Optimal Regularity for d;, on CR manifolds
by Moulay Youssef Barkatou

Abstract. In this paper an explicit integral formula is derived for solutions of the tangential
Cauchy-Riemann equations on CR ¢- concave manifolds, and best possible estimates are obtained.

0. Introduction

The aim of this paper is to prove the following theorem:

THEOREM 0.1 Let M be a g-concave CR generic submanifold (cf.sect 1.2) of codi-
mension k and of class C***(resp. C3**) in €™ (¢ > 0) and zpa point in M. Then
there exist an open neighborhood My C M of zg and kernels R,.((,2), forr =0,...,q—
1,n—k—gq,...,n—k, with the following properties,

(i) For every domain Q CC My with piecewise C! boundary and every C' (0,r)-
form f on Q 0O<r<q—-1lorn—k—-q+1<r<n-—k), we have

f=5b/f/\RT71—/5bf/\Rr+ AR,
Q Q bQ

on .
(ii) For every open set Q CC My the integral operator fQ -AR, is a bounded
1
linear operator from W(f”ffrl(ﬂ) (cf.sect 1.1) to Cé?:g(Q) forr > n —k — q (resp.
r<q-—1).

This theorem has the following interesting Corollary

COROLLARY 0.2 Let M be a 1-concave CR generic C3+_submanifold of a complex
manifold. Let T be a distribution of order 0 on M. If 0T is defined by a Ct (0,1)-form
on M then T is defined by a cts- function on M.

The importance of Corollary 0.2 lies in the fact that under the hypothesis of 1-
concavity the tangential Cauchy-Riemann equation for (0,1)-currents cannot be solved
locally (see [3]).

Corollary 0.2 improves a result which was obtained by the author in [5](see also
a related result given by Henkin and Airapetjan in [2], theorem 1) where he proved
3 — €(resp. 5% — e)Holder regularity for 9, when M is of class C*(resp.C?). We don’t
know how to avoid the loss of regularity in the C2-case even for hypersurfaces.

The study of the tangential Cauchy-Riemann equations with the use of explicit inte-
gral formulas was initiated by Henkin [11](see also [1] and [2]). For further references
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and results on CR manifolds we refer the reader to the survey of Henkin[12] and the
book of Boggess[7].

It is known that a fundamental solution for the O;, operator on certain hyper-
surfaces (see Henkin [13], Harvey-Polking[10], Boggess|7],Fischer-Leiterer[9]) can be
constructed as the jump of two kernels, obtained by applying to the usual Bochner-
Martinelli-Koppelman kernel (BMK kernel) in €™, a solution operator for 9, once on
the left and once on the right hand side of the hypersurface.

Solutions for such equations can be given by applying the generalized Koppelman
(cf.section 1.3) to the BMK section and the barrier functions of the hypersurface as was
done in [13], [10] and [7] or by using a homotopy operator for d of Grauert-Lieb-Henkin
type as in [9)].

Inspired by the definition of a hyperfunction of several variables, the present author
generalized in [5] the construction of Fischer/Leiterer [9]to higher codimensional CR
submanifolds by solving some 8 equations on certain wedges attached to such manifolds
with the use of & homotopy operators from [16] and [17].

In this paper we shall show that such equations can also be solved up to some error
terms by using the Koppelman lemma (see (2.2)) and the key idea in this work is
to "deform” via this lemma those error terms into ones with vanishing coefficients for
some bidegrees (see lemmas 2.2 and 2.3), the strict g-convexity plays here an important
role.

We shall give two fundamental solutions to the tangential Cauchy-Riemann complex.
The first one (cf.sect 2.1) does not yield sharp estimates for the solutions of 9}, (when
k > 1) but is a "necessary” step to construct the second one (cf. sect 2.2) corresponding
to kernels R,.. To derive the latter fundamental solution from the former, we shall use
an idea of Henkin [13].

In [8] B.Fischer proved Theorem 0.1 and Corollary 0.2 for hypersurfaces by using a
version of the first fundamental solution.

Recently, Polyakov [20] proved sharp estimates for global solutions of 8}, on g-concave
CR manifolds, in Lipschitz spaces of Stein [21].

POLYAKOV’S THEOREM Let M be a q-concave CR generic C*-submanifold in C"
with ¢ > 2 and let M' be a relatively compact open subset of M. Then for any
r=1,...,q — 1 there exist linear operators

R, : Liy 5 (M) = T3

ot (M) and H, : Lo (M) = L, ., (M)

such that for any s € [1,00] R, is bounded and H, is compact and such that for any
differential form f € CE’&T)(M ) the following equality:

f(2) = Ou R (f)(2) + Rry1(On f) (2) + Hr (f)(2)
holds for z € M'.

Our method is quite different from that of Polyakov, and it is not clear how one can
get an analogous result to Corollary 0.2 from Polyakov’s theorem.

This paper is organized as follows. In section 1.2 we give the definition of a g-concave
CR manifold and we define the 8y, operator. In section 1.3 we recall the generalized
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Koppelman lemma which plays a key role in the construction of our kernels. In section
1.4 we recall the construction of a barrier function and a Leray map for a hypersurface
at a point where the Levi form has some positive eigenvalues. In section 1.5 we state
some elementary facts from Algebraic Topology, which we shall use later. Section 2.1
is devoted to the construction of our first fundamental solution. In section 2.2 we
construct our second fundamental solution and in section 3 we prove estimates for our
kernels.

1. Preliminaries and notations

1.1. Let X be a complex manifold, and M a real submanifold of X .

Let f be a differential form of degree m defined on a domain D C M. Then we
denote by ||f(2)||,z € D, the Riemannian norm of f at z (cf.[15], section 0.4), and we
set

I fllo,p = sup || £(2)]l
z€D
and

1£(z) = F(Ol

1l = 1l +sup B2
2#¢

for0<a<l1.
If0<a<1,then aform on D is called a-Holder continuous on D if

[[£lla, 5 < 00.

for all compact sets K C D.

If [ is a non-negative integer and 0 < a < 1, then we say f is a C**® form on D if f
is of class C! and all derivatives of order < I of f are a-Hélder continuous on D.

W (D) is the space of all C-forms such that all derivatives up to order £ belong
to L (D).

1.2. Let M be a real submanifold of class C? in C" defined by
M={z€Q/p(z)=---=pp(z) =0} 1<k<n (1.1)

where  is an open subset of C™ and the functions p,, 1 < v < k, are real-valued
functions of class C2 on  with the property dp;(z) A--- Adpy(z) # 0 for each z € M.
We denote by T (M) the complex tangent space to M at the point z € M i.e.,

T My ={ce /S 2Py = 0,0 =1,... k).
J

—1 62’]'

We have dim¢ T (M) > n — k. The submanifold M is called a Cauchy-Riemann
manifold (C R-manifold) if the number dimg T (M) does not depend on the point
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point z € M. M is said to be CR generic if for every z € M, dimg TS (M) =n —k ,
this is equivalent to :
Opr ANOpa N---NOpr #0on M. (1.2)

If M is CR generic , we call M g-concave, 0 < ¢ < "2;’“, if for each z € M and every
z € R\ {0} the following hermitian form on TC (M)

5ot ()Gala, where pe = 2y + -z

has at least ¢ negative eigenvalues.

If M is C'R generic then we denote by C, ,.(M) the space of differential forms of type
(p,r) on M which are of class C°. Here, two forms f and g in C (M) are considered
to be equal if and only if for each form ¢ € C>° P w—r(Q) of compact support, we
have

/Mf/\w:/Mg/\go.

We denote by L’,(,}S)(M ) the dual space to C2 (M).

n—p,n—k—r
We define the tangential Cauchy-Riemann operator on forms in 5((];8) (M) as follows.
If u € C§ (M), s > 1, then u can be extended to a smooth form @ € C3 .(€2) and we
may set

gbu = 5’11|M

It follows from the condition for equality of forms on M that this definition does not
depend on the choice of the extended form 4. In general, for for forms u € Lé;s_)l(M )
and f € £§,” (M), by definition,

gbu = f

will mean that for each form ¢ € C° () of compact support we have

/Mf/\cp: (—l)T/Mu/\gcp.

1.3. The generalized Koppelman lemma. In this section we recall a formal
identity ( the generalized Koppelman lemma) which is essential for the construction
of our kernels. The exterior calculus we use here was developed by Harvey -Polking
in [10].

Let V be an open set of C™ x C". Suppose G : V — C" is a C*® map. We write

G(C7 Z) = (gl (CJ Z), s 7gn(C7 Z))

and we use the following notation

G(G,2)-(C—2) =D 9i(62) (G — %)
j=1
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G((,2).d(¢—2) = g;(¢,2)d(G — 2))
j=1

8;,:G(¢,2).d(¢—2) = Zgg,zgj(g, 2)d(¢; — z5)
j=1

where 0¢, = 0¢ + 0.
We define the Cauchy-Fantappie form w® by
(.UG — G(CJ z)d(( B Z)
G((,2)-(C—2)
on the set where G((,2).(C — 2) # 0.
Given m such maps, G7, 1 < j < m, we define the kernel
QG,...,G™ =w A AW A 3 @cwC) AL A (@)

a1~+...+am=n—m

on the set where all the denominators are nonzero.

LEMME 1.1. (The generalized Koppelmann lemma)

3¢ QG,...,G™) =3 (-1)Q(GY,...,Gi,...,G™)

Jj=1

m

on the set where the denominators are nonzero, the symbol Gi means that the term
GY is deleted.
The following lemma is useful for the estimation of the kernel defined above.

LEMME 1.2. Fork >0

5 G(¢,2)-d(C —2) , (0cG.d(C — =)\
WA (B¢ ,w)k = ’ A :
o e ) G ),
For a proof of these two lemmas we refer the reader to [10] or [7].
It follows from Lemma 1.2 that for B = ( — z , Q(B) is the classical Martinelli-
Bochner Koppelman kernel in C™.

1.4. Barrier function. In this section, we shall construct a barrier function for a
hypersurface at a point where the Levi form has some positive eigenvalues.
For a detailed proof of what follows we refer the reader to sect.3 in [16].
Let H be an oriented real hypersurface of class C? in C" defined by

H={z¢€Q/p(z) =0}

where Q is an open subset of €™ and p is a real-valued function of class C? on Q with
dp(z) # 0 for each z € H.



Denote by F(+,{) the Levi polynomial of p at a point { € 2, i.e.

noog2

—22 5 G = D G G )G =
(e zeCm.

Let 2° € H and T be the largest vector subspace of C™ such that the Levi form of
p at 20 is positive definite on 7. Set dimT = d and suppose d > 1.

Denote by P the orthogonal projection from C™ onto T', and set ) = I — P. Then it
follows from Taylor’s theorem that there exist a number R and two positives constants
A and a such that the following holds:

Re F(2,€) > p(C) = p(2) +al¢ — 2> = A|Q(¢ — 2) (1.3)
for |2° — (| < R and |2° — z| < R. _
Since p is of class C2 on Q , We can find C* functions a*/(k,j = 1,...,n) on a

neighborhood U of 2° such that

3%p({)

for all ( € U. And then we have

= ; &p(¢) a
ati(() — 2 Yt | < |t

Py (4€) - 5ege Jwti| < 51

forall( e U andt € C™. Set
)=2) %(Cj —z) = Y a(O(¢ — ) (G — 2)
7j=1
for (2,¢) € C" x U.Then it follows from (1.3) that

Re F(¢,2) 2 p(Q) = p(2) + 510 — 2" = A1QEC — )P (14)

for [2° — (| < Rand |2° — 2| < R.
Denote by Q; the entries of the matrix @ i.e

Q= (ij):jzl (k= column index).
We set for (2,{) e C" xU

9;(¢,2) =298 — YR akI(0)(Gr — 2k) + A Xy @i (G — 21)
G(C,Z) = (gl(Ca )77"';7.9"(472))
®(¢,2) =G((2)-(C—2).

Since @ is an orthogonal projection, then we have

8(¢,2) = F((,2) + A|Q(C — 2)?
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And then it follows from (1.4) that
a
Re((,2) > plQ) — p(z) + 21 — 2 (15)

for [2° — (| < R and |2° — 2| < R.
G is called a Leray map and @ is called a barrier function of H(or p) at 2°.

DEFINITION— A map f defined on some complex manifold X will be called k-
holomorphic if, for each point §€ € X, there exist holomorphic coordinates hy, ..., hg
in a neighborhood of & such that f is holomorphic with respect to hy, ..., hg.

LEMMA 1.3. For every fized ( € U, the map G((,z) and the function ®, defined
above, are d-holomorphic in z € C".
Proof. Choose complex linear coordinates hq,...,h, on C" with

{z€C":Q(2) =0} ={2€ C": hg1(2) =--- = hy(z) = 0}.

Then the map C" 3 z = Q(C — 2) is independent of hq,...,hg. This implies that
G(¢,.) is complex linear with respect to hy,...,hq, and ®((,.) is quadratic complex
polynomial with respect to hy,...,hq. |

1.5 Some Algebraic Topology. Let N be a positive integer.Then we call p-simplex,
1< p < N, every collection of p lineary independent vectors in R”.

We define S}, as the set of all finite formal linear combinations, with integer coeffi-
cients, of p-simplices.

Let o = [aq,-- ., ap] be a p-simplex, then we set

ajO': [al,...,dj,...,ap]

for1<j<pand
P
0o = Z (-1)8j0
j=1

(this definition holds also for any collection of p vectors). If 1 < j; < p...1 < j. <
p—r, we define
8,0 = 0,85 .;,0)
where 00 = 9j0.
All of these operations can be extended by linearity to Sp.
If o is a p-simplex defined as above then we define the barycenter of o by

12
b(O’) = - Z aj.
P
Now we define the first barycentric subdivision of ¢ by the following

sd(o) = (<1730 () [b(0), 6050 b ).
i

By linearity we can also define the first barycentric Subdivision of any element of S,.
It is easy to see that
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LEMMA 1.4. If o is an element of S,, then

sd(0o) = dsd(o)

The barycentric subdivision of higher order of an element ¢ of S, is defined as
follows, we set for m > 2
sd™ (o) = sd(sd™ (o).

5d°(0) and sd' (o) are defined respectively as o and sd(o).
The following lemma is basic in Algebraic Topology.

LEMMA 1.5. Given a simplex o, and given € > 0, there is an m such that each
simplex of sd™o has diameter less than €.

For a proof of this lemma, see for example [19].
Let o0 = [v1,...,Vp] and T = [, - . ., tr)- We shall adopt the following notations

[0,7] = [0, 1y oo s ] = [V1ye oy Upy T] = [Py oy Vpy 1y vy ).

Now let o be a p-simplex, p > 2, set
T(o) = [b(o),a] + Z Z (=1)dn+tie [b(a),b(ajla), . 'vb(afe~~~jl‘7)76§e---j1‘7]

and extend T by linearity to Sp.
If 7 is an element of S; then we set

T(r)=0

PROPOSITION 1.6  If o is an element of Sp, p > 2, then

0T (o) + T(0c) = sd(o) — o.

This proposition follows by a straightforward computation.

2. Fundamental solutions for 0,

In this section, we shall construct two fundamental solutions for the tangential Cauchy-
Riemann Complex. The second solution will be derived from the first and will yield
optimal Holder estimates for Jy,.

Let us begin by some notations.
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2.0. Notations.  Throughout this section M will denote a g-concave C'R generic
C? submanifold of codimension k in C".
7 is the set of all subsets I C {£1,...,£k} such that |i| # |j| for all i,j € I with

i# .
For I € Z, |I| denotes the number of elements in I . We set
Ll
A1---|I| = {()‘137" '77)“1‘) € (]R‘+)|I| with Z)\] = ]‘}

=1

Z(£),1 <L<k,is the set of all I € Z with |I| =¢.
Z'(€),1 < £ <k, is the set of all I € Z(¢) of the form I = {j1,...,j¢} with |j,| =v
forv=1,...,¢

IfI €eZandv e {1,...,|I|}, then I, is the element with number v in I after ordering
I by modulus.We set I(#) =I\{I,} .
If I € Z, then

son] — 1 if the number of negative elements in I is even
BML= 1 =1 if the number of negative elements in I is odd

2.1. First fundamental solution for d,. In this section we shall construct our
first fundamental solution for the tangential Cauchy-Riemann complex.

Let 2° € M, U C €™ be a neighborhood of 2° and py,...,pr : U = IR be functions
of class C? such that :

MNOU={p=-=pp =0} and 9p,(2°) A--- A Bpy,(2°) # 0.

Since M is g-concave , it follows from lemma 3.1.1 in [1] that we can find a constant
C > 0 such that the functions

~ k ~ .
pi =P+ Czyzlkp,% U=1,....k)
pj =—p-i+CY,p (G=-1,...,—k)

have the following property : for each I € 7 and every A € A;..7 the Levi form of
Aipr + -+ Anpr,, at 2% has at least ¢ + k positive eigenvalues.
Let (e1,...,ex) be the canonical basis of R¥, set e_; := —e; for every 1 < j < k.
Let I = (j1,...,4%) bein Z'(k) , set

k k
Ar={)_ Niej; with \; >0, all i, and Y _ \; =1},

i=1 i=1

and for each a = Ele Ai€j;, let G, and @, be respectively the Leray map and the
barrier function at 2° corresponding to p, = A1pj, + -+ + Aepj, (see sect. 1.4).

We call p,(rep.¢,) the defining function (resp.the barrier function) of M in the
direction a.

Let o = [a,...,aP], p > 1, be a collection of p vectors , where a’ € UIEz,(k)AI, for
every 1 <i <k.
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Then we define
Q[a] = QGory...,Gor)
(cf sect 1.3) , and for every 0 < s < n and every 0 < r < n — p, we define fls,r[a] as
the piece of Qo] which of type (s,r) in z.(cf sect 1.3).
If we denote by S, the set of all finite formal linear combinations of such collections,
with integer coefficients, and we extend Q by linearity to Sp; then the generalized
Koppelman lemma now becomes

LEMMA 2.1 For every T € S,, we have
d.,.Q[r] = Q[o7]

outside the singularities.

Let I = (j1,...,5) beinZ'(l),1 <1 < k and o1 = [ej,, - .-, €j]. Then by continuity
of the Levi form, by lemma 1.3 and lemma 1.5, we can find a positive integer m
independant of T and [ such that for every simplexe 7 = [al,...,a!] in sd™(o}), the
Leray maps of G,1,...,G, are ¢ + k-holomorphic in the same directions in z € C".
Therefore we have the following lemma.

LEMMA 2.2 There is a positive integer m such that for every I € T'(1), 1 <1 < k,
any s >0 gnd everyr>n—k—q+1
(i) Qur(sd™ (1)) =0
(45)0, Q4 1 (sd™(o7)) = 0
on the set where all the denominators are non-zero.
Proof.— this follows by linearity from the fact that Q(G,1,...,G,) = 0, for every

[al,...,a!'] in sd™(or). The last statement is easy to prove , looking at the definition
of Q (see sect. 1.3), since Gg1,...,Gqu are ¢ + k-holomorphic in the same directions
inzeC"

By the same arguments, we have Q, ,(8(sd™(o71))) = Q,..(sd™ (o) = 0, for all
r>n—k—q+ 1l,and from lemma 2.1, we have
0.5, 1(8d™(01)) = =8¢ Qs (sd™(01)) + Qs (8(sd™ (a7))

which implies, taking into account (i), the statement (ii). O

Now let D be a neighborhood of 2° such that for every 1 <1<k, all 0 <i < m and
every vertex a in sd'(or) , the barrier function ®, satisfies an inequality such (1.5) ,
for (,z € D. Set

My:=MnND,
and for I €Z
Dr ={p1, <0}ﬁ--'ﬂ{p1m <0}nD,
Dy =A{p >0}ﬂ--'ﬂ{p1m >0}ND.

Sr ::{_ph:---:pjmz()}ﬂD,
S{y =Dy forj==%1,...,+k
St =87 NDigyy f T €T and [I] > 2.
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We oriente these manifolds as follows :

Dy andDI as C" VIeZ
S{]} as Dy for j = =+1,...,+k
Sy as0Sy IeT
St as Sy for all T € T such that |I] > 2
My as Sy where I ={1,...,k}.

Fix 1<I<kand I €Z().
Let B = ((1 — #1,---,(n — 2n) and define

Qg[r] := Q(B,G,r,...,Gyr) (2.1)

for any 7 = [v},...,vP] in Sp, p > 1. Extend this operation, by linearity, to all
elements of Sp.
Now by applying lemma 1.1 we get

EC,zQB[UI] = —Q[UI] - QB[&JI] (2.2)

(where Qp[do;] := Q(B) if |I| = 1) for 2z € Dy and { € D}, with ¢ # 2.

Let |I| > 2 and T be defined as in sect. 1.5 and m an integer such that lemma 2.2
holds.

By applying lemma 1.4, lemma 2.1 , proposition 1.6 , we obtain

m—

Z T(sd'(o1))] = —Qo] — ZQ T(sd'(or))] + Q[sd™ (o7)] (2.3)

=0

for 2 € Dy and (¢ € D3, with ¢ # z.
Now define for |I| > 2

K'(¢,2) = Qslor)(¢; 2) Z T(sd'(01)))(¢; 2),

11| m—

B'(,2) =Y ()"K' = —Q5[901](¢, 2) Z T(sd'(001))](¢,2)  (2.4)

v=1 i=
and set for |I| =1
K'(¢,2) = Qploi] (¢, 2),

and
B(¢,2) = Q(B)((, 2) ( theMartinelli — Bochner — Koppelman kernel).  (2.5)

Then we have the following
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LEMMA 2.3 (i) For z € D; and ¢ € D}, with { # z, we have
0¢,.K' = B" — Q[sd™(07)]

(ii) There exist a constant C > 0 and a finite family {v1,...,vL} of linearly
independent families v; = [y}, ... ,fyll-ll] in Ay such that

L
1
K1(¢, C ‘
G < L T et o s

Proof — (i) is a consequence of (2.1) and (2.3). The estimate in (ii) is easy to see from
the definition of 2, by using lemma 1.2 and (1.5) (see the proof of Lemma 2.6). DO

We shall now show that the kernel K has locally integrable coefficients on S; in
both variables ¢ and z.

LEMMA 2.4 Let I € T and (v',...,y/) be a family of linearly independent vectors
in R and 2 € Dy then there exists C > 0 and g9 > 0 such that for all € < &

dA({) < Ce(1 + tne])" 26)
/ff:zs I, oGP = (1+ lfne]
d\(C 1|
Jerty T, o (G 2 — it = o0+ 1) @7)

[(—z|<e

forall j € {£1,...,£k}\ I,|j| < |

dA(¢) < Ce(1 + [the)) 11 2.8
/ffji T (¢, )¢ sz < O+ 1D 28

All of the above estimates hold if we integrate with respect to z instead of ¢

Proof — Since M is CR generic and +',... 7! are linearly independent, we can
take Im®,1(-,2),...,Im®,1/(-,2) as coordinates on Sy and S;ru{j}, for |z —(| < ¢
with € > 0 very small(cf. lemma 2.3 in [6]). Thus ,taking into account the following
inequality (cf. (1.5))

|4+ (C 2)| £ C(Tm®.: (¢, 2)] + 1€ — 2I%)

we see that the left-side term in (2.6) (resp.(2.7)) is bounded by

dXx
/xemZn—lI\ | 1] 2 2n—2[T|-1 < Ce(l + Mnal)l[l'
|1 X|<e Hi:l (lel + |X| )|X|
(2.8) is proved likewise and the proof of (ii) is similar. O
DEFINITION 2.5 (i) Let I €e Zand j € {£1,...,£k}\L,|j| <|I|. It follows from

lemma 2.3 and estimates (2.6) , (2.7), that the following operators are well defined
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and continuous :

; kg, :C%Sr) — €3, (D) NCe(Dy)

an —~ ) __

K :CUST, ;) — €, (DrynC(Dy)

where _

K{ f(z) = [,cs, F(Q NKE(C,2), z€Dy, feCd(Sr)

and | _
Kol f(z) = Jeest FIONKS,(C2), z€ Dy, feClSi,)

ru{j}

(ii) Let I € Z, it follows from lemma 2.3 and estimate (2.8) that the operator
defined by :

Bl sG)i= [ SONBLG2), zeDnfeish)
€ I
is continuous from C2(S;) into CY(Dy) N CX(Dy).

REMARK. (i) ¥ |I|>2etve{l,...,|I|} then S;’(ﬁ)u(ly) = S} and therefore
I/(\'I(‘))’I”f(z) :/ . 13 /\Ké’(f)(z,g) for z € 51(,;) and f € C2(ST)
ges?
and then from the definition of By ., we obtain

|1
Bl,f(z) = S (- IR (), (2.9)

v=1

LEMMA 2.6 Let I € In—k—q+1<r <n—kand f € Cj,.(D) with compact
support on D. Then we have the following equality in the sens of currents :

KL, _1f + (-~ K] 8f = (~1)" 0B} ,_. f + (~)' B! 3f] (2.10)

on Dj.

Proof — The following equality is true from lemma 2.3(i) and Stokes’ formula : if
n—k—q+1<s<n-—kge€ Cé,s+1(D) with compact support on D and if z € Dy
then :

K@) = [ BonK (.0 + (1) B (2
I

+(=1)"9 | gAKG,i(2) +(—1)3/ 9AQos(sd™or)(2).  (211)

Sf st

Since the forms I?o,r_lf, IA((),T_lgf, Eogr_lf and §0,r5f are continuous on Dry, it is
enough to prove (2.10) on Dy (where these forms are smooth).
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By setting s = r and g = 0f in (2.11) and using lemma 2.2 (i), we obtain
E{,0f(2) = (1)1 Bg,0f(2) + (=110 | 3f NEG, 1(2) (2.12)
SI

for all z € Dy.
If we set now s =r — 1 and g = f in (2.11), then we get

KOr 1f(z / af/\KOT 10 z)+(—1)T§é,r_1f(z)

—1)|I|5/S+ IA K({,r&(',z) + (-1t /S+ A Qo,r—l(SdmaI)('vz)-

and then by lemma 2.2 (ii)

ORY, 1f(2) =D / f AKS, 1 (n2) + (<D)7BB, 1 J()  (213)
for all z € Dy.
(2.10) follows now from (2.12), (2.13) . O
Now define
K2 = 3 (sgnDK'(G,2) (2.14)
1T (k)

for ¢,z € My with ¢ # 2, and denote by K, , the piece of K which is of type (s,r) in
z.

From lemma 2.4, we see that the kernel K has locally integrable coefficients in both
variables ¢ and z.

Now by applying (2.10) k times , taking into account (2.9) and using the classical
Martinelli-Bochner-Koppelman formula (see [5] or [6] for technical details) we obtain
the following integral representation

THEOREM 2.7— Let Q0 CC My of piecewise C' boundary and f a (0,7) C' form on Q
withn—k—q+1<r<n-—=%k, then

(O EFE) = [ 10 AK€ = [ Buf(Q) A Korlc.2)
+(—1)k+15b/9f(0 A Ko 1(¢,2)-
And by a duality argument we obtain

COROLLARY 2.8— Let Q CC My of piecewise C* boundary and f a C* (0,7)-form on
Q with 0 < r < g — 1,then we have

(_1)T(k+1)f(<) :/ . f( )/\Knn k—r CJ / abf /\Knn k— T(C) )
z€E

+(-1)*DF, /Q F2) A K1 (G, 2),
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We say that K is a fundamental solution for dy, on M.

2.2. Second fundamental solution for ;. In this section, we shall construct our
second fundamental solution for the tangential Cauchy-Riemann complex on My. This
fundamental solution will be derived from the first one , by using an idea of Henkin
[13](For more details, see [7]).

Let m be as in Lemma 2.2 and v* € ;¢z (4 Ar such that

(%) For any k- simplex 7 in sd™(oy), each collection of k elements in
[v*,7] is a k-simplex.

REMARK The choice of such v* is very important for our optimal estimates.
We adopt the following notation

[V*,Z CiUi] = Zci[l/*,ai]

for any element ), cjo; in Sp.

Set
E((,z2) = Z sgnI(QBV o1] z T (sd'( 01))]) (2.15)
I€T' (k) =0
and ~
R((,2) = Z (sgn)Qv*, sd™(or1)]. (2.16)
I€T! (k)
Since

Z (sgnl)dor = 0,

IeT' (k)

then, by applying lemma 1.1, proposition 1.6 and (2.2), we obtain

3¢, E((,2) = K((,2) = R(¢, 2) (2.17)

for (,z € My with { # 2.

Now we claim that R is a fundamental solution for 8y, on M, this means that
Theorem 2.7 holds also for the kernel R. To prove it, following Henkin [13], all we
have to do is to show that the singularity of E is mild enough so that the identity
(2.17) holds on all My x My in the sens of distributions. For once this is done, our
claim follows by applying J,. to both sides of (2.17)and then using Theorem 2.7.

The proof of the first part of Theorem 0.1 will be complete by setting

DEFINITION 2.9
(¢, z2) = (—1)T(k+1)R0,r(C,z) ifn—k—q<r<n-k
’ (1) Y Ry oper(2,¢) fO<r<g-1.

Now to realize our program, we follow the proof of Theorem 1 in [7](see chap.21).
First we need the following lemma,
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LEMMA 2.10—- Given W CC My, there is a positive constant C' such that for each
€>0 and z € W, we have

(i)

/CEMO ||K(C,Z)|| d}\(C) < CG(]_-I— |6’L€|)k

[¢—z|<e

(ii)

[ e 1RGN < Ce

[¢—2[<e

(iii)

[ e TEG A ANQ) < CE1 + e

[¢—2[<e

(iv) All of the above inequalities hold if we integrate with respect to z instead of ¢

Let us assume the lemma for the moment and show that equation (2.17) holds on
all M() X M(].

For € > 0, choose a smooth function x. on My x My with the following properties

xe(¢,2) = { L il ]

> €
0 -2 < g

and for any first-order derivative D,

C
[Dixe}| < (2.18)
where C is a positive constant that is independent of e.
Since x. vanishes near the diagonal of My x Mp, we have from (2.17)
EC,Z{XGE} = (5472)(6) NE + Xe(K - R) (2-19)

on My X My. From Lemma 2.10, we have

xK = K,x.R = R,x.E = E and 8;.{x.E} = 0 .E
in the sens of currents, as € — 0

From part (iii) in lemma 2.10 and the estimate (2.18), we see that

(EC,ZXE) ANE =0

as € = 0, in the sens of currents. So, we obtain the desired result by letting € — 0 in
the equation (2.19).
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PROOF OF LEMMA 2.10 Looking at the definitions of the kernels K, E and R (cf.
(2.14),...,(2.16))and taking into account Lemma 1.2, we see that we have to estimate
the following typical term

. NG 2) (2.20)
ITizi (24 (¢, 2))7 (Ra0 (C, 2)) 70 (R grt1 (€, 2)) 41 | — 2[28
where al,...,a" are linearly independent, a® = Zle z;at, aftl = Zle y;at and

ri > 1, all 1 <i < k; s,7m0,Tk+1 >0

k+1

s+ E ri =nN.
=0

For the kernel K, we have ry;1 = 0 and
either 79 = 0, s > 1 and the function N involves coefficients of the differential form

(Gal d(¢ - z)) A--A (Gak d(¢ - z)) A (@.d(g . z))
or s =0, 79 > 1 and the function N contains the coefficients of the term
(Gal.d(C - z)) A A (Gak d(¢ - z)) A (Gao d(¢ - z))

Since

k
Goo(¢,2) =) 3:iGoi + O(I¢ — 2])

i=1
we obtain in both cases
IV (¢, 2) < CIC — 2] (2.21)
for some positive constant C. Since M is CR generic and a',...,a* are linearly
independent,
Im®,:(.,2),...,Im®(.,2) can be taken as local coordinates on My(cf.Lemma 2.3

in [5]). Then in view of inequality (1.5),

mo ||K (G, 2)|| dA < 2 dX
f\cc_en%e IE(G 2 dME) - < fX€|§‘|<€ * [T, (1% 1+x12) [x |2 -2k
< Ce(1 + |fe|)*.

Now for the kernel E, we have r;41 > 1 and
either s = 0, 7o > 1 and the function A involves the coefficients of the term

(Gal d(C - z)) A A (Gak d(C - z)) A (Gao d(C - z)) A (Gak+1 d(C - z))

or s > 1, 79 = 0 and the the function A/ contains the coefficients of the differential
form

(Ga1 d(¢ - z)) Ao A (Gak.d(g - z)) A (@.d(g - z)) A (Gam.d(c - z))
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By the same arguments as above, we obtain in this case
N () < CI¢— 2
for some positive constant C, and then

v ||E(C, 2)]| dA < [xemzn- dX
S MBI AN < Jxepens i Sy s

< Ce(1 + |the|)*.

For the kernel R, we have s = 0, ro = 0, 71 > 1 and every collection of k
elements in {a'...a*"1} is a family of linearly independent vectors (see condition (*)
and Remark 2.2.0 ). It is easy to see , just as above, that inequality (2.21) holds also
in this case.

Now we use the following easily established inequality:if 0 < a1,...,ar < ag41,
then
k+1 k ,
[Tei>][eit™* (2.22)
i=1 i=1

If we use (2.22) with a; = |®,4:], 1 <4 < k+1 and (up to a permutation of {1,...,k+1}),
we obtain by using local coordinates as above and inequality(1.5),
J cenns NIR(C,2)[ dA(C) < [xemen—s Xt
¢m=l=e Tri<e H:=1 (\XJ'IHXP)H'“ | X |2n—2k=3
< Ce.

Thus the proof of (i), (i7), (¢i¢) in Lemma 2.10 is complete. (iv) follows in the same
way. O

3. End of proof of Theorem 0.1

In this section we shall prove C+3 —estimates. We first prove C2 —estimates and then
1 .
we derive C*+2 —estimates by using similar arguments as in [18] and [8].

3.1 Cz—Estimates Recall that the coefficients of the kernel R((, z) have the form

NG 2)
T2 (80 (¢ 2))

wherea!,... a**t! are vectorsin IR* such that every subset of k elements in {a’, ...,a**'}
is a family of linearly independent vectors (condition (x)), the estimate (2.21) holds
for N and

k1
ri>1,all1<i<k+1; Zri:n.
i=0
We have

I1R(¢,2") = R(¢, 2%)]| dA(C) < Ji(2',2°) + Ja(2h, 2%)
(EMo
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where

Ji (24, 22%) =

ey IR DI +IIREC 22)) dA(C)

1
l¢=z1<lz1=22| 2
and

B = [, IR = RGN

[(—=zl>[21-22|2

It follows from lemma 2.10 (ii) that
Ji(z4, 2% < Ozt — 22|%

Now since N((, z) is smooth in z, it is not difficult to see by the same arguments as
in the proof of Lemma 2.10 that

Jo(21,2%) < Cl2' = 22| [ xemen-» . dX

1 1
iseioezd (XX ) T, (1 x)2) T E | x 2

<Ot - 22z,

Thus
[ IR - G axQ) < €t - 22, (223)
CEMog

Analogously we can show that
[ IRG 2 - R ) dxG) < 0l - 1R, (224)
z&€Mo

under the hypothesis that M is of class C3. This is because R((, z) involves second-
order derivatives in ¢ of the defining functions of M.

3.2. C'*2—_Estimates. We assume that M is of class Ct+2 (£ > 1).

Let a',...,a* be linearly independent vectors in |J rezrAr and aktt = Ele yiat
with y; # 0, all 1 < 4 < k ( this means that every collection of k vectors in
{a},...,a**1} is a family of linearly independent vectors).

Denote by j;(resp.¢;) the defininig function (resp.the barrier function) of M in the
direction a’ for 1 <i < k+ 1.

£3(j > 0)will denote a smooth differential form on M x M vanishing of order j for
¢ = z. Tt is clear that

k
¢k+1 = Z yi¢i + &2, (225)

i=1

We need the following lemma.
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LeEMMA 3.2.1 There exist Yf,...,Y,f, tangential vector fields to M such that for
every ( € My and every 1 <1i,5 <k,

Yf‘b] (CJ C) = 5ij7
where §ij is Kronecker’s symbol.
Proof -Since M is CR generic and a',...,a* are linearly independent, we have
Op1 N\ ---ANOpy, # 0 on M.

Then the matrix

<0p1(),0p1(Q) > -+ < 9px(C),0p1(C) >
A= : :
< 8ﬁ1 (C)a 8ﬁk (C) > - < 6ﬁk(€)7 8ﬁk (C) >
is invertible for all { € My ( here < .,. > denotes the Hermitian inner product), and
there exist vy,...,v; € {1,...,n} such that the matrix
9p1 ... Obk
B - 2
B = . .

B e 20

3¢y, 8,

is also invertible for all { € M.
Set

1o "0 0 1 8
Y=o a0 oF a =5 2 (@)=
2122:1 ! 1/22:16Cu C” 2‘; ! BCVJ‘

where [aij(C)] =A=' and [ﬂij(g)] =B~
Now it is easy to check that
YE0;i(¢,¢) =d;; and Yp; =0 for all 1<4,j <k. 0

Let us introduce the following class of kernels for § > 0,

L &
S — — a1, .
T2 (6 + 0)
where
k+1
2n—1-2Y ri+j>0
=1
and

ri>1 forall1<i<k+1
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REMARK 3.2.2 Notice that the kernel R is a finite sum of kernels of type Lo, and
estimate (2.23) with estimate (2.24) hold, independently of &, for kernels L.

If we denote by X a tangential vector field to M in z-variable and X¢ the corre-
sponding operator in (-coordinates , then we have the following

LEMMA 3.2.3— Let § > 0, then we have

k z O\
XZE(S:_XC‘Cd*_ZW

i=1

YE(Ls) + Ss.

where Ss is a finite sum of kernels of type Ls.
Proof — Tt is not difficult to see that the following facts are true:
(i) (XZ + X©)&T is of type &Y.
(i3) (XZ + X )¢; is of type EL.
(iid) |V ¢i(C,2)| > C for |¢ — 2| <eand 1 <i < k (see Lemma 3.2.1)
(iv) If i # j then Y ¢; is of type ' (cf. Lemma 3.2.1) .
(

V) Yf¢k+1 - y,-de)i is of type E' for all 1 <i <k (see (2.25) and Lemma, 3.2.1).
k

(vi) (X% + X )1 — Zyi(Xz + X%)¢; is of type £ (see (2.25)).
i=1
1. (X*+XO¢ ¢, 1

The lemma follows now by a straightforward computation. O

(vii) (X7 + X°)(

Now let 0 cC My and f € WH™(). Let 2, € Q and x a smooth compactly
supported function on 2 such that

_JO if|C—z|>
X(C)—{l if|C—Zi|§

where € is chosen so that (see Lemma 3.2.1)

NN NI

|Yf¢,~((,z)\ >Cfor|(—2<eand alll1<i<k.

Set K :={2€Q/|z—=|< {}
We write

/ FO AR, 2) = / X(OF(©) AR, 2) + / (1= x()F(C) A R(C, 2).
Q Q

Q

Let Ji(f) denote the first integral in the right-hand side and J»(f) the second one.
Since R((, z) is of class C* in z for { # z then Jy(f) is of class C* on K.
By Remark 3.2.2 to estimate J1(f), it is enough to do so for [, xf A Lo(-, 2).

We have
[ xtnat,2) = lim [ xf Aoz,
Q d—0 Q
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By Lemma 3.2.3, we obtain from Stokes’ theorem

z oy _ ¢ i
X [xinest) = [ X0 nLat)
k
(X* + X%¢;
. ;/QY,.c(xf)AWﬁé(.,z)+/gmsé(.,z)_

where S5 is a finite sum of kernels of type Ls.
Now , if we apply r < £ derivatives , we can write

X¢ X7 [ XfALo(,2)
Q
as a sum of terms

[ X6 XS nLs(,2)

with0<j<r.
This proves that all derivatives of [, xf A Ls(-,2) up to £ converge uniformly on Q.
And since

[ X Z50h) A Loy < Clflle

for 0 < j < ¢, independently of § (see Remark 3.2.2), we conclude that

/xf/\ﬁo(-,z) is of class C*"2 on Q.
Q

Thus Ji(f) is of class Ct3 on Q, and therefore
/Qf(C) AR((,2) is of class Ctz on K.
By noticing that Y;?®; = —Yf@j + &' for 1 <i,j < k one can show in the same way
/Qf(z) AR((,2) is of class Ctz on K

provided M is of class C¢*3 (see (2.24)). This completes the proof of the second part
of Theorem 0.1 (cf. Definition 2.9)
For a proof of corllory 0.2, we refer the reader to [5] . O
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