On the geography of symplectic 6-manifolds
by M. Halic

§0 Introduction

In this article we consider the geography of the six dimensional, 1-connected,
symplectic manifolds. The main result is:
Theorem Let X be a symplectic manifold. Then

3 (X) = ¢3(X) =0 mod 2, ¢1ca(X) =0 mod 24

Conversely, any triple (a,b,¢) with a = ¢ = 0 mod 2 and b = 0 mod 24 occurs as
a triple (¢}, c1c2, c3) of Chern numbers of some 1-connected, compact symplectic
6-manifold.

Remarks

e Let us recall that a symplectic manifold admits always almost complex
structures. The arithmetical restrictions on the Chern numbers are proved in
[OV]; it is proved there the same result for almost complex 6-manifolds.

e We must say from the very beginning that, even if the notion of minimality
in the symplectic case is unclear, the examples given in this paper are non-
minimal bacause they are obtained blowing-up some basic building blocks.

e A similar study for complex 3-folds can be found in [H].

§1 Basic results

I shall recall some results used in the article in order to produce new examples
of symplectic manifolds from given ones. The following proposition gives us such
a method ; it is the symplectic connected sum construction, explained in detail
in [G]. I give here only the case where I am interested:
Proposition 1.1 Let X;, j = 1,2 denote two symplectic varieties of dimension
dim(X;) = n and let Y be another symplectic variety of dimension dim(Y) =
n — 2 such that there are two symplectic embeddings i; : Y — i;(Y) =Y; —
X; with the property:

CI(NY1|X1) + Cl(NYz\Xz) =0

Then one can make the symplectic connected sum of X; and X, along Y ; the
result will be a new symplectic manifold.

Suppose now that there are two 2-spheres L; — X; which meet Y ; transver-
sally in one point. Then the symplectic sum can be done such that X contains
an embedded 2-sphere also ; this is the (usual) connected sum of the L;’s.

Proof See [G], page 538. O

Now we are interested to decide if such a symplectic sum is or not simply
connected. This criterion is also known and used by Gompf in his article.



Proposition 1.2 Let X be a symplectic variety and suppose that there is a
symplectic codimension two variety Y which has the properties:

® Ny|x = Oy ;

e there is an embedded projective line L — X which cuts transversally Y
in exactly one point.
Then the homomorphism iy : m (X —Y) — m1(X) induced by inclusion is in
fact an isomorphism. In particular, if X if 1-connected, X —Y will be also.

Proof The proof uses Weinstein’s theorem which tels us that in our condition,
there is a symplectically embedded neighborhood D, x Y — X of Y (see for
instance [McDS], page 98). Because codimxY = 2, any loop in X can be moved
away from Y and so i, is surjective. Let us now consider a loop v <= X —7Y such
that the image i.[y] = 0 ; this means that there is a homotopy T' : I? — X
of v to a constant map. This homotopy can be taken in such a way that
it meets S(€) x Y transversally in a finite number of circles ;. We deduce
that [y] = [[,[v] in X =Y. In order to prove that [y] = 0in X — Y it
suffices to prove that each class [yx] is so. We may move each circle 7 until we
reach the intersection circle ¢ := L N (S(e) X Y) ; but now ¢ is contractible in
L —{point} =C. O

Proposition 1.3 (i) Suppose X; and X, are symplectic 4-manifolds which
contain isomorphic symplectically embedded curves Y; =2 Yo =Y with trivial
normal bundle. Then the Chern numbers of the symplectic connected sum
X := X4y Xy are the following:

it (X) = i (X1) + ¢i(Xa) — 4er(Y)
Co (X) = C2 (Xl) + CQ(XQ) - 201 (Y)

(ii) Suppose X; and X, are symplectic 6-manifolds which contain isomor-
phic symplectically embedded 4-folds Y1 = Yo =2 Y with trivial normal bundle.
Then the Chern numbers of the symplectic connected sum X := X §,X, are
the following:

¢} (X) = ¢} (X1) + ¢} (X2) — 6¢1(Y)
clcz(X) = clcz(Xl) + ClcQ(XQ) - 2(6%(Y) + CQ(Y))
C3 (X) =cC3 (Xl) + C3(X2) — 2C2(Y)

Proof Regardless the dimension of the data, we may apply again Weinstein’s
theorem and to deduce that there are the symplectic embeddings ¢; : Y x
D. — X such that the restrictions ¢;yxo = 4; ; here D, denotes the disc
of radius € in the complex plane with the symplectic structure inherited from
R?. Take the involution ¢ of D, — 0 given in polar coordinates by: t(r,8) :=
(V€2 —r?2,—0). This is a symplectomorphism of the punctured disc. We can
use it to identify (symplectically by idy x %) the two tubular neighborhoods
Y; < X, in order to obtain the symplectic sum X. Topologically, X is obtained
identifying the cylinders Y; x S(ro), where S(rg) denotes the cercle of radius



ro := €/v/2. Let me consider now a form 7 on X of maximal rank on X.
The restrictions Njx1 —(Drg x¥1) and Nixz—(Dy, x¥s) Call always be extended (not
uniquely, of course) to X; and X5 ; let us chose such extensions and denote
them by 7, and 7. Remark now that the map idy X 9 gives us a form 6 on
Y x S2 obtained from 7; and 72 and identifying them on Y x S(ro) where they
agree with 1. With this choices, let us integrate n on X:

L= L™ e

X X1—(Dpry XY1) X2 —(Dyrg ><Y2)
Jomefom= ] =L / s
X1 X2 ©1(Drg XY)Uy p2(Drg ><Y) X2 x S2

In order to compute the Chern numbers of the connected sum we may take
connections on X; and X, having the property that they agree on Y; x D,
and Y, x D, with a product connection on Y x D.. Let 7, and 7y be the
forms representing the (same) Chern classes on X; and X, respectively and
with respect to these connections. Because our choice we may glue together 7,
and 7, obtaining a form 1 on X which will represent the Chern class of X. Now,
when we want to integrate n on X, we have already at our disposal the forms
m and 72, by the very construction. The form € which appears in the formula
above will represent some Chern class on Y x S2. O

§2 Behaviour of the Chern numbers

In this paragraph I shall study the behaviour of the Chern numbers under
blowing-ups. Let us note by pass that the blow-up procedure preserves the fun-
damental group as it can be seen using the van Campen theorem. In [McD]
is presented the blowing-up procedure of a symplectic submanifold of a sym-
plectic manifold ; I shall recall it, for the sake of completeness. Let X — Y
be a symplectic submanifold. Let Ny be the normal bundle and take the
projectivized bundle X := P(Ny/y) — X (using a complex stucture which is
compatible with the symplectic form w). There is a tautological line bundle E
over X whose fiber over a point (z,1,) € X is {(z, \v), A € C}, the complex line
correspondind to [, ; in the complex case it corresponds to Ngjg¢ = Ox(—1).
There is the commuting diagram:

E —X
vl Lf
Nx|y—>X

Moreover, ¢ is a diffeomorphism if restricted to non-zero vectors of E. Therefore
one can take a small disc sub-bundle of E around the zero section which is
identified with a tubular neighborhood V of X < Y. Then one take:

Y = (Y -V)Usy o }(V)



to be the symplectic blow-up of Y along X. What is still to be shown is that
Y is really a symplectic manifold. This is done in §3 of McDuff’s article and
Gif h : Y — Y is the projection) the new symplectic form is essentially & =
h*w+ea with a € H? (Y‘) a form which is non-degenerate along the “exceptional
divisor”.

We may note that the Kéahler form on the blow-up of a Kahler manifold is
constructed in a similar way.

In the following, ¥ will always denote a symplectic variety of dimension six.
e Blow-up of a point If ¥’ is the blow-up of X, then the Chern numbers
transform as follows:

e Blow-up of a curve Let C' — ¥ be an algebraic curve of genus g and
consider the blow-up ¥’ of ¥ along C. Then the relations:

(X)) = cf(2) +6(9 — 1) — 21 (Ngyz), [C])
C1C2 (EI) = 0102(2)
e3(X) =es3(X) —2(9 - 1)
Proof In [F] the Chern classes of the blown-up manifold are computed in
the complex case. There is the following commuting blow-up diagram:
X4y
fL Lh
X <Y
The key for the computations are four exact sequences:
[F] Lemma 15.4(page 299) There are exact sequences:

0— Nxjg — f*Nyy — F —0
0— O — f*Nyv®Ng

0—>T,~<—>j*T,~,—>N;|‘.(—>O

— Ty — f*Tx — 0

¥

00— Ty — Ty — j.F —0

The first three are exact sequences of vector bundles on 5(, the fourth an exact
sequence of sheaves on Y. F is the universal quotient bundle on X = P(Ny|y)-

The remark to be done is that these sequences are still exact in our case
because the proof uses nowhere the fact that the underlying manifold of those
fibrations is complex.

We can now turn back to our problem of computing the Chern numbers of .
Using the fact that ¢3 represents the Euler number, one can see immediatly the



transformation formulas for them ; c¢;c¢; is invariant under blow-ups. Therefore
the only one thing to be computed here is the transformation law for 3. In the
case where I blow-up a point, ¢; = ¢; — 25, where 7 represents the class of the
exceptional divisor £. Then (c})® = ¢} — 87° ; but n* = [, 7* = 1. Let us look
now the case of blowing-up a curve: we have the commutative diagram:

gdy sy
L Lh
CH Y
The first Chern class is: ¢| = h*¢; — 7
(c1)? = & = 3n*(c})n + 3h* (c1)n” — °

here we use that:
widm= [ = [ rid=o

because i*(c?) € H*(C) is zero.

Let me denote by ¢ € H?(E) the class of the fiber and by a € H?(C) the
fundamental class of C. In this case, one can see that i*c; = 2(1 — g)a+c1(N).
Using these notations we can compute:

B ()P = — /g PR ()¢ = — L it 2(1=g)ater (N))C = 2(g=1)— (e (N, [C])

Computing the last term: 7® = [, (* = — [, e1(N)¢ = —(a1(N),[C]) O

§3 The building blocks of the construction
The folowing examples can be found in [G]. I shall recall the construction
of those which will be used here.

A Consider W, := PzﬁQFQ. Supposing that the nine points are in general
position, we can think of them as the intersection points of two smooth cubics C
and C' in P?. We may consider the linear system AC + uC’, [\ : ] € P', which
has base points exactly the nine given points. Blowing-up P? in these points we
separate the directions and obtain an elliptic fibration structure on Wi over P'.
Any of the exceptional divisors provide a symplectically embedded projective
line which cuts in only one point the generic fiber which is,topologically, a torus
of self-intersection 0. We are in the case of propositions 1.1 and 1.2 and we can
do the symplectic sum of m pairs (W7, fiber, E), where E denotes an exceptional
divisor. The resulting (elliptic) fibration W,, contains a projective line which
cut transversally in one point the generic elliptic fiber. Let now W, denote
the blow-up of W, in one point and let e,, be the corresponding exceptional
divisor. Obviously W}, is 1-connected ; the Chern numbers are:



(W) = -1
e (Wr) =12m+1

B This building block is the 4-manifold S; ; in [G], page 566-568. I won’t give
the construction but I shall mention its properties:

e it is symplectic and 1-connected ;

e it contains symplectically embedded curves F}, F5 of genus 1 and 2 respec-
tivelly, with trivial normal bundle ; in addition, each of these curves are cut by
(disjoint) spheres transversally, in one point ;

e its Chern numbers are:

C% (Sl,l) =1
Co (51’1) =23

C Consider a quartic curve in P? having a single node. Blow it up to obtain

a non-singular projective curve of degree 4 and genus 2 in P2ﬁ§2 having self-
intersection 2. Blowing-up twelve more times one has a genus two curve Fj
of self-intersection 0 in P; := P2ﬁ13F2. The 13" exceptional divisor will be
a projective line which intersects our curve F5 transversally in only one point.
The Chern numbers are: ¢3(P) = 9 — 13 = —4, c2(P1) = 3+ 13 = 16. We
can make the symplectic sum of [ pairs (Pi, F>, E), the result being the 1-
connected symplectic manifold P; containing a curve F5 of self-intersection 0
and a projective line which cut it transversally in one point. We may compute
the Chern numbers for this manifold using proposition 1.3:

i(P)=4-8
c2(P) =200 — 4

84 The construction of the examples

The basic tool in constructing of the examples is the symplectic connected
sum (of pairs). I shall use the notation X;4y X2 to denote the symplectic con-
nected sum of X; and X5 along Y ; F, will denote always a projective curve of
genus g. Consider now first the symplectic four manifold:

X := W;;ﬂpl 5171

where the connected sum is done away from the exceptional divisor e,,. This
manifold is symplectic but also 1-connected. Indeed, as mentioned, W}, contains
a 2-sphere which meets the generic fiber Fj transversally in one point ; the
curve Fy — S} 1 is cut also transversally by such a 2-sphere. Now we can apply
proposition 1.2 and deduce that X is 1-connected. It must be mentioned at this
point that we have done again a connected sum of pairs: because in both W}, and
51,1 there are 2-spheres cuting transversally F;, we may do the identifications in
such that F; — X to be cutted again by a 2-sphere transversally in one point,
according to proposition 1.2. We will use this property to show the simply
connectedness of some of our examples. The Chern numbers are:



A(X)=0
es(X) = 12m + 24

The constuction will be broken in several steps, according to the values of ¢;c,.
Let me begin with a lemma which gives us a simple method to vary ¢} and c3
independently.

Lemma Suppose that we have a six-dimensional, 1-connected symplectic man-
ifold ¥ having the Chern numbers (2a,24b,2c). Suppose that we have the ad-
ditional properties:

e Y contains a symplectically embedded product U x D, where U is an
open set of a projective surface, E is a projective line in U such that —a =
(c1(Ngx),[E]) < =1 and D — C denotes a disc. This happens in the case
where Y. is either a product S x F (S is a surface containing the projective line
E and F is an algebraic curve) or is obtained by a symplectic connected sum
of such a product, away from E. In this case one can move E in the direction
given by F ;

e there is a projective curve Fy of genus two with trivial normal bundle
disjointly from E .

Then, just blowing up x points, distinct copies of E (r times) and of Fy (z
times), one can obtain all triples of Chern numbers of the form (2a’,24b,2¢'),
where a', ¢’ are arbitrary integers.

Proof In fact, the formulas given in §2 show that cice is invariant and the
other two Chern numbers are:

2 =2(a-(3—a)-r—4z+3z2)
cs=2(c+r+z—2).
Imposing the condition that ¢} = 2a’,c3 = 2¢, we obtain:
r=a-r—(a'—a+3(c -c))
z=1+a)r—(d' —a+4(c -c))
and one can see that we can chose r big enough to insure the positivity of z and
z. 0O

Now we can finally construct the examples. We will distinguish several cases,
accordind to the value of ¢yco. Let us begin with:

c1c2/24 =0 Let us consider W x Fy ; it is a symplectic manifold, but there
are two problems: it is not 1-connected and there is no F5 curve on it. We will
see that considering the following

Y:=W] x Filr, xr S11 X Fi

where we identify in cross the two Fj’s, these problems disappear. Taking the
connected sum with S1,1 X F; has the effect of introducing the needed curve F5.
We have to show that this manifold is 1-connected.

In order to make the proof clear, let us denote by F| and F}' our curves.
In each of sumands F| x Fj' has trivial normal bundle, so we may chose the
(symplectically embedded) neighborhoods F] x F|' x D, in each. For writing
down van Campen’s diagram, we consider the open sets:



Uy :=W{ x F] = F{' x F| x D34 = (W{ — F{' x D3/4) x F|
U2 = Sl,l X Flll - Fll X F2" X D3€/4 = (Sl,l - Fll X D36/4) X Flll

the intersection being U; NUy = F{ X F{' x A with A := D(e/4, 3¢/4) an annulus.
We have the following commuting diagram:

w1 (U1)
it S N\ i
7 (Fy) ® m(F') @ 71 (A) 71 (%)
i N\ Sl
71 (Ua)

m1(X) is generated by the images of w1 (U1) and m(Uz). We will prove that
these images are trivial.

m(Uy) = m (W5 — F|' x D3€/4) ®m(F])=0®m (F])
m(U2) = m(S11 — F{ X D3ja) @ m(Fy) = 0@ m (FY')

To write down these equalities we used the fact that in W} and S;; there are
2-spheres which cut transversally in one point F|' and F] respectively ; after
we applied proposition 1.2. Let us prove that the images of 71 (U1) and 71 (Us)
cancel in m (X):

Jemi(Ur) = juiimi (Fy) = jiym(F{) = j,0=0

An annalogous reasonement shows the canceling of j/m1(Uy). Therefore ¥ is
1-connected and has obviously ¢;cy = 0. It satisfies the conditons of the lemma
and we are done. O

c1c2/24 =1 Take ¥ := Py x P!. The generic projective line passing through
the node of the considered quartic meet it two more times. Blowing-up the node
we will have a projective line (fix one) which meet the proper transform of the
quartic in two points. Now, blow-up these two points and ten more times to
obtain in P; the F, curve of self-intersection 0 and the (-2) projective line E.
We are again in the conditions of the lemma with a = 2. O

c162/24 = —1 Just take:
Y= Wl* X F2ﬁF1><F2P1 X Fl

The result is 1-connected and satisfy the lemma with a = 1. O

c1¢2/24 > 2 We are just considering the product ¥ := X x P! ; its Chern
numbers are (0,24(m + 2),2(12m + 24)). This is a l-connected symplectic
manifold. In ¥ there is the projective line e, which lies in W and has the
normal bundle O & O(-1). One can see that the « in the lemma above is —1.
There is also the curve Fy on ¥ having trivial normal bundle. Blowing-up r
times along e, z points and z times along F» we obtain a symplectic manifold
having the Chern numbers:



¢} =2(—2r — 4z + 32)
Cc1C = 24(m + 2)
cs=2(12m+r+ 1z — 2+ 24)

Let us impose now that (¢, c1ca, c3) = (2a, 24b, 2c). We will obtain the following
restrictions on the parameters r, x, 2:

er—xr=a—36b+3c;

em=>b-—2;

® 2r —z=a— 48b + 4c.
One can see immediately that this system can be solved under the restriction
that all parameters are positive if and only if b > 2. 0O

¢1¢2/24 < —2 Let us consider now the product consider X x F; ; the Chern
numbers are: (0, —24(m + 2), —2(12m + 24)). But now we may see that this
symplectic manifold is not 1-connected ; 71 (£) = Z®* which comes from the F,
factor. We cancel this fundamental group taking the symplectic connected sum
(of pairs):
Y:=Xx F2ﬁF1XFQSl,1 X F1

3 is symplectic and using proposition 1.3 we deduce that its Chern numbers
are (0,—24(m + 2),—2(12m + 24)). A completely similar argument as in the
c1c2 = 0 case shows that ¥ is 1-connected. Doing again the blow-up of z points,
r curves e, and z curves F; we obtain a symplectic manifold having the Chern
numbers
3 =2(-2r — 4z + 3z2)
ciez = —24(m + 2)
c3=2(-12m+r+2z—2—24)

Imposing (¢}, cica,c3) = (2a,24b,2¢) we obtain the following restrictions:
er—x=a—36b+ 3¢
em=—-b—2
e 2r —z=aqa—48b+4c

This system is solvable iff b < —2. O
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