Margherita Barile¹

Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona 4 70125 Bari (ITALY)

MARCEL MORALES

Université de Grenoble I, Institut Fourier, Laboratoire de Mathématiques associé au CNRS, URA 188, B.P.74, 38402 Saint-Martin D'Hères Cedex, and IUFM de Lyon, 5 rue Anselme, 69317 Lyon Cedex (FRANCE)

Introduction

In this paper we consider a large class of coordinate rings of certain unions of projective scrolls. This class appears in several recent works studying properties of the special fibre F(I) of an ideal I in a local ring ([5], [6], and [7]). We prove that the reduction number of these algebras is always equal to one ([14]). We also prove that these reduced algebras are Cohen-Macaulay of minimal degree, so that the above assertion also follows from a theorem by [4]. Our methods, however, are constructive, and we can explicitly describe a Noether subalgebra. This can be used to find explicit reductions for the ideal I (see 2.7). As an application we describe the special fibre F(I) when I is the defining ideal of a projective monomial variety of codimension 2, and prove a conjecture contained in [5] and [6]: we show that the Rees algebra of I is defined by relations of degree two at most.

1 The ideal associated to a barred matrix

Let K be an algebraically closed field. Let $\underline{T} = \{T_a \mid 1 \le a \le n\}$ be a set of variables over K. We consider the following barred matrix:

$$\mathcal{N} = \left(B_1 \mid B_2 \mid \ldots \mid B_{s_1} \parallel B_{s_1+1} \mid \ldots \mid B_{s_2} \parallel \ldots \parallel B_{s_{r-1}+1} \mid \ldots \mid B_{s_r} \right),$$

where for all $\nu = 1, \ldots, s_r$,

$$B_{\nu} = \begin{pmatrix} T_{i_{\nu+1}} & T_{i_{\nu+2}} & \dots & \dots & T_{i_{\nu+1}} \\ T_{i_{\nu+2}} & T_{i_{\nu+3}} & \dots & T_{i_{\nu+1}} & T_{j_{\nu}} \end{pmatrix}.$$

¹Supported by an Institutional Fellowship from the Commission of the European Communities, Contract ERBCHBG CT 94-0540.

We call B_{ν} the ν -th small block of \mathcal{N} . For all $i=1,\ldots,r$, the submatrix

$$\mathcal{B}_i = \left(B_{s_{i-1}+1} \mid B_{s_{i-1}+2} \mid \dots \mid B_{s_i} \right)$$

will be called the *i*-th $big\ block$ of \mathcal{N} .

We suppose that different indices correspond to different variables, and that the entries of each big block are pairwise distinct. Moreover we assume that the indices j_{ν} are pairwise distinct and for all $\nu = 1, \ldots, s_r$, the index j_{ν} verifies one of the following two conditions:

- (i) $T_{j_{\nu}}$ does not appear anywhere else in the matrix \mathcal{N} , or
- (ii) there exists a unique μ , $\nu < \mu \leq s_r$, such that B_{ν} and B_{μ} belong to different big blocks and $T_{j_{\nu}} = T_{i_{\mu}+1}$.

In other words, all the entries of \mathcal{N} appear one time only, except for the last entry of the second row of each small block, which can appear a second time as the first entry of the first row of a small block belonging to one of the following big blocks.

Let J be the ideal of $K[\underline{T}]$ generated by the 2×2 -minors of every big block of \mathcal{N} and by every product T_aT_b , where T_a is in the first row of \mathcal{B}_i , and T_b is in the second row of \mathcal{B}_j for some indices i and j, i < j. The latter will be called transversal products.

The following result generalizes Proposition 5.1 in [7]. We refer to this paper for the proof.

Proposition 1.1. For all i, $1 \le i \le r$, let J_i be the ideal generated by the 2×2 -minors of the i-th big block, by the entries of the first rows of the big blocks with the indices $1, \ldots, i-1$, and by the entries of the second rows of the big blocks with the indices $i+1, \ldots, r$. Then

$$J = \bigcap_{i=1}^{r} J_i$$

is a primary decomposition of the ideal J.

We shall say that J is the *ideal associated to the barred matrix* \mathcal{N} . We introduce the following notation. For all i let M_i be the set of 2×2 -minors of the big block \mathcal{B}_i . Let P_i be the set of entries of the first rows of the big blocks $\mathcal{B}_1, \ldots, \mathcal{B}_{i-1}$ and D_i the set of entries of the second rows of the big blocks $\mathcal{B}_{i+1}, \ldots, \mathcal{B}_r$. Moreover, for all i let c_i be the number of columns of \mathcal{B}_i . One has that

$$\operatorname{codim}(M_i) = c_i - 1.$$

For the generalities on rational normal scrolls see [4] or [8].

Remark 1.2. Note that the ideal (M_i) defines a scroll not in \mathbf{P}^n , but in its space of immersion. The latter is the linear subspace of \mathbf{P}^n defined by the annulation of the variables in $P_i \cup D_i$.

Next we give some immediate properties of sets P_i and D_i , which will be useful in the proofs of the next results.

- (a) One has that $\emptyset = P_1 \subseteq P_2 \subseteq \cdots \subseteq P_r$, and $D_1 \supseteq D_2 \supseteq \cdots \supseteq D_r = \emptyset$.
- (b) $P_i \cap D_i = \emptyset$ for all $i = 1, \ldots, r$.

(c)
$$|P_{i+1}| = \sum_{j=1}^{i} c_j$$
, and $|D_i| = \sum_{j=i+1}^{r} c_i$, for all $i = 1, \dots, r-1$.

(d) $M_i \subseteq (D_{i-1})$, and $M_{i-1} \subseteq (P_i)$ for all $i = 2, \ldots, r$.

Corollary 1.3. Let c be the number of columns of \mathcal{N} . Then

$$\operatorname{codim} J_i = c - 1$$

for all i = 1, ..., c. In particular J is of pure codimension c - 1.

PROOF. By properties (b) and (c) one has that $P_i \cup D_i$ is a set of $c - c_i$ pairwise distinct variables. By construction of \mathcal{N} none of these appears in the minors lying in M_i . Thus codim $J_i = c_i - 1 + c - c_i = c - 1$ for all $i = 1, \ldots, r$.

Next we prove that J is connected in codimension 1. According to the definition given by Hartshorne [9], for an equidimensional ideal this property follows from the following condition:

$$\operatorname{codim}(J_k + \bigcap_{i=1}^{k-1} J_i) = \operatorname{codim} J_k + 1 \qquad \text{for } k = 1, \dots, r \qquad (*)$$

Proposition 1.4. The prime decomposition of J verifies condition (*).

PROOF. Let $k \in \{1, ..., r\}$. We show that

$$J_k + \bigcap_{i=1}^{k-1} J_i = (P_k, D_{k-1}).$$

Let

$$\widetilde{\mathcal{B}}_{k-1} = \left(B_1 \parallel \ldots \parallel B_{k-1} \right).$$

For all $i = 1, \ldots, k-1$ let

$$\widetilde{J}_i = (M_i, P_i, \Delta_{i+1}, \dots, \Delta_{k-1}),$$

i.e. the intersection of J_i with the subring generated by the entries of $\widetilde{\mathcal{B}}_{k-1}$. Note that

$$J_i = \tilde{J}_i + (D_{k-1})$$
 for $i = 1, ..., k-1$.

Applying 1.1 to $\widetilde{\mathcal{B}}_{k-1}$ one deduces that the intersection $\widetilde{J} = \bigcap_{i=1}^{k-1} \widetilde{J}_1$ is generated by M_1, \ldots, M_{k-1} and the transversal products of $\widetilde{\mathcal{B}}_{k-1}$. In particular $\widetilde{J} \subseteq (P_k)$. It follows that

$$J_k + \bigcap_{i=1}^{k-1} J_i = (M_k, P_k, D_k) + \widetilde{J} + (D_{k-1})$$

$$\subseteq (P_k, D_{k-1}),$$

where we used properties (a) and (d). Since the opposite inclusion is obvious, this suffices to conclude.

The ideal J has an another relevant property: for the details of the proof of the next results we again refer to [4] and [8].

Proposition 1.5. Let J be the ideal defined above. Then

$$\deg J = \operatorname{codim} J + 1.$$

PROOF. The degree of a rational normal scroll X is equal to the number of columns of the associated matrix. The degree is the same for all cylinders over X. Hence

$$\deg J_i = c_i$$

for all $i = 1, \ldots, r$, so that

$$\deg J = \sum_{i=1}^{r} \deg J_i = \sum_{i=1}^{r} c_i = c.$$

The claim then follows from 1.3.

The following definition is due to Vasconcelos:

Definition 1.6. ([15], Def. 1) Let R be a finitely generated standard algebra over K. Let

$$A = K[z_1, \dots, z_\ell] \hookrightarrow R$$

be a Noether normalization of R, and assume that all the z_i are of degree 1. Let $\{b_1, b_2, \ldots, b_s\}$ be a minimal set of homogeneous generators of R as an A-module. The number

$$r_A(R) = \max\{\deg b_i \mid i = 1, \dots, s\}$$

is called the reduction number of R with respect to A. The minimum of $r_A(R)$ taken over all possible Noether normalizations A of R is called the (absolute) reduction number of R.

From 1.4, 1.5 and [4], Th. 4.2 it follows

Proposition 1.7. Let \mathcal{N} be a barred matrix whose set of entries is a system \underline{T} of variables over the field K. Let J be the ideal of $K[\underline{T}]$ associated to \mathcal{N} . Then $K[\underline{T}]$ is Cohen-Macaulay and

$$r(K[\underline{T}]/J) = 1.$$

In the sequel we present an explicit construction of a Noether normalization of $K[\underline{T}]/J$. First of all we introduce the barred matrix \mathcal{N}' obtained by replacing the ν -th small block of \mathcal{N} with the column

$$\begin{pmatrix} T_{i_{\nu}+1} \\ T_{j_{\nu}} \end{pmatrix}.$$

We consider all sequences of the form

$$T_{i_{\nu_1}+1}, T_{j_{\nu_1}}, T_{j_{\nu_2}}, \dots, T_{j_{\nu_s}}$$
 $(1 \le \nu_1 < \nu_2 < \dots < \nu_s \le r)$

which verify the following conditions:

- (i) $T_{j_{\nu_k}} = T_{i_{\nu_{k+1}-1}+1}$, for all $k = 1, \dots, s$,
- (ii) the sequence is maximal with respect to (i).

Note that T_{j_1} is the only entry of \mathcal{N} that possibly does not appear in any of the above sequences. All the others occur one time exactly. We form the sum of the elements of each sequence:

$$\tau = T_{i_{\nu_1}+1} + \sum_{i=\nu_1}^{\nu_s} T_{j_i}.$$

Let \mathcal{L} be the set whose elements are all these sums, T_{j_1} if it does not appear in any of these sums, and all variables not appearing in \mathcal{N} .

Example 1.8. In the ring $K[T_1, \ldots, T_{11}]$ consider the barred matrix:

$$\mathcal{N} = \left(\begin{array}{cc|cc} T_1 & T_2 & T_3 & T_5 & T_6 \\ T_2 & T_3 & T_4 & T_6 & T_7 \end{array} \right\| \left. \begin{array}{cc|c} T_7 & T_9 \\ T_8 & T_{10} \end{array} \right).$$

Then

$$\mathcal{N}' = \left(\begin{array}{c|c} T_1 & T_5 & T_7 & T_9 \\ T_4 & T_7 & T_8 & T_{10} \end{array} \right).$$

In this case the elements of \mathcal{L} are:

$$T_1 + T_7 + T_{10}$$
, $T_5 + T_8$, T_4 , T_9 , T_{11}

Remarks and Notations

- (1) For every variable T_a appearing in \mathcal{N}' we shall denote:
 - by $\tau(T_a)$ the (unique) element of \mathcal{L} containing T_a ;
 - by $\tau(T_a)^-$ the sum of all terms of $\tau(T_a)$ that precede T_a and appear in the same big block of \mathcal{N} ;
 - by $\tau(T_a)^{--}$ the sum of the remaining terms of $\tau(T_a)$ preceding T_a .

In a similar way we define $\tau(T_a)^+$ and $\tau(T_a)^{++}$.

- (2) If a variable T_a only appears above (below) in \mathcal{N} , then it also appears in \mathcal{N}' , and it is the first (last) term of $\tau(T_a)$. This follows from condition (ii). Each of the remaining terms of $\tau(T_a)$ appears one time below and one time above. The variables not appearing in \mathcal{N}' are those appearing one time below and one time above in the same small block of \mathcal{N} .
- (3) Each of $\tau(T_a)^-$ and $\tau(T_a)^+$ contains one summand at most. More precisely we have that
 - $\tau(T_a)^- \neq 0$ if and only if $T_a = T_{j_{\nu}}$ for some ν , and the ν -th small block is not the first left in a big block;
 - $\tau(T_a)^+ \neq 0$ if and only if $T_a = T_{i_{\nu}+1}$ for some ν , and the ν -th small block is not the last right in a big block.

We are now ready to prove

Proposition 1.9. Let A be the sub-K-algebra of $K[\underline{T}]/J$ generated by the images mod J of the elements of \mathcal{L} . Then the image mod J of the set of variables \underline{T} generates $K[\underline{T}]/J$ as an A-module.

PROOF. For the sake of simplicity we shall keep the notation T_a for the image of T_a mod J. This will not cause any confusion, since in this proof all equalities will be written in $K[\underline{T}]/J$. It suffices to show that, for all entries T_a and T_b of \mathcal{N} , the product T_aT_b is an element of $\sum_i AT_i$. We shall throughout suppose that there exist two indices μ , ν such that T_a appears in the μ -th column, T_b appears in the ν -th column of \mathcal{N} , and $\mu \leq \nu$.

We distinguish between several cases. For the sake of clearness, we structure our proof according to the top-down numbering.

1. T_a and T_b belong to different big blocks.

In this case we shall say that T_b is right to T_a or that T_a is left to T_b .

1.1. T_a only appears below in \mathcal{N} .

Then T_a also appears in \mathcal{N}' and $\tau(T_a)^+ = \tau(T_a)^{++} = 0$.

1.1.1. T_b appears below in \mathcal{N} .

Since every term of $\tau(T_a)^{--}$ and $\tau(T_a)^{-}$ appears above in \mathcal{N}' , and is left to T_b , we have that $\tau(T_a)^{--}T_b = \tau(T_a)^{-}T_b = 0$. Hence

$$T_a T_b = \tau(T_a) T_b$$
.

1.1.2. T_b only appears above in \mathcal{N} .

Then T_b certainly appears in \mathcal{N}' , and $\tau(T_b)^{--} = \tau(T_b)^{-} = 0$. Thus

$$T_a T_b = \tau(T_b) T_a - \tau(T_b)^{++} T_a - \tau(T_b)^{+} T_a.$$

Since every term in $\tau(T_b)^{++}$ and $\tau(T_b)^{+}$ appears below, and is right to T_a , we can apply the result in 1.1.1. to the last two summands.

1.2. T_a appears above in \mathcal{N} .

1.2.1. T_b appears below in \mathcal{N} .

Then $T_a T_b = 0$.

1.2.2. T_b only appears above in \mathcal{N} .

Then T_b certainly appears in \mathcal{N}' , and $\tau(T_b)^{--} = \tau(T_b)^- = 0$. Since all terms of $\tau(T_b)^+$ and $\tau(T_b)^{++}$ appear below, and are right to T_a , one has that $T_a\tau(T_b)^+ = T_a\tau(T_b)^{++} = 0$, hence

$$T_a T_b = T_a \tau(T_b).$$

2. T_a and T_b belong to the same big block \mathcal{B} , but to different small blocks. The subcases 2.1, 2.2 and 2.3 correspond to three different steps of an algorithm. At each step we replace T_a and T_b by new entries \overline{T}_a and \overline{T}_b respectively, which also verify the assumption 2. Let s be the number of small blocks in \mathcal{B} . Suppose T_a and T_b appear in the α -th and in the β -th small block of \mathcal{B} respectively ($\alpha < \beta$). Let $\overline{\alpha}$ and $\overline{\beta}$ be the indices of the small blocks of \mathcal{B} occupied by \overline{T}_a and \overline{T}_b respectively.

2.1 T_a appears above and T_b appears below in \mathcal{B} .

Consider the following submatrix of \mathcal{B} :

One has that

$$0 = \left| \begin{array}{cc} T_a & T_{b'} \\ T_{a'} & T_b \end{array} \right| = T_a T_b - T_{a'} T_{b'},$$

and

$$0 = \begin{vmatrix} T_{a'} & T_{b''} \\ T_{a''} & T_{b'} \end{vmatrix} = T_{a'} T_{b'} - T_{a''} T_{b''}.$$

Finally

$$T_a T_b = T_{a^{\prime\prime}} T_{b^{\prime\prime}}.$$

Hence the problem is reduced to finding the required representation for $T_{a''}T_{b''}$. Take $\bar{T}_a = T_{a''}$, and $\bar{T}_b = T_{b''}$. If $T_{a''} = T_c$ apply 2.2, if $T_{b''} = T_d$, apply 2.3. Otherwise apply 2.1. once again.

2.2. T_a only appears below in \mathcal{B} .

In this case T_a appears in \mathcal{N}' and $\tau(T_a)^+ = 0$. Hence

$$T_a T_b = \tau(T_a) T_b - \tau(T_a)^{--} T_b - \tau(T_a)^{++} T_b - \tau(T_a)^{-} T_b.$$

Note that all terms of $\tau(T_a)^{--}$ and $\tau(T_a)^{++}$ appear in a big block different from \mathcal{B} . Hence the required representation for the second and the third summand can be found according to 1. Thus it suffices to consider the last term. If $\alpha = 1$, then $\tau(T_a)^- = 0$ and we are done. Otherwise take $\bar{T}_a = \tau(T_a)^-$ and $\bar{T}_b = T_b$. Then $\bar{\alpha} = \alpha - 1$, and $\bar{\beta} = \beta$. Apply 2.1 or 2.3. to $\bar{T}_a\bar{T}_b$. This is possible, since $\tau(T_a)^-$ certainly appears above.

2.3 T_b only appears above in \mathcal{B} .

An argument similar to that developped in 2.2 permits us to reduce the problem to the product $T_a\tau(T_b)^+$. If $\beta=s$, then $\tau(T_b)^+=0$ and we are done. Otherwise take $\bar{T}_a=T_a$ and $\bar{T}_b=\tau(T_b)^+$. Then $\bar{\alpha}=\alpha$, and $\bar{\beta}=\beta+1$. Apply 2.1 or 2.2 to $\bar{T}_a\bar{T}_b$.

It is clear that the above algorithm stops after a finite number of steps, when either T_a is the leftmost entry of the upper row of \mathcal{B} , or T_b is the rightmost entry of the lower row of \mathcal{B} .

3. T_a and T_b appear in the same small block B of \mathcal{N} .

3.1 T_a or T_b appears in \mathcal{N}' .

Suppose that T_a appears in \mathcal{N}' . Then

$$T_a T_b = \tau(T_a) T_b - \tau(T_a)^{--} T_b - \tau(T_a)^{++} T_b - \tau(T_a)^{-} T_b - \tau(T_a)^{+} T_b.$$

The four last terms are sums of products $T_{a'}T_b$, where $T_{a'}$ appears in a different small block with respect to T_b . Hence 1 or 2 can be applied to each of these products.

3.2 T_a and T_b do not appear in \mathcal{N}' .

First suppose $T_a = T_b$. Note that T_a is not the leftmost element of the first row of B. Hence the block B has the following minor:

$$0 = \begin{vmatrix} T_{a'} & T_a \\ T_a & T_{a''} \end{vmatrix} = T_{a'} T_{a''} - T_a^2.$$

Thus we may assume $T_a \neq T_b$. Then the block B is of one of the following forms:

(a)
$$B = \begin{pmatrix} \dots & T_{a'} & T_a & T_b & \dots \\ \dots & T_a & T_b & T_{b'} & \dots \end{pmatrix}$$

or

(b)
$$B = \begin{pmatrix} T_c & \dots & T_{a''} & T_a & \dots & T_b & T_{b''} & \dots \\ \dots & T_{a''} & T_a & \dots & T_b & T_{b''} & \dots & T_d \end{pmatrix}.$$

In case (a) it holds $T_aT_b = T_{a'}T_{b'}$. If $T_{a'}$ is in the first column, then $T_{a'}$ appears in \mathcal{N}' , and we are back in 3.1. The same is true if $T_{b'}$ is in the last column. Otherwise we are in case (b). In this case $T_aT_b = T_{a''}T_{b''}$. Reapply this identity successively to move the first factor to the left, the second to the right. After a finite number of steps the we end up with a product where the first factor is T_c , or the second id T_d . Since T_c and T_d both appear in \mathcal{N}' , we are back in 3.1.

Corollary 1.10. If d is the cardinality of \mathcal{L} , then d = n - c + 1 and dim $K[\underline{T}]/J = d$. In particular, A is a Noether normalization of $K[\underline{T}]/J$.

PROOF. From 1.3 it follows that

$$\dim R/J = n - c + 1,$$

where n is the number of variables. Thus it suffices to show that d = n - c + 1. Now let V be the set of all variables appearing below in \mathcal{N} : its cardinality is obviously equal to the number c of columns. Let \bar{V} denote its complementary set. Let F be the set of the first terms of the sums in \mathcal{L} . By construction it is clear that $F = \bar{V} \cup T_{i_1}$. But the cardinality of F is d. Hence d = n - c + 1.

2 Projective monomial varieties of codimension 2

Proposition 1.9 can be applied to the study of the special fibre of a projective monomial variety of codimension 2: see [5] for a complete and detailed presentation of this subject. We first quote the basic notions and the main results from [6].

Let R be the polynomial ring in n+2 indeterminates over the field K. Let I be an ideal minimally generated by τ elements $\{F_i\}_{1\leq i\leq \tau}$. The R ees algebra of I is defined to be the graded ring $R[It] = \bigoplus_{n\geq 0} I^n t^n$, and the special fibre is the quotient $R[It]/\mathcal{M}R[It]$, where \mathcal{M} denotes the irrelevant maximal ideal of R. The dimension of the special fibre is called the analytic spread of I and is denoted by $\ell(I)$. We introduce τ independent variables over R, say $\underline{T} = \{T_i\}_{1\leq i\leq \tau}$, and we consider the ideal $\mathcal{J} = \ker\{R[\underline{T}] \to R[It] \to 0, T_i \to F_i t\}$. We obtain a presentation $R[It] \simeq R[\underline{T}]/\mathcal{J}$ of the Rees algebra, from which we can deduce a presentation of the special fibre: $R[It]/\mathcal{M}R[It] \simeq K[\underline{T}]/\widetilde{\mathcal{J}}$, where $\widetilde{\mathcal{J}}$ denotes the image of \mathcal{J} modulo $\mathcal{M}R[\underline{T}]$.

The ideal J is called a reduction of I if $JI^n = I^{n+1}$ for some nonnegative integer n. Let $r_J(I)$ denote the least number n such that the above equality holds. Then the (absolute) reduction number of I is defined to be the minimum of $r_J(I)$ taken over all possible reductions J of I.

Let us place ourselves in the case where I is the defining ideal of a toric variety admitting the following parametrization:

$$x_1 = u_1^{a_1}, \ x_2 = u_2^{a_2}, \ \dots, \ x_n = u_n^{a_n}, \ y = u_1^{c_1} u_2^{c_2} \cdots u_n^{c_n}, \ z = u_1^{b_1} u_2^{b_2} \cdots u_n^{b_n},$$

where, for all i, $1 \le i \le n$, a_i , b_i and c_i are nonnegative integers such that $a_i \ne 0$, $(b_i, c_i) \ne (0, 0)$, and $(b_1, \ldots, b_n) \ne (0, \ldots, 0)$, $(c_1, \ldots, c_n) \ne (0, \ldots, 0)$. We call this a projective monomial variety of codimension 2.

It is known that in general $\operatorname{codim}(I) \leq \ell(I)$, and equality holds for I a prime ideal if and only if I is a complete intersection. In [6] the number $\ell(I)$

was determined for all defining ideals I of a codimension 2 monomial variety, in spite of the fact that no complete description of the ideal $\widetilde{\mathcal{J}}$ was known yet. The approach, indeed, is indirect: the computations are done on a subideal $\widetilde{\mathcal{A}} \subseteq \widetilde{\mathcal{J}}$, generated in degree two, called reduced essential ideal. It turns out that dim $R[\underline{T}]/\widetilde{\mathcal{A}} = 3$ (cf. [5], Cor. 5.26.1). This immediately implies the following result:

Theorem 2.1. ([6], Th. 4.2). The analytic spread of I is equal to two if I is an complete intersection, equal to three in all the remaining cases.

2.1.1. The ideal $\widetilde{\mathcal{A}}$ is always generated by monomials and binomials, with the exception of a very particular case, that is treated separatedly ([5], Prop. 5.18.1). In this case $\tau = 4$ and

$$\widetilde{\mathcal{A}} = (T_0 T_1 - T_2^2 - T_3^2) \subseteq K[T_0, T_1, T_2, T_3].$$

One easily sees that

$$K[T_0, T_1, T_2] \subseteq K[T_0, T_1, T_2, T_3] / \widetilde{\mathcal{A}}$$

is a Noether normalization and that the reduction number is 1. In the general case $\widetilde{\mathcal{A}}$ is the ideal associated to a barred matrix \mathcal{N} whose big and small blocks coincide: see [5], [6] or [11] for an explicit construction. We shall use our results to prove that in the general case $\widetilde{\mathcal{A}} = \widetilde{\mathcal{J}}$, i.e. the special fibre of I is entirely generated by the quadratic relations. We need the following preliminary

Lemma 2.2. Let R be a finitely generated K-algebra, J an ideal of R and $\varphi: R \to R/J$ the canonical epimorphism. Moreover let $A \subseteq R$ be a Noether normalization of R. If dim $R = \dim R/J$, then A is a Noether normalization of R/J with respect to the restriction $\varphi|_A$.

PROOF. We consider the A-module structure defined on R/J by $\varphi|_A$. Since φ is a finite A-homomorphism, the same is true for $\varphi|_A$. Thus it suffices to prove that $\varphi|_A$ is an injection. Now $\mathcal{K} := \ker(\varphi|_A) = \ker(\varphi) \cap A$, and the map $\varphi|_A$ induces a finite monomorphism of rings

$$A/\mathcal{K} \longrightarrow R/J$$
.

Thus $\dim(R/J) = \dim(A/K)$. But the left-hand side is equal to $\dim R = \dim A$. Thus the preceding equality is only possible if K = 0.

Let us fix a monomial variety of codimension 2, with defining ideal I, which is not a complete intersection and does not belong to the particular case. We shall refer to the notation just introduced. Proposition 1.10 permits us to determine a Noether normalization A of the quotient $R[\underline{T}]/\tilde{\mathcal{A}}$. Consider the composition of maps

$$A \hookrightarrow R[\underline{T}]/\widetilde{\mathcal{A}} \longrightarrow R[\underline{T}]/\widetilde{\mathcal{J}},$$

where the right map is the canonical epimorphism. The equality of dimensions and 2.2 imply that A is a Noether normalization of $R[\underline{T}]/\widetilde{\mathcal{J}}$ with respect to the composed map. Since $R[\underline{T}]/\widetilde{\mathcal{A}}$ is generated by linear forms as an A-module, the same is true for its quotient $R[\underline{T}]/\widetilde{\mathcal{J}}$.

For the rest of this section we consider the local ring $R_{\mathcal{M}}$. The notions of Rees algebra, special fibre and reduction naturally extend to this local ring. The above results apply to $R_{\mathcal{M}}$ and to the localized ideals and subrings. The following result is due to Vasconcelos:

Proposition 2.3. ([14], Prop. 5.1.3) Let (R, \mathcal{M}, K) be a local Noetherian ring with infinite residue field, I an ideal of R of analytic spread ℓ . Suppose

$$A = K[z_1, \dots, z_\ell] \hookrightarrow F(I)$$

is a Noether normalization of the special fibre F(I), and assume that all the z_i are of degree 1. Furthermore let $\{b_1, \ldots, b_s\}$ be a minimal set of homogeneous generators of F(I) as an A-module. For all $i = 1, \ldots, \ell$, let $a_i \in I$ be a lift of z_i . Then $J = (a_1, \ldots, a_\ell)$ is a (minimal) reduction of I and

$$r_J(I) = \max\{\deg b_i \mid i = 1, \dots, s\}.$$

Putting the above results together one immediately obtains the following Corollary 2.4. With respect to the notation introduced in 2.1.1 it holds:

$$r(I_{\mathcal{M}})=1.$$

Next consider the following result by D'Cruz, Raghavan and Verma:

Proposition 2.5. ([3], Cor. 2.2) Let (R, \mathcal{M}) be a local Noetherian ring, let I be an ideal of R. If r(I) = 1, then F(I) is Cohen-Macaulay with minimal multiplicity. Moreover the Hilbert function of F(I) is

$$H_{F(I)}(t) = \frac{1 + (\tau - \ell)t}{(1 - t)^{\ell}},$$

where τ denotes the minimal number of generators of I and ℓ the analytic spread of I.

The Cohen-Macaulayness of F(I) and the formula for the Hilbert function in our case also follow from the results by Cortadellas-Zarzuela [1], Th. 4.2. and Cor. 5.7. Now we are able to conclude:

Proposition 2.6. Let $I \subseteq K[x_1, \ldots, x_n, y, z]$ be the defining ideal of a projective monomial variety of codimension 2. Suppose I is not a complete intersection. Then the reduced essential ideal $\widetilde{\mathcal{A}}$ coincides with the presentation ideal $\widetilde{\mathcal{J}}$ of the special fibre F(I).

PROOF. In [5], p. 117 it is proven that the Hilbert function of $K[\underline{T}]/\widetilde{\mathcal{A}}$ is

$$H_{\tilde{\mathcal{A}}}(t) = \frac{1 + (\tau - 3)t}{(1 - t)^3}.$$

Since $\ell(I) = 3$, it follows from 2.5 that F(I) and $K[\underline{T}]/\widetilde{\mathcal{A}}$ have the same Hilbert function. But F(I) is a quotient of $K[\underline{T}]/\widetilde{\mathcal{A}}$.

Note that 1.9 and 2.3 yield an explicit construction for a minimal reduction of any ideal $I_{\mathcal{M}}$. We perform such a construction in the next examples, where I is throughout an ideal of K[x, y, z, w] defining a projective monomial curve in \mathbf{P}^3 .

Examples 2.7. (a) Suppose I is minimally generated by 4 elements. Coudurier-Morales [2] call this a monomial curve of type I. A system of generators is given by

$$F_{1} = x^{k}w^{l} - y^{n}z^{m}$$

$$F_{2} = y^{\pi+n}w^{r-l} - x^{k-r'}z^{\sigma+m}$$

$$F_{3} = y^{\pi+2n} - x^{2k-r'}z^{\sigma}w^{2l-r}$$

$$F_{4} = x^{r'}y^{\pi}w^{r} - z^{\sigma+2m}$$

where all the exponents are supposed to be nonnegative. The ideal $\widetilde{\mathcal{J}}$ is the ideal associated to the barred matrix

$$\mathcal{N} = \left(\begin{array}{c|c} T_3 & T_2 \\ T_2 & T_4 \end{array} \right).$$

Thus a Noether normalization of $K[\underline{T}]_{\mathcal{M}}/\mathcal{J}_{\mathcal{M}}$ is

$$A_{\mathcal{M}} = K[t_1, t_2, t_3 + t_4],$$

where t_i denotes the image of the variable T_i via the localization at \mathcal{M} . Let

$$J = (F_1, F_2, F_3 + F_4).$$

According to 2.3 the ideal $J_{\mathcal{M}}$ is a minimal reduction of $I_{\mathcal{M}}$. Moreover note that

$$F_1^2 = F_1(F_1 + F_3) - F_1F_3,$$

$$F_3^2 = F_3(F_1 + F_3) - F_1F_3,$$
and
$$F_1F_3 = x^{r'}w^{2l-r}F_2^2 - y^{\pi}z^{\sigma}F_0^2.$$

Hence J is a minimal reduction of I not only locally at \mathcal{M} , but also globally. In particular we have that r(I) = 1. The next example shows that this direct

passage from a local to a global reduction is not always possible: in general the generators of the subalgebra A do not yield a global reduction.

(b) Consider the ideal I generated by the following 6 binomials:

$$\begin{split} F_1 &= y^6 z^{38} - x^{13} w^{31} \\ F_2 &= y^{18} z^{25} - x^{15} w^{28} \\ F_3 &= y^{30} z^{12} - x^{17} w^{25} \\ F_4 &= y^{42} - z x^{19} w^{22} \\ F_5 &= z^{51} - y^6 x^{11} w^{34} \\ F_6 &= y^{12} w^3 - x^2 z^{13}. \end{split}$$

The barred matrix associated to \mathcal{J} is

$$\mathcal{N} = \left(\begin{array}{c|c} T_4 & T_3 & T_2 & T_1 \\ T_6 & T_2 & T_1 & T_5 \end{array} \right).$$

Then

$$\mathcal{N}' = \left(\begin{array}{c|c} T_4 & T_3 & T_1 \\ T_6 & T_1 & T_5 \end{array} \right),$$

whence one obtains $A_{\mathcal{M}} = K[t_1 + t_4, t_3 + t_5, t_6]$ as a Noether normalization of $K[\underline{T}]_{\mathcal{M}}/\widetilde{\mathcal{J}}_{\mathcal{M}}$. Let $J = (F_1 + F_4, F_3 + F_5, F_6)$. Then $J_{\mathcal{M}}$ is a reduction of $I_{\mathcal{M}}$, but J is not a reduction of I. One can show that it even holds $\mathrm{Rad}(J) \neq I$. A reduction of I is given by

$$J' = ((1+y^6)F_1 + F_4, F_3 + F_5, F_6).$$

We are not able to give the general form of three elements generating a minimal reduction of the ideal I defining a projective monomial curve. The problem was solved by Morales-Simis (cf. [12], Prop. 3.1.2) for projective monomial curves lying on a quadric surface.

It was conjectured in [5] that the ideal of presentation of the Rees algebra R[It] is generated by forms of degree two at most. Now we are able to answer the question. The crucial result is due to Huckaba-Huneke.

Theorem 2.8. ([10], Th. 2.9 and Th. 4.5) Let R be a Cohen-Macaulay local ring and I an ideal having height $d \geq 1$ and analytic spread $\ell(I) = d+1$. Assume that the minimal primes of R/I all have the same height, and the associated primes of R/I have height at most d+1. Assume also that I is generically a complete intersection and there exists a minimal reduction I of I such that $r_I(I_Q) \leq 1$ for every prime ideal $Q \subseteq I$ with $\operatorname{codim}(Q/I) = 1$. Finally assume that $\operatorname{depth}(R/I) \geq \dim(R/I) - 1$. Then the presentation ideal of the Rees algebra R[It] of I is defined by elements of degree two at most.

Moreover Peeva-Sturmfels (cf. [13], Th. 2.3), showed that

$$\operatorname{projdim}(R/I) \leq 2^{\operatorname{codim}(I)} - 1.$$

In particular, if I is the defining ideal f a projective monomial variety of codimension 2, by Auslander-Buchsbaum it holds

$$\operatorname{depth}(R/I) = \dim(R) - \operatorname{projdim}(R/I) \ge \dim(R) - 3 = \dim(R/I) - 1.$$

In view of this inequality and 2.4 the ideal I fulfils all the assumptions of 2.8. This proves:

Theorem 2.9. Let $I \subseteq R$ be the defining ideal of a projective monomial variety of codimension 2. Then the presentation ideal of the Rees algebra R[It] of I is generated by forms of degree two at most.

Note that Gimenez (cf. [5], Th. 6.3.1) already showed 2.6 under the hypothesis that 2.9 be true.

ACKNOWLEDGEMENT

The first author is indebted to the Institut Fourier of the University of Grenoble for hospitality and support during the preparation of this paper.

References

- [1] T. Cortadellas, S. Zarzuela, On the Depth of the Fiber Cone of Filtrations. Preprint.
- [2] L. Coudurier, M. Morales, Classification des courbes toriques dans l'espace projectif, module de Rao et liaison. Preprint.
- [3] C. D'Cruz, K.N. Raghavan, J.K. Verma, Cohen-Macaulay Fiber Cones. Preprint.
- [4] D. Eisenbud, S. Goto, Linear Free Resolutions and Minimal Multiplicity, J. Algebra 88 (1984), 89–133.
- [5] Ph. Gimenez, "Étude de la fibre spéciale de l'éclatement d'une variété monomiale en codimension deux". Dissertation, Univ. of Grenoble, 1993.
- [6] Ph. Gimenez, M. Morales, A. Simis, L'analytic spread de l'idéal de définition d'une variété monomiale de codimension deux est toujours inférieur ou égal à trois, C.R. Acad. Sci. Paris 319 (I) (1994), 703– 706.

- [7] Ph. Gimenez, M. Morales, A. Simis, The analytic spread of certain toric varieties of codimension two. Preprint.
- [8] J. Harris, "Algebraic Geometry," Springer Verlag, New York, 1992.
- [9] R. Hartshorne, Complete intersections and connectedness, *Amer.J. Math.* **96** (1974), 602-639.
- [10] S. Huckaba, C. Huneke, Powers of ideals having small analytic deviation, Amer. J. Math. 144 (1992), 367–403.
- [11] M. Morales, Équations des variétés monomiales en codimension deux, J. Algebra 175 (1995), 1082–1095.
- [12] M. Morales, A. Simis, Symbolic powers of monomial curves in \mathbf{P}^3 lying on a quadric surface, *Comm. in Algebra* **20** (1992), 1109–1121.
- [13] I. Peeva, B. Sturmfels, Syzygies of codimension 2 lattice ideals. Preprint.
- [14] W. Vasconcelos, "The arithmetic of Blowup Algebras," LMS 195, Cambridge University Press 1994.
- [15] W. Vasconcelos, The reduction number of an algebra, *Compositio Math.* **104** (1996), 189–197.