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Introduction

In this paper we consider a large class of coordinate rings of certain unions of
projective scrolls. This class appears in several recent works studying prop-
erties of the special fibre F'(I) of an ideal I in a local ring ([5], [6], and [T7]).
We prove that the reduction number of these algebras is always equal to one
([14]). We also prove that these reduced algebras are Cohen-Macaulay of min-
imal degree, so that the above assertion also follows from a theorem by [4].
Our methods, however, are constructive, and we can explicitely describe a
Noether subalgebra. This can be used to find explicit reductions for the ideal
I (see 2.7). As an application we describe the special fibre F'(I) when I is the
defining ideal of a projective monomial variety of codimension 2, and prove
a conjecture contained in [5] and [6]: we show that the Rees algebra of I is
defined by relations of degree two at most.

1 The ideal associated to a barred matrix

Let K be an algebraically closed field. Let T = {7, | 1 < a < n} be a set of
variables over K. We consider the following barred matrix:

N=(Bi|By|...| By || Boss | - | By | .- | Boworsa | - | B, ),
where for all v =1,...,s,,

B :(Tz‘y—l—l O Tiu+1)

v Eu+2 ﬂu+3 Eu—‘,—l er ’
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We call B, the v-th small block of N'. For all i = 1,...,r, the submatrix
B, = ( B, 41| By 42 | ... | By, )

will be called the i-th big block of N.

We suppose that different indices correspond to different variables, and
that the entries of each big block are pairwise distinct. Moreover we assume
that the indices j, are pairwise distinct and for all v = 1,...,s,, the index j,
verifies one of the following two conditions:

(i) T;, does not appear anywhere else in the matrix N, or

(ii) there exists a unique p, v < p < s,, such that B, and B, belong to
different big blocks and Tj, = T;, ;1.

In other words, all the entries of A/ appear one time only, except for the last
entry of the second row of each small block, which can appear a second time as
the first entry of the first row of a small block belonging to one of the following
big blocks.

Let J be the ideal of K[T] generated by the 2 x 2-minors of every big block
of N and by every product T,T;, where T}, is in the first row of B;, and T} is in
the second row of B; for some indices ¢ and j, 7 < j. The latter will be called
transversal products.

The following result generalizes Proposition 5.1 in [7]. We refer to this
paper for the proof.

Proposition 1.1. For all i, 1 < i < r, let J; be the ideal generated by the
2 x 2-minors of the i-th big block, by the entries of the first rows of the big
blocks with the indices 1,...,1—1, and by the entries of the second rows of the
big blocks with the indices 1+ 1,...,r. Then

1 a primary decomposition of the ideal J.

We shall say that J is the ideal associated to the barred matriz N. We
introduce the following notation. For all 7 let M; be the set of 2 X 2-minors of
the big block B;. Let P; be the set of entries of the first rows of the big blocks
Bi,...,B;_ 1 and D; the set of entries of the second rows of the big blocks
Bii1,-..,B,. Moreover, for all 7 let ¢; be the number of columns of B;. One
has that

COdlm(MZ) =C; — 1.

For the generalities on rational normal scrolls see [4] or [8].



Remark 1.2. Note that the ideal (M) defines a scroll not in P™, but in its
space of immersion. The latter is the linear subspace of P" defined by the
annulation of the variables in P, U D;.

Next we give some immediate properties of sets P; and D;, which will be
useful in the proofs of the next results.

(a) One has that ) =P, C P, C---C P, ,and D; D Dy D ---D D, =.

(b) BLND;=0foralli=1,...,7r.

(¢) |Piy1| =D ¢jand |D;j| = Y ¢, foralli=1,...,r—1.

j=1 j=i+1
(d) M; C(D; q),and M; ; C(P) foralli=2,...,r.
Corollary 1.3. Let ¢ be the number of columns of N'. Then
codimJ; =c—1

foralli=1,...,c. In particular J is of pure codimension ¢ — 1.

PRroOOF. By properties (b) and (c) one has that P,UD; is a set of ¢ —¢; pairwise
distinct variables. By construction of A/ none of these appears in the minors
lying in M;. Thus codimJ; =c¢;—1+c—c¢;=c—1foralli=1,...,r. O

Next we prove that J is connected in codimension 1. According to the definition
given by Hartshorne [9], for an equidimensional ideal this property follows from
the following condition:

k—1
codim(J + ﬂ J;) = codim Ji, + 1 fork=1,...,r (%)
i=1

Proposition 1.4. The prime decomposition of J verifies condition (*).

PROOF. Let k € {1,...,7}. We show that

k—1
Je+ (N Ji = (Pe, Di_1).
=1
Let B
kalz( Bl H H Bk—l )

Forall:=1,...,k—1let

J'i = (Mia-PiaAi-I-la R Ak—l)a



i.e. the intersection of J; with the subring generated by the entries of By_;.
Note that
Ji:ji+(Dk—1) fOI’i=1,...,k—1.
Applying 1.1 to Bj_; one deduces that the intersection J = Nkt J1 is generated
by Mi, ..., Mj_; and the transversal products of Bj_;. In particular J C (Py).
It follows that
k—1 N
Je+ [ Ji = (Mg, Pe, Di) + J + (Dg-1)
i=1

C (Pr, D),
where we used properties (a) and (d). Since the opposite inclusion is obvious,
this suffices to conclude. O

The ideal J has an another relevant property: for the details of the proof
of the next results we again refer to [4] and [8].

Proposition 1.5. Let J be the ideal defined above. Then
deg J = codim J + 1.

PRrROOF. The degree of a rational normal scroll X is equal to the number of
columns of the associated matrix. The degree is the same for all cylinders over
X. Hence

deg J; = ¢;

foralls=1,...,r, so that
deg J = degJ; = ¢ =c.
i=1 i=1
The claim then follows from 1.3. O
The following definition is due to Vasconcelos:

Definition 1.6. ([15], Def. 1) Let R be a finitely generated standard algebra
over K. Let

AZK[Zl,...,Zg]‘—)R
be a Noether normalization of R, and assume that all the z; are of degree 1.
Let {b1,by,...,bs} be a minimal set of homogeneous generators of R as an
A-module. The number

ra(R) = max{degb; | i =1,...,s}

is called the reduction number of R with respect to A. The minimum of 74 (R)
taken over all possible Noether normalizations A of R is called the (absolute)
reduction number of R.

From 1.4, 1.5 and [4], Th. 4.2 it follows
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Proposition 1.7. Let N be a barred matriz whose set of entries is a system
T of variables over the field K. Let J be the ideal of K[T] associated to N .
Then K[T] is Cohen-Macaulay and

r(K[T]/J) = 1.

In the sequel we present an explicit construction of a Noether normalization
of K[T]/J. First of all we introduce the barred matrix A/* obtained by replacing
the v-th small block of N/ with the column

(%)

We consider all sequences of the form

Eul +15 15, ,T;

Juys Livgrc e

15, 1I<m<wr<--<v<r)

which verify the following conditions:

(i) T, =T, .+, forallk=1,...s,

Y41

(ii) the sequence is maximal with respect to (i).

Note that 7}, is the only entry of N that possibly does not appear in any of
the above sequences. All the others occur one time exactly. We form the sum
of the elements of each sequence:

Vs
T = 7—;'1/14_1 + Z T-i.
=1

Let £ be the set whose elements are all these sums, Tj, if it does not appear
in any of these sums, and all variables not appearing in N.

Example 1.8. In the ring KT}, ...,T1] consider the barred matrix:

N = T Ty T3 |15 Tg || 17 | Ty
T, Ty Ty |Te T7 | Ts | T )
Then
Nl — Tl T5 T7 T9
Ty | Ty | Ty | Tho )

In this case the elements of £ are:

T+ T+ T, Ts +Ts, Ty, Ty, Thy



Remarks and Notations

(1) For every variable T, appearing in A/" we shall denote:
- by 7(7,) the (unique) element of £ containing 7;
- by 7(7,)~ the sum of all terms of 7(7,) that precede T, and appear in

the same big block of N;
- by 7(T,)”~ the sum of the remaining terms of 7(7,) preceding Tj,.

In a similar way we define 7(7,)* and 7(7,)*™.

(2) If a variable T, only appears above (below) in N, then it also appears in
N, and it is the first (last) term of 7(7,). This follows from condition
(ii). Each of the remaining terms of 7(7;,) appears one time below and
one time above. The variables not appearing in A/' are those appearing
one time below and one time above in the same small block of A.

(3) Each of 7(7,)~ and 7(7,)* contains one summand at most. More pre-
cisely we have that
- 7(To)~ # 0 if and only if T, = Tj, for some v, and the v-th small block
is not the first left in a big block;
- 7(T,)* # 0 if and only if T, = T;, . for some v, and the v-th small
block is not the last right in a big block.

We are now ready to prove

Proposition 1.9. Let A be the sub-K-algebra of K[IL]|/J generated by the
mmages mod J of the elements of L. Then the image mod J of the set of
variables T generates K[T'|/J as an A-module.

PRrOOF. For the sake of simplicity we shall keep the notation 7, for the image
of T, mod J. This will not cause any confusion, since in this proof all equalities
will be written in K[T']/J. It suffices to show that, for all entries 7, and 7,
of NV, the product T,T} is an element of 3", AT;. We shall throughout suppose
that there exist two indices u, v such that 7T, appears in the y-th column, 7;
appears in the v-th column of N, and p < v.

We distinguish between several cases. For the sake of clearness, we structure
our proof according to the top-down numbering.

1. T, and T} belong to different big blocks.

In this case we shall say that T3 is right to T, or that T, s left to Tj,.

1.1. T, only appears below in N.

Then T, also appears in N’ and 7(7,)" = 7(7,)"* = 0.

1.1.1. Ty appears below in N.

Since every term of 7(7,)~~ and 7(7,)~ appears above in N, and is left to T,
we have that 7(7,)"~T, = 7(7,)~ Ty = 0. Hence

TaTb = T(Ta)Tb.
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1.1.2. T, only appears above in .
Then 7, certainly appears in N, and 7(7,)~~ = 7(T;)~ = 0. Thus

TaTb = T(Tb)Ta —_ T(Tb)++Ta —_ T(Tb)+Ta.

Since every term in 7(73)"" and 7(7},)" appears below, and is right to 7, we
can apply the result in 1.1.1. to the last two summands.
1.2. T, appears above in N.
1.2.1. Ty appears below in N.
Then T,7T, = 0.
1.2.2. T, only appears above in .
Then T, certainly appears in N', and 7(7,) ™~ = 7(T3)~ = 0. Since all terms of
7(Tp) " and 7(Tp) ™t appear below, and are right to T,, one has that T,7(7;)" =
T.7(Ty)*" = 0, hence

TaTb == TaT(Tb).

2. T, and Ty belong to the same big block B, but to different small blocks.
The subcases 2.1, 2.2 and 2.3 correspond to three different steps of an algo-
rithm. At each step we replace 7, and T}, by new entries T, and T}, respectively,
which also verify the assumption 2. Let s be the number of small blocks in
B. Suppose T, and T appear in the a-th and in the (-th small block of B
respectively (o < ). Let a and 8 be the indices of the small blocks of B
occupied by T, and T}, respectively.

2.1 T, appears above and T}, appears below in B.

Consider the following submatrix of B:

oo T, Ty Tun ATy .. .. Ty Ty ...
Tal Tall PR P TC Tbll Tbl Tb )
One has that
| Ta Ty |_

0= ‘ T, T, |= T. 1y — TyTy,
and

_ Tal Tbll _

0= ‘ TaH Tbl = TalTbl — TGHTH.
Finally
TaTb = Ta” Tbu.

Hence the problem is reduced to finding the required representation for T,»Ty:.
Take T, = Tyr, and Ty = Tyr. If Tpn = T, apply 2.2, if Ty = Ty, apply 2.3.
Otherwise apply 2.1. once again.

2.2. T, only appears below in B.

In this case T, appears in N’ and 7(7T,)" = 0. Hence

TaTb = T(Ta)Tb — T(Ta)__Tb — T(Ta)++Tb — T(Ta)_Tb.

7



Note that all terms of 7(7,)" and 7(7,)™" appear in a big block different
from B. Hence the required representation for the second and the third sum-
mand can be found according to 1. Thus it suffices to consider the last term.
If o =1, then 7(T,)~ = 0 and we are done. Otherwise take T, = 7(7,)~ and
T, = Ty. Then @ = a — 1, and 8 = 3. Apply 2.1 or 2.3. to T,T;. This is
possible, since 7(7,)~ certainly appears above.

2.3 Ty, only appears above in B.

An argument similar to that developped in 2.2 permits us to reduce the prob-
lem to the product 7,7(7;)". If 8§ = s, then 7(73)" = 0 and we are done.
Otherwise take T, = T, and T, = 7(T3)*. Then & = o, and 3 = 8+ 1. Apply
2.1 or 2.2 to T, T}.

It is clear that the above algorithm stops after a finite number of steps, when
either 7T, is the leftmost entry of the upper row of B, or 7T} is the rightmost
entry of the lower row of B.

3. T, and T}, appear in the same small block B of V.

3.1 T, or Ty appears in N".

Suppose that T, appears in N'. Then

TaTb = 7—(T'a.)irb - T(Ta)__Tb - T(Ta)++Tb - T(Ta)_Tb - 7-(TFII)_FCD)'

The four last terms are sums of products 7,/ Ty, where T,, appears in a different
small block with respect to Ty. Hence 1 or 2 can be applied to each of these
products.

3.2 T,, and T}, do not appear in N".

First suppose T, = T,. Note that 7, is not the leftmost element of the first
row of B. Hence the block B has the following minor:

_ Ta’ Ta _ 2
-
Thus we may assume 7, # T,. Then the block B is of one of the following
forms:
e Ty T, T, ...
(a) B_(... T, T, Ty )
or
(T ... T T, ... T, Ty ...
(b) B - (. .. Tall Ta e Tb Tb” Td > )

In case (a) it holds T, T, = Ty Ty . If T, is in the first column, then T, appears
in AV, and we are back in 3.1. The same is true if T}y is in the last column.
Otherwise we are in case (b). In this case T,T, = T,»Ty:. Reapply this identity
successively to move the first factor to the left, the second to the right. After
a finite number of steps the we end up with a product where the first factor
is T,, or the second id Tj. Since T, and Ty both appear in N, we are back in
3.1. O



Corollary 1.10. Ifd is the cardinality of L, then d = n—c+1 and dim K[T]/J =
d. In particular, A is a Noether normalization of K[T|/J.

PROOF. From 1.3 it follows that
dimR/J=n—c+1,

where n is the number of variables. Thus it suffices to show that d =n—c+1.
Now let V be the set of all variables appearing below in N: its cardinality is
obviously equal to the number ¢ of columns. Let V denote its complementary
set. Let F' be the set of the first terms of the sums in £. By construction it is
clear that F' = VUT;},. But the cardinality of F' is d. Hence d = n—c+1. O

2 Projective monomial varieties of codimension 2

Proposition 1.9 can be applied to the study of the special fibre of a projective
monomial variety of codimension 2: see [5] for a complete and detailed presen-
tation of this subject. We first quote the basic notions and the main results
from [6].

Let R be the polynomial ring in n + 2 indeterminates over the field K. Let
I be an ideal minimally generated by 7 elements {F;}1<;<,. The Rees algebra
of I is defined to be the graded ring R[It] = @,>0I"t", and the special fibre
is the quotient R[It]/MR|[It], where M denotes the irrelevant maximal ideal
of R. The dimension of the special fibre is called the analytic spread of I and
is denoted by ¢(I). We introduce 7 independent variables over R, say T =
{T;}1<i<s, and we consider the ideal J = ker{R[T| — R[It] — 0,T; — Fit}.
We obtain a presentation R[It] ~ R[T]/J of the Rees algebra, from which
we can deduce a presentation of the special fibre: R[It]/MR[It] ~ K[T]/J,
where J denotes the image of J modulo MR[T].

The ideal J is called a reduction of I if JI™ = I"*! for some nonnegative
integer n. Let r;(I) denote the least number n such that the above equality
holds. Then the (absolute) reduction number of I is defined to be the minimum
of r;(I) taken over all possible reductions J of I.

Let us place ourselves in the case where I is the defining ideal of a toric
variety admitting the following parametrization:
Cn b1, b2 b

o . e . n
n’Z_u1u2 un’

c1,,C2 .

—_ ai —_ a2 — a p—
Ty =U;, Ta=Ug"y .., Tp =U,", Y=1U; Uy - U

where, for all 7, 1 < ¢ < n, a;, b; and ¢; are nonnegative integers such that
a; 7é 0, (bi,CZ') 7é (0,0), and (bl,...,bn) 7é (0,...,0), (Cl,...,Cn) 7é (0,,0)
We call this a projective monomial variety of codimension 2.

It is known that in general codim(I) < ¢(I), and equality holds for I a
prime ideal if and only if I is a complete intersection. In [6] the number ¢(1)



was determined for all defining ideals I of a codimension 2 monomial variety,
in spite of the fact that no complete description of the ideal J was known yet.
The approach, indeed, is indirect: the computations are done on a subideal
AcC J, generated in degree two, called reduced essential ideal. It turns out
that dim R[T]/A = 3 (cf. [5], Cor. 5.26.1). This immediately implies the
following result:

Theorem 2.1. ([6], Th. 4.2). The analytic spread of I is equal to two if I is
an complete intersection, equal to three in all the remaining cases.

2.1.1. The ideal A is always generated by monomials and binomials, with the
exception of a very particular case, that is treated separatedly ([5], Prop. 5.18.1).
In this case 7 = 4 and

A = (TyTy — T} = T?) C K[Ty, Ty, Ty, Ts)].

One easily sees that

K[T,, T1,T5) C K[Ty, Th, T», T3]/ A

is a Noether normalization and that the reduction number is 1. In the general
case A is the ideal associated to a barred matrix A~ whose big and small blocks
coincide: see [5], [6] or [11] for an explicit construction. We shall use our results
to prove that in the general case A=7 , i.e. the special fibre of I is entirely
generated by the quadratic relations. We need the following preliminary

Lemma 2.2. Let R be a finitely generated K-algebra, J an ideal of R and
¢ : R — R/J the canonical epimorphism. Moreover let A C R be a Noether
normalization of R. If dim R = dim R/J, then A is a Noether normalization
of R/J with respect to the restriction ¢|4.

PROOF. We consider the A-module structure defined on R/.J by ¢|4. Since ¢
is a finite A-homomorphism, the same is true for ¢|4. Thus it suffices to prove
that |4 is an injection. Now K := ker(p|4) = ker(¢) N A, and the map ¢|a
induces a finite monomorphism of rings

A/K — R/ J.

Thus dim(R/J) = dim(A/K). But the left-hand side is equal to dim R =
dim A. Thus the preceding equality is only possible if I = 0. O

Let us fix a monomial variety of codimension 2, with defining ideal I, which
is not a complete intersection and does not belong to the particular case. We
shall refer to the notation just introduced. Proposition 1.10 permits us to
determine a Noether normalization A of the quotient R[T]/A. Consider the
composition of maps

A< R[T)/A —> R[T]/7,
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where the right map is the canonical epimorphism. The equality of dimensions
and 2.2 imply that A is a Noether normalization of R[T]/J with respect to the
composed map. Since R[T]/A is generated by linear forms as an A-module,
the same is true for its quotient R[T]/J.

For the rest of this section we consider the local ring Rxs. The notions of
Rees algebra, special fibre and reduction naturally extend to this local ring.
The above results apply to Ry and to the localized ideals and subrings. The
following result is due to Vasconcelos:

Proposition 2.3. ([14], Prop. 5.1.3) Let (R, M, K) be a local Noetherian ring
with infinite residue field, I an ideal of R of analytic spread £. Suppose

A=Klz,...,2e) — F(I)

is a Noether normalization of the special fibre F(I), and assume that all the z;
are of degree 1. Furthermore let {by,...,bs} be a minimal set of homogeneous
generators of F(I) as an A-module. For alli=1,...,¢, let a; € I be a lift of
zi. Then J = (a1, ...,a0) is a (minimal) reduction of I and

ry(I) = max{degb; | i =1,...,s}.

Putting the above results together one immediately obtains the following

Corollary 2.4. With respect to the notation introduced in 2.1.1 it holds:

Next consider the following result by D’Cruz, Raghavan and Verma:

Proposition 2.5. ([3], Cor. 2.2) Let (R, M) be a local Noetherian ring, let
I be an ideal of R. If r(I) = 1, then F(I) is Cohen-Macaulay with minimal
multiplicity. Moreover the Hilbert function of F(I) is

1+ (=4t

HF(I)(t) = (1 _ t)li ’

where T denotes the minimal number of generators of I and ¢ the analytic
spread of I.

The Cohen-Macaulayness of F'(I) and the formula for the Hilbert function
in our case also follow from the results by Cortadellas-Zarzuela [1], Th. 4.2.
and Cor. 5.7. Now we are able to conclude:

Proposition 2.6. Let I C K|z1,...,%,,Y, 2] be the defining ideal of a projec-
tive monomial variety of codimension 2. Suppose I is not a complete intersec-

tion. Then the reduced essential ideal A coincides with the presentation ideal
J of the special fibre F(I).

11



PROOF. In [5], p. 117 it is proven that the Hilbert function of K[T]/A is

a0 =

Since £(I) = 3, it follows from 2.5 that F'(I) and K|[T]/A have the same Hilbert
function. But F'(I) is a quotient of K[T]/A. O

Note that 1.9 and 2.3 yield an explicit construction for a minimal reduction
of any ideal I,,. We perform such a construction in the next examples, where
I is throughout an ideal of K|xz,y, z, w] defining a projective monomial curve
in P3.

Examples 2.7. (a) Suppose I is minimally generated by 4 elements. Coudurier-
Morales [2] call this a monomial curve of type I. A system of generators is given
by

F1 — kal _ ynzm
— !
F2 — y7r—|—nwr r xk r za—|—m

— ! —
T+2n $2k T Zaw2l T

ZU—i—Qm

Fy=y

!
F4 — x"‘ yﬂ'wT _

where all the exponents are supposed to be nonnegative. The ideal J is the
ideal associated to the barred matrix

T

T, )

_ (T
e (
Thus a Noether normalization of K[T|r/Tnm is

AM = K[tl, tz, t3 —+ t4],
where t; denotes the image of the variable 7; via the localization at M. Let
J = (F1, Fy, F5 + Fy).

According to 2.3 the ideal Jy is a minimal reduction of I,,. Moreover note
that

F?=F\(F + F;) — F\F;,
F32 == Fg(F]_ + F3) - Fng,
and FiFy = 2" w? " F2 — "2 F2.

Hence J is a minimal reduction of I not only locally at M, but also globally.
In particular we have that r(I) = 1. The next example shows that this direct

12



passage from a local to a global reduction is not always possible: in general
the generators of the subalgebra A do not yield a global reduction.
(b) Consider the ideal I generated by the following 6 binomials:

Fy = 025 — g13y™

Fy = 18,2 _ p15%

F3 — y30212 - x17w25

Fy = g% — 2192
Fy = 2% — Sl

Fy = y'2w® — 22213,

The barred matrix associated to J is

(T3 1o |
N o ( T6 T2 T1 T5 ) '
Then
Ty | T3 | T;
Nl — 4 3 1 ’
( Ts | Ty | Ts

whence one obtains Ay = K[ty + t4,t3 + t5, t6] as a Noether normalization of
K[T\m/TIm- Let J = (Fy + Fy, F5 + Fy, Fg). Then Jy is a reduction of I,
but J is not a reduction of /. One can show that it even holds Rad(J) # I. A
reduction of I is given by

J,:((1+y6)F1+F47F3+F5aF6)'

We are not able to give the general form of three elements generating a
minimal reduction of the ideal I defining a projective monomial curve. The
problem was solved by Morales-Simis (cf. [12], Prop. 3.1.2) for projective mono-
mial curves lying on a quadric surface.

It was conjectured in [5] that the ideal of presentation of the Rees algebra
R|[It] is generated by forms of degree two at most. Now we are able to answer
the question. The crucial result is due to Huckaba-Huneke.

Theorem 2.8. ([10], Th. 2.9 and Th. 4.5) Let R be a Cohen-Macaulay local
ring and [ an ideal having height d > 1 and analytic spread £(I) = d + 1.
Assume that the minimal primes of R/I all have the same height, and the
associated primes of R/I have height at most d + 1. Assume also that I is
generically a complete intersection and there exists a minimal reduction J of
I such that 7;(Ig) < 1 for every prime ideal @ C I with codim(Q/I) = 1.
Finally assume that depth(R/I) > dim(R/I) — 1. Then the presentation ideal
of the Rees algebra R[It] of I is defined by elements of degree two at most.
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Moreover Peeva-Sturmfels (cf. [13], Th. 2.3), showed that
projdim (R/I) < 2¢°dim() _ 1,

In particular, if I is the defining ideal f a projective monomial variety of codi-
mension 2, by Auslander-Buchsbaum it holds

depth(R/I) = dim(R) — projdim (R/I) > dim(R) — 3 = dim(R/I) — 1.
In view of this inequality and 2.4 the ideal I fulfils all the assumptions of 2.8.

This proves:

Theorem 2.9. Let I C R be the defining ideal of a projective monomial variety
of codimension 2. Then the presentation ideal of the Rees algebra R[It] of I is
generated by forms of degree two at most.

Note that Gimenez (cf. [5], Th. 6.3.1) already showed 2.6 under the hy-
pothesis that 2.9 be true.
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