; >N < P, D; >=0. End.
Then the azioms (a)—(f) of 2.1 are satisfied.

Remark 3.7. Note that the above recursive construction is always possible.
The only step that really has to be justified is 4. But one easily sees that it
possible to find a scroll matrix B; such that < A; > and < IT; > (which are
supposed to be distinct) are generated by the set of entries of the first and the
second row of B; respectively. And in step 5 it suffices to choose II; = A;.

For the rest of the section we shall refer to the sets and matrices constructed
in the claim of 3.6. It is immediate to verify that the axioms (a)—(c) and (e),
(f) are satisfied. The validity of axiom (d) follows from the next two results.

Lemma 3.8. Leti € {1,...,7 — 1}. Then for all j = 1,...,i one has that

ProoF. We proceed by induction on i. For ¢ = 1 the claim is trivial, since
P=0.Letl<i<r—1,and 1 < j <i. We refer to the decomposition of P
given in 3.5. We have one of the following cases.

If (i) < 7, then A; C P,
if 1() = 4, then P; C B,
if 1(2) > j, then replace P; by P; and apply induction. O
In the claim of the next Proposition the sets G are those introduced in
2.7. As in Section 2 we set ; = P,UD; foralli=1,...,r.

Proposition 3.9. For all k = 1,...r one has that Gy C (Py41). Moreover it
holds

(Qi) = (G, Dy,).

k
=1

7
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ProOOF. The first part of the claim is an immediate consequence of 3.8. We
prove the rest of the claim by induction on k. Since G; = 0, the claim is trivial
for k =1. Let 1 < k < r. By induction

k k-1

N (@) = (N (@) N (Qk) = (Gr—1, Dg—1) N (P, Dy)

i=1 i=1
= (Gr-1, A%, D) N (Pr, D) = (Gi—1, Px X Ay, Dy) = (G, Dy),
where the last but one equality is due to the first part of the claim.
Now we are able to determine a minimal set of generators of J explicitely.

Corollary 3.10. For alli=1,...,r let J; = (M;,Q;). Let J=J,N---NJ,.
Then
J=(M,...,M,G,).

In particular the ideal J is generated by elements of degree 2.
Note that the last assertion has already been proven in [4].

Example 3.11. In K]a,...,m] we consider the ideal
szlﬂ...ﬂjg),
where J; = (M;,Q;), and

- My = My = (0 and M, M3, M, are the set of 2-minors of the scroll
matrices By, Bs, B4 given below;

- forall 2 =1,...,5 the set @); is constructed as follows.
B1 B2 B3 B4 B5
a c d h | k m
b d e tojllla+y
(@3 fllh t)|m a+j|l+b
Ay | As Ay As
Q2 |a+b c+d d+e h i|m a+j|l+0b
Py Az Ay As
Qs |a+b c+d d+e| g m a+j|l+0b
Py I | As Ay As
Q4 c d e fllh 1 L+
11 Ay | 43 As
Qs |a+b c+d d-l—eH gli j|m a+y
Ps 11 Ay
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