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Résumé

La valeur au bord sur une hypersurface des solutions hyperfonctions d’un systeme d’équa-
tions aux dérivées partielles se définit habituellement lorsque le systéme est régulier le long
de ’hypersurface. Ici, nous étudions ce probléme d’un point de vue purement géométrique,
c’est-a-dire que nous considérons un complexe de faisceaux qui n’est pas nécessairement
solution d’un systéme et nous faisons des hypotheses sur son micro-support. Une hy-
pothese d’invariance par homothétie complexe permet de définir un morphisme de valeur
au bord et, avec une hypothése supplémentaire d’hyperbolicité, celui-ci est un isomor-
phisme. Ces résultats s’appliquent naturellement aux solutions d’un systéme, les condi-
tions sur le micro-support se traduisant par des hypothéses sur la variété caractéristique.
Enfin 'hypotheése de régularité permet de relier ces résultats aux cycles évanescents et
d’améliorer les résultats déja connus.
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Introduction

Since the development of microlocal analysis in the seventies, several approaches of bound-
ary values problems for hyperfunction and microfunction solutions of complex differential
systems were obtained, using local, microlocal or second microlocal tools [8],]9],[20],[23],[25].
In [4] some of these results were regarded through the ”D-module” point of view, that is
defining the morphism of boundary values as a functor between the hyperfunction solutions
of a D-module and the hyperfunction solutions of its vanishing and nearby cycles.

These results assumed always an hypothesis of regularity of Fuchsian type to define the
morphism. In [25], Tahara considered an operator simultaneously Fuchsian and hyperbolic
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and proved that the morphism of boundary value is an isomorphism in this case.

In this paper, our first aim is to prove a result analogous to Tahara’s in the framework
of D-module of [4]. Working with D-module, we cannot assume that an operator is
simultaneously Fuchsian and hyperbolic, so we have to separate the hypothesis, prove that
if the module is Fuchsian (more precisely regular along a hypersurface) there is a boundary
value morphism and if we add an hypothesis of hyperbolicity, it is an isomorphism.

In fact, it appears that the condition of regularity itself is not necessary. If we assume
a geometrical condition on the characteristic variety of the D-module we can define a
boundary value morphism which is an isomorphism with the condition of hyperbolicity
(which itself is a geometric condition on the characteristic variety). In this context, the
morphism has values in the geometric vanishing and nearby cycles of the sheaf of solutions
of M. Now regularity condition is used only to identify these geometric vanishing cycles
of solutions with solutions of a D-module, called the vanishing cycles of the D-module.

Once conditions have been reduced to conditions on the characteristic variety of the D-
module, it appears that we may forget completely D-modules and use the theory of sheaves
of Kashiwara-Schapira [12]. More precisely we prove a theorem for complex of sheaves of
C-vector spaces, the conditions on the characteristic variety becoming conditions on the
microsupport of the complex. This boundary value morphism may be called a ”topological
boundary value” morphism as that of Schapira [23]. Then the result on D-module is the
special case were the complex of sheaves is the complex of holomorphic solutions of the
D-module.

Let us now explain more precisely the geometrical situation. Let M be a real analytic
manifold of dimension n, N a smooth hypersurface of M, X a complexification of M and
Y a smooth hypersurface of X complexifying N. Let f be a holomorphic function on X,
real on M such that f = 0 is a local equation for Y and let :

Mt =Mn{f>0}, Mt=Mn{f>0}

and ¢ : Y — X the inclusion.
Let F be a complex of sheaves of C-vector spaces on X. One has the classical triangle

RTy (F) — RO (F)| v — RO (F) |y —— (1)

On the other hand, one may consider the cohomology with support on N of the nearby
and vanishing cycle triangle of F along Y :

RTy (F) — ROy (8(F)) — ROy (T4(F)) —1 2)

In this framework, the natural question is when is it possible to define a natural
morphism of boundary value from (1) to (2). We recall that the microsupport of F was
defined in [12] as a subset of T* X, the cotangent bundle to X.

Our main result in section 1 is the following : the morphism is well defined if the normal
cone Cryx (SS(F)) where TyX is the conormal bundle to Y is contained in some canonical
hypersurface. This condition is essentially equivalent to the fact that the microlocalization
of F is C*-conic. If, in addition, SS(F) satisfies a kind of hyperbolic inequality with
respect to N (which we call ”"near-hyperbolicity”) the morphism obtained is, in fact, an

isomorphism.
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In section 2 we apply these results to the case F = Sol(M) the complex of sheaves of
holomorphic solutions of a coherent Dx-module M, getting a general notion of boundary
morphisms for the hyperfunction solutions. Furthermore, when M is regular along Y,
generalizing [4], we prove that the boundary values are, in fact, hyperfunction solutions of
the complex of Dy-modules of nearby cycles, vanishing cycles of M along Y. Our method
gives the same result for complexes of Dx-modules with coherent cohomology without
modifications of the proof. We show also that we recover the morphisms of [7], [9]. If the
module M is given by a single differential operator P, our result is then the same than
obtained by Tahara in [25].

One of the main feature of our results is that many classical problems concerning the
regularity of boundary values may be reduced to the study of the Dy-modules of nearby
and vanishing cycles of M along Y, which, in principle are easier to manipulate. To
illustrate this, an easy application to the so-called ”ideally analytic” solutions is given in
the end.

1 Geometric boundary value

1.1 Complex conic sheaves

Let X be a real analytic manifold and let D®(X) denote the derived category of bounded
complex of sheaves of C-vector spaces on X. If F is an object of D®(X), its micro-support
SS(F) has been defined in [12] as a subset of T*X.

Assume now that F is a fiber bundle on X. The cotangent bundle T*FE is provided
with a canonical hypersurface Sg. This hypersurface has several definitions [10], [14], [12].
One may consider the canonical action of RT on the fibers of E which defines an Euler
vector field g on E. The characteristic variety of 0 is Sg.

Another definition is specific to fiber bundles £ — X of rank one. Consider the
canonical maps p: £ — X and i : X — FE, they define the maps :

T*X &T*X xx E 5 T*E
T*X &T°E x5 X 25 TE

Then Sg is the union of j;(T*X X x E) and of jo(T*E xg X).

An object F of D?(E) is said to be Rt conic if its cohomology groups H7(F) are
locally constant on the orbits of the action of R*. It is proved in [12, Prop 5.5.3.] that F
is R conic if and only if SS(F) C Sg.

The same results are still true in the complex case. If X is a complex analytic manifold
and E a complex fiber bundle over X, the action of C* on the fibers define an Euler vector
field whose characteristic variety is a complex subvariety Sg of T*E. An object F of
D’(E) is C*-conic if and only if SS(F) C Sg.

Here C*-conic means that the cohomology groups H’(F) are locally constant on the
orbits of the action of C*. If E is a line bundle these orbits are the fibers of E and C*-conic
is equivalent to "monodromic” as defined in [3].

To prove the equivalence between “F is C*-conic” and “SS(F) C Sg” we apply [12,
proposition 5.4.5.] exactly as in the real case.
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Let us now consider a complex analytic manifold X with a a smooth hypersurface Y.
We assume that Y has an equation f = 0 and denote by ¢ : Y < X the inclusion.

We denote by 7: Ty X — Y the normal bundle to Y in X and by 7 : Ac =T3X = Y
the conormal bundle. The specialization vy (F) and the microlocalization py (F) of F
along Y are objects respectively of D?(Ty X) and D°(Ty:X) defined in [12].

Let us recall the definition of vy (F) to fix the notations. We denote by Xy the (real)
normal deformation of ¥ with the maps ¢ : Xy — R and p: Xy — X, by Q = t1(RT)
and by p the restriction of p to 2. We have the diagram (4.1.5.) of [12] :

TyX%jf;%Q
J

Tl pl ”J (1.1.1)
Yy ' X — X

Then, by definition,
v (F) =0 'Rj,p ' F

and py (F) is the Fourier transform of vy (F).

It is clear from the definition that vy (F) and py (F) are Rt -conic.

The normal cone Cy(SS(F)) to the micro-support SS(F) along Ac is a subset of the
normal bundle Ty (7 X) which may be identified to T*Ac by the Hamiltonian isomor-
phism (see (6.2.2.) in [12]).

It is proved in [12, Theorem 6.4.1.] that SS(uy (F)) = SS(vy(F)) C Ca(SS(F)).

We will now consider an object F of D°(X) satisfying :

Crc(SS(F)) C Sac (1.1.2)
We deduce from the previous results that :

Lemma 1.1.1. If F satisfies condition (1.1.2), the localization vy (F) and microlocaliza-
tion py (F) of F are C*-conic.

The differential df defines a map f : Ty X — C and a bijection y: Ty X - Y xC
hence a section s : Y — Ty X by s(x) = vy~ !(z,1). In the same way, a section s’ of Ty:X
is given by s'(z) = (*dyf)(1)-

Definition 1.1.2. We define two sheaves on Y by the following :
1(F) = 5wy (F) and @(F) =5 py(F[L]

Lemma 1.1.1 shows that vy (F) =~ T_I\I/If(f) on a neighborhood of s(Y) and that
py (F)[1] ~ 7r_1<I>'f(.7-") on a neighborhood of §'(Y).
If F is a complex with C-constructible cohomology, proposition 8.6.3. of [12] shows

that what we called U';(F) and ®'(F) are the classical complex of nearby and vanishing
cycles, that is U (F) =~ U ¢(F) and % (F) =~ @¢(F).
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Remark 1.1.3. The definition that we have taken here for the vanishing cycles is the clas-
sical definition of Deligne. It differs from the definition of [12] by a shift, that is the sheaf
of vanishing cycles of [12] is denoted here by @ ;(F)[—1]. The definition adopted here suits
better with the definition of vanishing cycles of a Dx-module in proposition 2.2.1.

Without this hypothesis, we can still use the proof of proposition 8.6.3. of loc. cit. ,
to get morphisms :

U (F) — Uiy (F))
B ;(F) — @y (F))

with f : Ty X — Y canonical projection. And when vy (F) and py (F) are C*-conic, the
same proof gives :

A
&
9

1

A
=N
o
3

In fact, the proof shows that for any C*-conic subsheaf G of Ty X with Fourier transform
G, we have isomorphisms :

571G ~ U§(G) and 5" 'G[1] ~ ()
The classical triangle
Ry (F)[1] — $4(F) = Up(F) =

gives

RTy (F)[1] — @ j(vy(F)) —— ¥ s(vy (F)) _*,
because Rl'y (vy (F)) = RT'y (F) hence a triangle

RTy (F)[1] — &} (F) 2 W) (F) (1.1.3)

Let us still remark that when F is the solution complex of a coherent D x-module and
satisfy the hypothesis of lemma 1.1.1, we will see that we always have W';(F) ~ U (F)
and @'f(]-") ~ O (F).

Consider maps j1, j2, p1 and po associated to the fiber bundle 7y X — Y which where
defined previously.

Proposition 1.1.4. We assume that SS(F) is a real analytic subset of T*X and that it
satisfies condition (1.1.2), then the tangent cone splits into :

Crc(SS(F)) = jipy ' C1 U japy ' Ca
where C1 and Cy are two involutive homogeneous subvarieties of T*Y and we have :

SS(W/(F)) C Ci and SS(@}(F)) C Cs
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Proof. By theorem 6.5.4. of [12], SS(F) is involutive, and we assumed that it is a real
analytic subset, so the same is true for Cp,(SS(F)). It is easy to show that any involutive
subvariety of S, splits in jip; 'Cy U jop; 'Cy (see [16, Lemme 4.5.1.] for the details).

As SS(py (F)) C Cac(SS(F)) C Shg, the map s’ is non characteristic for py (F)
hence, using [12, Prop 5.4.13] we get

SS(@(F)) = SS(s' uy(F)) C Co

The same proof works for SS(¥(F)). O

1.2 The real case

Let M be a real analytic manifold of dimension n, N a smooth hypersurface of M, X be a
complexification of M and Y a smooth hypersurface of X complexified of N. We assume
that Y has an equation f = 0 which is real on N and denote by

Mt =Mn{f>0}, M*t=Mn{f>0}

and by j : MT < M the inclusion.
Let G be an object of D?(M). As M+ = M+ — N we have a triangle :

RTy (G) — RT3 (G) v — Rjvj~'Gly ——

If F is an object of D®(X), we may apply this to R[5, (F) and get :

RT n (F) — RT 5 (F)|v — RO+ (F)|v —— (1.2.1)
where RT s+ (F) = Ry, 1R s (F).

If F satisfies condition (1.1.2), we may apply the functor RI' 5 (.) to the triangle (1.1.3)
and get

RTy (F)[1] — Ry (®/(F)) —“% Ry (}(F)) —— (1.2.2)

The aim of this section is to define a morphism of triangles from (1.2.1) to (1.2.2).

We denote by A¢c = Ty.X the conormal bundle to Y in X and by n¢ : Ty X — Y the
projection. The conormal bundle to M in X is denoted by T, X = T M and is identified
to the cotangent bundle T*M. We denote by A = iT{3M = TyX N4iT*M the normal
bundle to N and by 7 : ¢T\:M — N the projection. The orientation sheaf of N in M is
denoted by ory/p-

We also denote by 7y X the normal bundle to Y in X and by 7¢ : Ty X — Y the
projection. The normal bundle to N in M is Ty M with 7: TyM — N. The differential
df defines a function df : TyM — N and we set :

TNM™Y = TxM 0 {df >0}, TyMT =TxM N{df >0}

As in the complex case, f defines sections s : N — TyM and s’ : N — iT3M.
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Lemma 1.2.1. Let G be an object of D*(Ty X) which is Rt -conic, then
R RU7 07+ (G) 2 s ROy 01+ (G) =~ s "Rl 01(G)

Proof. The second inequality is clear because TyM = TnyM ™ near s(N). Let U be an open
subset of N, W be a neighborhood of s(U) in Ty X such that W NTyM = s(U) and V
be the positive real cone generated by W. We have V N TyM = 77U N TyM™* hence by
definition of RT'p, 57+ :

RL(U, R RTry 0+ (G)) = RO(77 U, Ry 11+ (G)) = RU(V, Ry 4 ()
As G is Rt -conic we have :
RT(V, RT1y11(G)) = RO(W, RTy 01 (G)) = RU(U, s~ "RC7,01(G))
O

Proposition 1.2.2. Let G be an object of D*(Ty X) which is RT -conic, there is a canon-
ical morphism :

~

R7, Mm(g) — Sil]RFZ'TJ’:,M(g)["i—l]
which is an isomorphism if G is C*-conic.

Proof. The manifold A = ¢TxM is a line bundle on N with a non zero section s’ hence we
may define AT as RTs/(INV), the positive cone generated by the image of s'. Identifying Y
with the zero section of T3.X, we set K =Y U At and we have K — Y = AT,

Let K° be the polar of K. It is an open subset of Ty X equal to Ty X — H where H is
the closed subset of (Ty X) xy N where the imaginary part of df is < 0.

To prove this we may choose local coordinates :

Let (z,t) be a local coordinate system of M such that f(z,t) =t and let (z+iy,t+1s)
be local coordinates of X, so that f =1 + is.

We have N = {(z,t) e M |t =0}, Y = {(z +iy,t +1is) € X | t+is =0},
M={(z+iy,t+is)€eX |z=0,s=0}and MT ={(z,t) e M |t >0}.

We denote by (z + iy, +i5) the local coordinates of Ty X so that TwM = { (z +iy,t+
i3) €ETyX |y=0,§=0} and T\M+ = {(z +iy,t +143) € Ty X |y = 0,5 = 0,£ > 0}.
We have also H = { (z +iy,t +i5) € Ty X | §>0}.

On the dual space, the coordinates of Ty:X are (z+iy, 7+i0),iTxM = { (z+iy, T+io) €
T3X |y=0,7 =0}, At ={(z,i0) € iTxM |0 >0} and K = {(z + iy, 7 +i0) € T3 X |
T=0=00ry=0,7=0,0>0}.

Then it is clear that K° is the complementary to H in 7y X.

Let U be an open subset of Y. Proposition 3.7.12.(ii) of [12] gives isomorphisms :

~

Rl (7~ 1(U),G) = RI(K° N7~ Y(U),G)[-2] (1.2.3)
RTy (7~ 1(U),G) = RT(r 1 (U), G)[-2] (1.2.4)
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As K° =Ty X — H we have a triangle :

RTy (1~ H(U),G) — RU(r~ 1 (U),G) — RO(K° N7 1(U),6) —= (1.2.5)
On the other hand, as K — Y = AT we have a triangle :
RTy (=1 (U),G) — RUk (7~ (U),G) — RTA(V N7 (U),G) —» (1.2.6)
where V' is any open subset of T5.X such that AT =V N A.
Comparing triangles (1.2.5)and (1.2.6) gives an isomorphism :
RC (771 (U),G) " RCA(V N L (U), G)[+1] (1.2.7)

As G is Rt -conic we have (cf. proof of lemma 1.2.1) :
R, (V nx=Y(U), 5) —RT (U, s"erA(A))
hence the isomorphism (1.2.7) is equal to :
RD (U, ]RT*]RI‘H(Q)) L RD (U, s"IRFA(§)) [+1]

and this isomorphism being compatible with the restriction on U’ C U, we get an isomor-
phism of sheaves :

Rr, R (G) —= ' 'RTA (G)[+1] (1.2.8)
As TyM+ is the boundary of H we have a morphism
RM7—777(9) — Ry (G) (1.2.9)
which composed to (1.2.8) gives
RU775(G) — s’ 'ROA(G)[+1] (1.2.10)

Assume now that G is C*-conic. The fibers of Ty X — TnyM* and of Ty X — H being
contractible, the restriction morphism

RE (r H(U) = TNM,G) — BE (r (1) = 1,6)
is an isomorphism, hence (1.2.9) and (1.2.10) are isomorphisms. O

Proposition 1.2.3. Let F be an object of D(X), there is a morphism of triangles :

+1

ROy (F) —— RC 3 (F) | _ RT3+ (F)|n —
H l l (1.2.11)
RCy (F) — RuROr—m (v (F)) —— s 'Rlpuur(vy (F)) ——
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Proof. (This diagram was defined in [5]).
We have M+ — M = N which gives the first line and TyM+ — TnyM ™+ = N which
gives :

RL y (vy (F)) — RO (vy (F)) — RUpy e (vy (F)) ——

But RCy (vy (F)) = R Ry Ry (vy (F)) = RCy (F) which together with lemma 1.2.1
gives :

RTy (F) — Rz (vy (F)) — s ROy a1 (v (F)) —

Let us now consider the diagram (1.1.1). Let Z = p~}(M ) and Z the closure of Z in
Xy. We have j=1(Z) = TnM™, j=Y(Z) = TnM+ and, by definition

vy (F) =0 'Rj.p ' F
so we have a sequence of morphisms :

o p IR (F) = 07 'Rjup RO (F) = 07 'R, RO (571 F)

~ UﬁlRFZ (Rj*ﬁflf) — RFW(Uile*ﬁilj:) = RFW(VYU:))

As py,o, = T, we get a morphism :

The same proof gives RI'y+ (F) — R Ry + (vy(F)) and, by construction, they
commute with the canonical morphisms RI'77(F) — R+ (F) and Rl (vy (F)) —
RO ar+ (vy (F)). O

Remark 1.2.4. Morphisms RT';7 (F) — Rr Rl (vy(F)) and prop. 1.2.2 give a mor-
phism :
RO 4 (F) — 8" Rupg aa (o (F))[+1]

which is identical to the morphism of proposition (2.4.1.) in [13].

To see this we may look at the fibers at one point. In this case, we refer to [5] where
the calculation has been made when F is the sheaf of holomorphic functions on X but the
proof is identical for general F.

Lemma 1.2.5. Assume that F in D?(X) satisfies condition (1.1.2), then :

'Ry u (py (F)) = ROy (@(F)) @ oryja[—2] (1.2.12)

s 'Rl (vy (F)) = RUN ((F)) @ oryju(—1] (1.2.13)

Proof. In a neighborhood of the image of s’ we have py (F) = W(_:l(@’f(]:))[—l] where m¢
is the projection 7y X — Y hence

1

' Rz (ny (F)) = 8’7 RUyrg g (mg (@(F))) [-1)
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We have W(El(N) = N xy TyX and nc satisfies the condition of lemma 2.2.4. Ch I of [22]
hence :

RFiT;(,M (Wél(‘blf(f))) = RFiT;,MRFNxYT{;X (Wél(q)lf(y:)))
= RFZ’TJ’(,MW(EIRFN (@If(f))

Now we apply [12, Prop 3.3.4.(iii)] :
RPZ'TJ’(,MW(EIRPN((I)}(]:)) = WﬁlRPN(‘I)'f(}—)) ® oririm|N ® OTNxy Tyx|N[—1]
But formula (4.2.4) of [12] gives :

oTiTsM|N ® OTNxy Ty X|N = OTN|M & OTN|y ® OTN|X = OTN|M

which proves the first part of the lemma and the proof of the second part is the same. [

Remark 1.2.6. In this paper, we always assume that an equation f of N in M is given.
Such an equation defines a canonical isomorphism between ory|y; and the constant sheaf
Cy.

Theorem 1.2.7. Let F be an object of D°(X) which satisfies condition (1.1.2), there are
canonical morphisms of triangles :

RTy(F) —— RO (Fly —— RO, (Fly  ——

| | |

RIy (F) —— ' 'R (uy (F))[1] —— s ROy ar(vy (F)) —— (1.2.14)

H | |

ROy (F) —— ROy (®)(F))[-1] —— ROy (T(F)[-1] —
Proof. This theorem is the direct consequence of proposition 1.2.3, proposition 1.2.2 and
lemma 1.2.5.

We have to remark that our proof of proposition 1.2.2 is very similar to the proof of
the identity between s’ 'uy (F) and ® #(vy (F) in [12] Proposition 8.6.3. Both use the
same Fourier transform and it is not difficult to see that they are compatible, that is the
low-right square in (1.2.14) is commutative. O

Remark 1.2.8. The morphism RT y;+ (F)|y — RTn (F)[1] given by the triangle (1.2.1) is
equal to the ”topological boundary value” defined by Schapira in [23],[24]. The diagram
(1.2.14) shows that it factors through :

R+ (F)|v — ROy (U3(F))[-1] — ROy (F)[1]
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1.3 The hyperbolic case

We will show in this section that under a suitable hyperbolicity condition, the morphisms
of triangles in theorem 1.2.7 are isomorphisms.

Let us fix local coordinates as in the proof of theorem 1.2.3 :

Let (z,t) be a local coordinate system of M such that f(z,t) = ¢ and let (z+iy,t+1s)
be local coordinates of X, so that f =t + is.

We have N = {(z,t) e M |t =0}, Y = {(z+iy,t +1is) € X | t+is = 0},
M={(zr+iy,t+is) €eX |z=0,s=0}and M+ ={(z,¢t) e M |t >0}.

The coordinates of TyX are (z+iy, t+is,{+in, 7+i0), Ty X = { (v +iy, t+is,E+in, 7+
i0) eT*X [t+is=0,{+in=0} and iT3M = {(z +iy,7+i0) € IyX |y=0,7=0}.

Definition 1.3.1. Let F be an object of D®(X), we will say that F is ”near-hyperbolic”
at 0 along N if there exists some € > 0 and C' > 0 which satisfies :

SS(F)n{lz| <elyl <e0<t<els| <e} C{|r| < Clnl(lyl +[s]) + Cl¢]}

It is not difficult to verify that this condition is independant of local coordinates.

As usual, a function p : T*X — C will be said to be a homogeneous hyperbolic
polynomial at zo € M in the direction « € iT; M if p is homogeneous polynomial in the
fibers of 7% X and if for any £ € +T; M, we have :

p(€ +ica) 0 for e #0

Lemma 1.3.2. Let p be a homogeneous hyperbolic polynomial at xy € M in the directions
of iT%M and F be an object of D*(X) such that SS(F) C {(fp)~1(0)} then F is "near-
hyperbolic” at 0 along N.

Proof. From theorem 2.3. of [2], we know that there exists some C > 0 and ¢ > 0 such
that :

{p O} N {lz] <elyl <eltl <els] <e} C {lo] < ClEI(lyl +|s) + Clnl }
and because p is homogeneous we may replace p by ip to get definition 1.3.1. O

This lemma shows that the condition of near-hyperbolicity is weaker than hyperbol-
icity at 0. But the constant C' in the definition 1.3.1 is independant of e, hence near-
hyperbolicity is stronger than hyperbolicity on ¢ > 0 near 0.

Proposition 1.3.3. Let F be an object of D*(X) which is "near-hyperbolic” at 0 along
N. Then there is an isomorphism

R4 (F) — R, RU; e (vy (F))

Proof. The morphism has been defined in the previous section and to prove that it is an
isomorphism, we have to prove that there is a neighborhood Uy of 0 in X such that for
any neighborhood U C Uy of 0 and any k& > 0, we have :

H¥(r Y (U) = TNM+, vy (F)) — HYU — M+, F)
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By the definition of the specialization we have [12, th 4.2.3] :
H*r=H(U) = TnM ¥, vy (F)) = lim H*(V, F) (1.3.1)

where the limit is taken on the family of open subsets V of U such that Cy (U — V) C
TNM+.

Let G be a closed subset of X such that Cy(G) C TyM*. By definition ThM+ =
{(z+iy,t+i8) € Ty X |y=0,§=0,£ >0}.

When y # 0, we have Cy(G) = ) hence GNY C N. This implies as in the proof of
proposition 3.2.3. in [7] :

Ve > 0,36 >0,GN{(z+iy,t+is) € X ||yl >e,ls|+[t| <} =0

There exists a function a : R — R of class C* such that a(e) < de and which satisfy
a(0) =d'(0) =0, 0 < d'(r) <a(r) if r #0. We have :

G C{(z+iy,t+is) e X ||t| +s| Z a(ly]) }

hence
Gc{(z+iy,t+is)e X |t>a(y|)}

When y = 0, we have Cy(G) C {5 =0, >0} hence :
Ve>0,30 >0,GN{(z+iy,t+is) € X | |y| < d,|s| <o,|t| <} C{et>]s|}

This implies that there exists a function a; satisfying the same conditions than a and
such that

GC{(e+igt+is)eX[t>al(z)}

and thus there exists a function b : R — R of class C* on R — {0} such that 5(0) = 0,
b(r) >0ifr #£0,0'(r) >0 if r # 0 and lim,_,¢ b'(r) = +00 and

GC{(x+iy,t+is) e X |t>b(s])}

Taking the supremum of a and b and smoothing it we get a function p(r,s) : RxR — R
of class C* except at (0,0) such that

GC{(z+iyt+is)e X[t>p(yls)}
and which satisfy the following conditions :
(i) ¢(0,0) =0 and ¢(r,s) > 0 if (r,s) # (0,0).

(ii) 7 = @(r,s) is of class C* everywhere, ¢!.(0,0) = 0 and 0 < ¢l (r,s) < ¢(r,s) if
(r,s) # (0,0).

(i) @5(r,s) > 0if (y,s) # (0,0) and lim(, o) (0,0) Ps(7; 8) = +00.
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Conversely, if a function ¢ satisfy theses conditions, the closed set G, = {t > ¢(|y|,s) }
satisfy Cy (G,) C TnMT.

Any G such that Cy(G) C TnMT is contained in some G, hence the inductive limit
in the equation 1.3.1 may be taken on these sets that is :

H*(r'(U) = TvM ¥, vy (F)) = lim H*(U — G, F) (1.3.2)
where the limit is taken on the neighborhoods U of Y in X and on the functions ¢

satisfying (i),(ii) and (iii).
To prove the lemma, we have now to prove that :

H*U - G,,F) = H*(U — M+, F) (1.3.3)
So, we fix U and ¢ and define for any ¢ > 0 :
Qe={(z+iy,t+is) €U |t <cp(lyl,s)}

We have ; =U — G, and
QZUczlﬂCZU—m

To prove formula 1.3.3 we will use proposition 2.7.2. of [12].
To do it we have to check that

Rlg_q,(F)z =0

for any z in Z, = Ng>e(Qe — Q).
(In fact the exact condition required by [12] is R['x g, (F); = 0 but it is easy to see
that the proof still works here with €2 instead of X).

By the definition of the micro-support SS(F) we have to verify that the varieties
Ze={(z+iy,t+is) €U [t =cp(lyl,s)}

are non characteristic for SS(F) if (y,s) # 0.
The normal vector to the variety t = co(ly|,s) is (¢ = 0,n = col(lyl,s)y/|lyl, 7 =
—1,0 = —¢!(|y|, s) thus using definition 1.3.1 we have to prove that :

Celelr Iyl s)(lyl +Is]) <1

and using condition (ii) we have to prove that C|t|(Jy| + |s|) < 1.
This condition does not depend on ¢ and so it is true if U is small. O

Corollary 1.3.4. Let F be an object of D*(X) which satisfies condition (1.1.2) and is
near-hyperbolic along N then the morphisms of triangles of theorem 1.2.7 are isomor-
phisms.
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2 Boundary Values for D-modules

2.1 General case

We keep the notations of section 1.2, that is we consider a real analytic manifold M of
dimension n, N a smooth hypersurface of M, X be a complexification of M and Y a
smooth hypersurface of X complexified of N. We assume that N has an equation f =0
and denote by

MT=Mn{f>0}, Mt=Mn{f>0}

and by j: M™ < M the inclusion. An equation of Y is fc, the complexification of f.
We denote by Ox the sheaf of holomorphic functions on X and by Dx the sheaf of
differential operators on X with holomorphic coefficients.
In section 2, M will denote a coherent D x-module or an object of D.(Dx), the derived
category of bounded complexes of Dx-modules with coherent cohomology. We will apply
the results of section 1 to the complex F of solutions of M that is

F = Sol(M) := RHomp, (M, Ox)
The sheaf of hyperfunctions on M is, by definition :
By = Hy(Ox) ® orm
As HE,(Ox) =0 for k # n and as By is a flabby sheaf we have :
Rl (0x) ® ory[n] = RT3+ (RCy (Ox) ® ory[n]) = RU54(Byr) = Ty(Bur)

This means that RI';+(Ox)[n] is the sheaf of hyperfunctions on M with support in M.

The same result apply with N or M ™ replacing M.
We have

er(]:) = er RHOIHDX (M, 0)() = R?'[OHIDX (M, er((’)x))
= RHomp, (M, T35(Bwm)) ® orar[—n]
The microlocalization of Ox along Y was first defined in [22] and is generally denoted

by C§1§| - As the complex py (Ox) is concentrated in degree 1 (the codimension of Y) we
have :

Cyix = ny(Ox)[1] = H' (v (Ox))
The sheaf of 2-hyperfunctions on A = iTxM has been defined in [7] where it is denoted
by B and in [13] where it is denoted by B%. By definition :

BX = HR(CY|x) ® oy

As "Hﬁ(C& ) = 0 for £ # n and as the microlocalization commutes with the functor
RHom we have

R 7z 0 (py (F)) = RHomp, (M, RTirs s (py (Ox))) = RHomp, (M, B) ® ory[—n — 1]
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The next thing to remark is that the micro-support SS(Sol(M)) of the complex of
solutions is equal to the characteristic variety Ch(M) of the module M [12, theorem
11.3.3]. If M is an object of D .(Dx), the same is true if Ch(M) denotes the union of the
characteristic varieties of all the cohomology groups of M [11, theorem 10.1.1].

In particular, M will be said ”near-hyperbolic” if Ch(M) satisfies the same condition
than SS(F) in definition 1.3.1. Lemma 1.3.2 shows that M is near-hyperbolic if it is
hyperbolic.

We may now apply theorem 1.2.7 to the present situation and get :

Theorem 2.1.1. Let M be a coherent Dx-module or an object of D.(Dx) such that :
Chrc(Ch(M)) C Sa (2.1.1)
then there are canonical morphisms of triangles :

Sol(M,Tn(Bur)) — Sol(M,Tye(Bu))ly — Sol(M, Ty (Bar))|y ——>

H l l

Sol(M,Tn(By)) —— 7 18ol(M,B2) ——  s18ol(M,Gy) —

| | o

Sol(M,I'n(Bar)) —— RN (®f(Sol(M)))[n—1]——=RTn (¥ (Sol(M)))[n—1]——

If M is near-hyperbolic, these morphisms are isomorphisms.

In this formula, Gn = Rl'r, i (vv (Ox))[n] @ orn, Sol(M,.) = RHomp, (M,.) and we
have omitted ®ory in the last line.

Remark 2.1.2. If M is a holonomic Dx-module, it always satisfies condition (2.1.1).

Proof. If we apply theorem 1.2.7 and corollary 1.3.4 we get the result except the fact that
the classical sheaf of vanishing cycles ®(Sol(M)) has been used instead of ®(Sol(M)).
The equality between ®(Sol(M)) and @' (Sol(M)) will come from the following theorem
of [17] :

Theorem 2.1.3. Let M be an object of D.(Dx) defined in a neighborhood of Y whose
characteristic variety satisfies Cp.(Ch(M)) C Sh,-

Let ' : T{;X — Y be the canonical projection from T{iX =TyX —Y toY. There
exists a complez of 7r'_1’D§° module ®{1}(M) such that :

RiHomp, (M,c$|X) —~ RHom,-1pe (5{1}(M),n"1oy)

The complex ®{1}(M) of vanishing cycles of type {1} has been defined algebraically
in [17] and we will not recall its definition here.

We just use the fact that on T{;X , it has resolutions by free 7/ _1D§°—modules of finite
type, hence it is locally constant on the fibers of '.
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The proof that ®(Sol(M)) is isomorphic to ®(Sol(M)) being local, we may assume

that X =Ty X =Y x C. Let C* be the universal covering of C* and 7: Y x C* —» Y x C*
the canonical projection.

Let £ € Y x C* and U a small neighborhood of z. We have 7 }(U) ~ U x Z and
because of its finite type resolution, the sheaf G = ®{1}(M) satisfies :

RO(U, mom 1G) = RO(n 1(U), 7 1G) = RT(U, G)%

The same property is then true for RHomp, /\/1,65| ) = py(Sol(M)) and the proof of
theorem 8.6.3. in [12] may be used. This shows the result. O

Remark 2.1.4. Tt is proved in [13] that the canonical morphism Dy(By) — B3 is
injective. This shows that if M is a Dx-module

Hom(M, Ty (Bu)) |y — s~ Hom(M, BY)

is injective even without hyperbolicity.

2.2 Regular D-modules

The sheaf Dx|y of differential operators defined in a neighborhood of the submanifold Y
of X is provided with two filtrations. The first one is the usual filtration by the order and
will be denoted by (Dxy)ren- The second one is the V-filtration defined in [6] by :

VjDX:{PEDX‘Y|VjEZ’ PI{/CI{’_k}

where Zy is the defining ideal of Y in X and I{, =0Ox if f <0.

The graduate sheaf gryDx associated to this filtration is isomorphic to the direct
image 7. D1, x) of the sheaf of differential operators on Ty X with polynomial coefficients
in the fibersof 7 : Ty X — Y.

We denote by @ the Euler vector field of the normal bundle 7y X and by © a section
of V9Dx whose class in gr?,’DX is 6.

We recall that a coherent Dx-module is said to be specializable along Y if for any
local section u of M, there exists some polynomial b and some differential operator  in
V~1Dx such that b(©)u + Qu = 0.

If moreover such b and @) may always be found with @ of order less than the degree of
b, M is said to be 1-specializable [15] or regular-specializable along Y.

An object of D.(Dx) is specializable along Y or regular-specializable along Y if all its
cohomology groups have the property.

We recall that a holonomic module is specializable along any submanifold Y of X and
that a regular holonomic module is regular-specializable along any submanifold Y [7].

If we fix local coordinates (z,t) of X such that Y = {¢ =0}, we may choose © = tD;
and Q is in V~!Dy if it is of the form tQ1 (z,t, Dy, tDy).

We remark that the principal symbol of P = b(tD;) + tQ1(z,t, D,,tD;) where b is of
degree m and Q1 of order < m is (¢t7)™ + tq(x,t,&,t7) and thus the tangent cone along
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Ac of the characteristic variety of P is contained in #7 = 0 that is Sa.. This shows that
if M is regular-specializable, then it satisfies condition (2.1.1).

Let i : Y < X the canonical immersion and i*'M the extraordinary inverse image of
M. Recall that i'M = Dy i*Dx M where i*M is the ordinary inverse image and Dx the
duality of Dx-modules, that is Dx M = RHomp, (M, Dx).

The sheaves ®y (M) of vanishing cycles and ¥y (M) of nearby cycles of the specializ-
able Dx-module M where defined in [6]. Other definitions which extend to the derived
category D.(Dx) were given in [21], [16], [19]. We refer to these papers for the precise
definitions and the proof of the following proposition :

Proposition 2.2.1. If M is a an object of D.(Dx) specializable along Y there are trian-
gles in the category D.(Dy) :

Ty (M) -2 dy (M) — iM 1
oy (M) 2, Uy (M) — M i)
If M is regular-specializable, there are isomorphisms :

RHomp, (i M, Oy) = Ry (RHomp, (M, Ox))[+1]
R%OIHDY (\I/y(M), Oy) =~ \Ilfzc (R’HOIHDX (M, (9)())
RHomp, (Py (M), Oy) =~ @5 (RHomp, (M, Ox))

This proposition gives an isomorphism of triangles :

RTy (Sol(M))[+1] —— @ (Sol(M)) —— Ty, Sol(M)) —
ZJ{ ZJ/ gl
Sol(i'M)  —— Sol(®y(M)) — Sol(Ty(M)) — =

Remark 2.2.2. The isomorphism Sol(i' M) ~ RTy (Sol(M))[1] has been proved in a more
general case (Fuchsian modules) in [18, theorem 3.2.4.]

We have
By = Rly (Oy)[n—1] and T'n(By) = RCyRCy (Ox)[n] = RCy Ry (Ox)[n]
so, if we apply the functor RT' 5 (.) to the morphism of triangles, we get isomorphisms :

RHomp, (M,Tn(Bu)) — RHomop, (' M, By)
]RFN ((Df(Sol(M))) L) ]RHOIDDY ((I)y(M), BN)
RT v (U ¢(Sol(M))) — RHomp, (¥y (M), By)

As regular-specializable D x-modules satisfy condition 2.1.1, we may combine this re-
sult with theorem 2.1.1 and get :
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Theorem 2.2.3. Let M be a coherent Dx-module or an object of D.(Dx) which is
reqular-specializable along Y, then there is a morphism of triangles :

Sol(M,Tx(Bar)) —— Sol(M,Tyr(Bar))ly —— Sol(M,Tprs (Bar)) |y ——

| | 7|

Sol(i*M,By) —  Sol(®dy(M),By) — Sol(Ty(M),By) —s

which is an isomorphism if M is near-hyperbolic along Y .

[Sol(.,.) means RHomp, (.,.) in the first line and RHomp, (.,.) in the second.]

Remark 2.2.4. Using remark (2.1.4) we can see that the following morphism is always
injective if M be a coherent Dx-module :

HOHLDX (M, PW(BM))lN — HOIIIDY (@Y(M), BN)

2.3 “Classical” boundary value theorems

In this section, we want to compare the morphisms of theorem 2.2.3 with older results.

Proposition 2.3.1. Let M be a coherent Dx-module which is reqular-specializable along
Y .The morphism

,6, : ]RHOHIDX (M,PM+ (BM)) — RHOHIDY (\I’y(M),BN)
defined in [5] is the same than the morphism (B of theorem 2.2.3.

Proof. Both morphisms are defined as the composition of the same one
RHomp, (M,Tpr+(Bar)) — R RHomop, (M, RU7y, p(vy (Ox))[—n] ® orn)
and morphisms 4 and /'

RHomp, (M, RU'ry 1 (v (Ox))[=n] ® orn) =2 Rr, RHomp, (Uy (M), By)
so, we have to prove the identity of 8 and /.

As both are functorial we may as in the proof of theorem 2.2.1. in [16] replace M
by a resolution, fix local coordinates (x,t) and assume that M is defined by a matrix
b(tDy) Iy — A where b is a polynomial, Iy the N x N-identity matrix and A a matrix
satisfying suitable hypothesis. Let M be the module defined by b(tDy)I .

Then proposition 2.2.1. of [16] shows that R’Hom(M,C%X) = R’Hom(Mo,C&X) and
a Fourier transform shows that the same is true for vy (Ox).

So we may assume from now on that M = Dx/Dxb(tD;). Splitting b into prime
factors we may assume that b(6) = (0 — a)P and by induction on p that p = 1.

We have to prove the proposition in the very simple case where M is the Dx-module
M, = Dx/Dx(tD; — ). We will make a detailed proof because it is the basic example



Boundary Values 19

which explain all the construction. We have to distinguish three cases, that is @ non
integer, a nonnegative integer and « negative integer.

Let us first remark that in all cases, ®y (M) and ¥y (M) are isomorphic to Dy as
Dy -module but the morphisms ”var” and ”can” depend on a.

a) a € C — Z: We have i* M = 0 and i'M = 0 and thus the morphisms ¥y (M) 2

var

&y (M) and &y (M) —— ¥y (M) are isomorphisms of Dy-modules.
If we fix a determination of logt¢ and denote by p : X — Y the projection (given by
local coordinates), we have Sol(M)|x—y =~ p~ 'Oy ® t* hence

®f(Sol(M)) =~ Tf(Sol(M)) ~ Oy
RHompy (M, T5+(Bum)) ~ By @5
RHomp, (M,Tp+(Bumr)) ~ By ® t&_)

where ¢ is the function on R equal to ¢ if £ > 0 and to 0 if £ < 0 and ?(4) its restriction
tot > 0.

By definition the morphism 3’ associate to u(z)t® the hyperfuntion u(z) € By. It is
clear that morphisms 3 defined here is the same.

Let us remark that the morphism RHomp, (M, T';+(By)) = RHomp, (Py (M), By)
is slightly more complicated. It associates first to u(x)t$ the class of the function whose
boundary value is u(z)t% that is the class of u(z)t*/k, with ko = €*™ — 1 and then the
boundary value, that is u(x)/kq.

Of course, this is compatible with the morphism of variation :

Sol(®y (M)) = Sol(Ty (M))

which associate to u(z)t® its variation u(z)((te*™)® — t®) = kqu(z)

b) @ € Z, a < 0: We have i*M = 0 and ¥y (M) =23 &y (M) is an isomorphism of
Dy-modules. On the contrary, the morphism ®y (M) —=3 Ty (M) is zero while i'M
has two non zero cohomology groups, both isomorphic to Dy. We have :

RHomp, (M, T3+ (Bu)) = By ® 677D (1)
RHomp, (M, Lpr+(Bu)) = By @t

and the morphism between them is zero. (6U)(t) is the n-th derivative of the Dirac
distribution).
The morphisms 3 and 3’ are the same than in the previous case.

c) a € Z, a > 0: The situation is dual to the previous one, we have ‘M = 0 and
by (M) 5 Ty (M) is an isomorphism of Dy-modules while ¥y (M) 5 &y (M) is
zero and 7* M has two non zero cohomology groups, both isomorphic to Dy. We have :

RHOIIIDX (M, Fm(BM)) ~ BN ® t?r_
RHOIHDX (M, FM+ (BM)) ~ BN ® t&_)

and the morphism between them is zero. The morphisms 3 and (' are the same than
before. 0
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Let us now recall the construction of Kashiwara-Oshima [9] and Kashiwara-Kawai [7].
In [9] the authors considered the case where M is defined by an operator P with regular
singularities along Y with simple characteristic exponents «; such that o; —a; ¢ Z if i # j.
Then proposition 4.4. of [9] is equivalent to the following isomorphism :

s'"' RHomp, (M,Cy) — 8" RHomp, (M, BY)
Considering the factorization :
T (Bu) = 8’ 'Cur > '~ B3

the morphism of boundary value in [9] is the factorization of £ :

RHompy (M, Pi(Bu)) — P RHompy (M, Cu)
5 s’ RHomp, (M, B}) — RHomp, (By (M), By),

while in [7] the authors considered the case of multiple characteristic exponents, and their
morphism is a particular case of £, as shown in proposition 2.3.1.

Using the identification of proposition 2.3.1, we can see that if we restrict theorem 2.2.3
to the case M = Dx /Dx P for some differential operator P, we recover exactly a result of
Tahara [25]. The hypothesis of Tahara was that P is “Fuchsian hyperbolic” which means
in our notations that it is regular-specializable and satisfy the condition of lemma 1.3.2
hence is near-hyperbolic.

2.4 Application

A natural question which arises in boundary value problems is the one of knowing under
which assumptions the boundary values of the solutions of a given system M are analytic
functions on the boundary N (see [20], where such solutions are called ideally analytic).

By theorem 2.2.3 this assumption should be read in ¥ ;(Sol(M)) and @ ;(Sol(M)), on
the grounds that they have to be elliptic systems on V.

Ezample 2.4.1. Let M = R", X = C", with the coordinates (z1,...,%n—1,t), real on M,
andY ={t=0}, N=YNM. Let M = DTX be regular along Y, and assume that the

Laplacian
n—1 P 2
Ny = —
Y ; (65[31) eL

Then ®¢(Sol(M)), ®;(Sol(M)) are elliptic on N, hence the boundary values are analytic.
More generally, denoting A = ¢Ty,M and Ac = TyX, we have :

Proposition 2.4.2. Let M be a coherent Dx-module regular-specializable along Y .
Then the boundary values of the solutions are analytic if the characteristic variety of
M satisfy :
CAC(Ch,(M)) NTrAc C TXCA@ UTyAc
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Proof. Proposition 1.1.4 shows that
Crc(CR(M)) = j1p7 ' C1 U japy ' Co
where C; and Cy are two involutive homogeneous subvarieties of T*Y and that :
SS(\IJ'f(Sol(M))) CcC; and SS(<I>'f(Sol(M))) C Cy
The condition of the proposition is equivalent to :
CiNTyY CIyY and CoNTyY CIyY
If M is regular-specializable along V', ®;(Sol(M)) = RHomp, (2y (M), By) and thus
Ch(®y(M))NTxY C1yY
that is ®y (M) is elliptic and the same is true for ¥y (M). There solutions are thus
analytic. 0
References

[1] E. Andronikof and T. Monteiro Fernandes, On the tempered solutions of reqular sys-
tems, D-modules and microlocal geometry, Walter de Gruyter, Berlin-New York,
1992, pp. 107-124.

[2] J.-M. Bony and P.Schapira, Solutions hyperfonctions du probléme de Cauchy, Lect.
Notes in Math. 287 (1980), 82-98.

[3] J.-L. Brylinski, B. Malgrange, and J.-L. Verdier, Transformation de Fourier
géométrique II, C.R. Acad. Sc. Paris serie I 303 (1986), 193-198.

[4] T. Monteiro Fernandes, Formulation des valeurs au bord pour les systémes réguliers,
Compositio Math. 81 (1992), 121-142.

[5] , Holmgren theorem and boundary values for regular systems, C.R. Acad. Sci.

Paris Série T 318 (1994), 913-918.

[6] M. Kashiwara, Vanishing cycles and holonomic systems of differential equations, Lect.
Notes in Math., vol. 1016, Springer, 1983, pp. 134-142.

[7] M. Kashiwara and T. Kawai, Second microlocalization and asymptotic expansions,
Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lect. Notes
in Physics, vol. 126, Springer, 1980, pp. 21-76.

(8]

[9] M. Kashiwara and T. Oshima, Systems of differential equations with reqular singu-
larities and their boundary value problems, Ann. of Math. 106 (1977), 154-200.

, Microlocal analysis, Publ. RIMS, Kyoto Univ. 17430 (1983).




22

[10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Yves Laurent and Teresa Monteiro-Fernandes

M. Kashiwara and P. Schapira, Micro—hyperbolic systems, Acta Mathematica 142
(1979), 1-55.

, Microlocal study of sheaves, Astérisque, vol. 128, SMF, 1985.

, Sheaves on manifolds, Grundlehren der Math., vol. 292, Springer, 1990.

M. Kashiwara and Y.Laurent, Théorémes d’annulation et deuxiéme microlocalisation,
Preprint Orsay (1977).

Y. Laurent, Théorie de la deuziéme microlocalisation dans le domaine complexe,
Progress in Math., vol. 53, Birkhiuser, 1985.

, Polygone de Newton et b-fonctions pour les modules microdifférentiels, Ann.
Ec. Norm. Sup. 4e série 20 (1987), 391-441.

, Vanishing cycles of D-modules, Inv. Math. 112 (1993), 491-539.

, Vanishing cycles of irregular D-modules, Prépublications de 1'Institut Fourier
304 (1995), to appear.

Y. Laurent and T. Monteiro Fernandes, Systémes différentiels fuchsiens le long d’une
sous-variété, Publ. RIMS Kyoto Univ. 24 (1988), 397-431.

Y. Laurent and B. Malgrange, Cycles proches, spécialisation et D-modules, Ann. Inst.
Fourier Grenoble 45 (1995).

T. Oshima, A definition of boundary values of solutions of partial differential equations
with regular singularities, Publ. RIMS, Kyoto Univ. 19 (1983), 1203-1230.

C. Sabbah and Z. Mebkhout, D-modules et cycles évanescents, Travaux en cours,
vol. 35, Hermann, Paris, 1988.

M. Sato, T. Kawal, and M. Kashiwara, Hyperfunctions and pseudo-differential equa-
tions, Lect. Notes in Math., vol. 287, Springer, 1980, pp. 265-529.

P. Schapira, Front d’onde analytique au bord II, Sém. EDP, Ecole Polytech. 13 (1986).

, Microfunctions for boundary value problems, Algebraic Analysis, vol. 2, Acad.
Press, 1988, pp. 809-819.

H. Tahara, Fuchsian type equations and Fuchsian hyperbolic equations, Japan J. Math.
5 (1979), no. 2, 245-347.



