MULTIPLICITIES OF EIGENVALUES
AND TREE-WIDTH OF GRAPHS

YVES COLIN DE VERDIERE

ABSTRACT. Using multiplicities of eigenvalues of elliptic self-adjoint differential
operators on graphs and transversality, we construct some new invariants of
graphs which are related to tree-width.

1. INTRODUCTION AND RESULTS

In this paper, we present some extensions of our invariant (G) for a finite graph
G = (V, E) which was introduced in [3].

Let us recall that p(G) is defined using multiplicities of the second eigenvalue
Ao of real symmetric matrices A related to G (A € Og, i.e. a;; < 0if {i,j} € E
and a; ; = 0if ¢ # j and {i,j} ¢ E). For such an operator, the first eigenvalue
(ground-state, A;) is non-degenerate if G is connected (Perron-Frobenius).

Moreover, u(G) is related to the genus of G: p(G) < 3 if and only if G is planar;
#(G) < 4 genus(G) + 3 . Recently, Lovasz and Schrijver [16] found that linklessly
embeddable graphs are characterized by p(G) < 4.

What kind of extensions of these properties are valid for self-adjoint (complex)
matrices related to G?7 Such Hermitian matrices are obtained if we discretize
Schrodinger operators with magnetic fields using the method of finite elements.

The eigenvalues of such operators can be very degenerate even for a Schrodinger
operator H with constant magnetic field in the plane

H=—(0; —iBy)* - ;

the spectrum of H, whose elements are called Landau levels in physics, is the set
of eigenvalues o(H) = {E,, = (2n + 1)|B| |n € N}. The eigenspaces ker(H — E,,)
are infinite dimensional.

Therefore, we cannot expect some upper bound for multiplicities in terms of the
genus of G, see [10].

The main idea of our paper is to compare G with a tree: if T is a tree and A
is some self-adjoint elliptic operator on 7', it is always possible to reduce to the
case where A € Op by some gauge transformation (conjugation by some diagonal
unitary matrix); then the Perron-Frobenius theorem applies and shows that the
ground-state is non-degenerate.
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For the other eigenvalues A, we can consider B = (A — A)? whose ground-state
is 0 with eigenspace ker(A — X). Of course B is no more a differential operator on
T, but it is a differential operator on the graph 7°(2) (V(T(z)) =V(D), E(T(Q)) =
E(T) U {{i,j}, i, € V(T)|distance(i,j) = 2}) whose tree-width tw(T(2)) (see
section 6) is bounded by 3, if all vertices of T' have degree at most 3.

In all cases, we see that some trees are involved !!

Let us give more precise definitions and the main statements of the paper:

if G = (V,E) is a finite undirected graph, without loops or multiple edges, we
write N = |V| and we will often index the vertices from 1 to N. Let n be some
integer > 1 and H = Han = ®ievC® with the canonical Hilbert space structure.
We will often consider elements of H as functions from V' to C* and use the notation
p(t) forp e Hand i € V.

An endomorphism A of # will be called an n-differential operator on G if A =
(A ;), (i,7) € V xV where the A; ; ’s are linear maps from C* to C” and A; ; =0
ifi+#jand {i,j} ¢ E.

Ais elliptic if the A; ; 's, ({i,j} € F) are invertible,

and self-adjoint if Vi, j, A¥ . = A;; (A* denotes the adjoint of A).

*
0,
Definition 1. Let us denote by Mg , the set (manifold) of all elliptic self-adjoint
n-differential operators on G and Mg = Mg 1. We will denote by Rg C Mg the
subset of A’s with real coefficients and by Og C Rg the set of those A = (a; ;)
which satisfy

V{Z,_}} € E, a;; < 0.

For any A € Mg 5, let us denote by Aj(A) < Ay(A) < --- < Ayn(A) the ordered
set of its eigenvalues repeated according to their multiplicities and by o(A) =
{Aj(A), j=1,---,nN} the spectrum of A.

If A € R, let us denote by d(A, A) (or d(A) if no ambiguity is possible) the
dimension of ker(A — AId).

The Perron-Frobenius theorem implies that, if G is connected, and A € Og,
d(Ai(A)) = 1.

Van der Holst proved in [13] the following extension to graphs of Cheng’s theorem
for manifolds [2]: if G is the 1-skeleton of some triangulation of the 2-sphere S?
and A € Og, d(A2(4), A) < 3.

In the papers [18] and [19], Robertson and Seymour introduced the tree-width of
a graph G, which we will denote by tw(G).

We will use some slightly different definition which is more convenient for us :

Definition 2. If G is a finite graph, la(G) is the smallest of those n for which G
is a minor of T' x K,, where T is some tree and K, is the clique with n vertices
(complete graph).

We have (see section 6):
Proposition 1. tw(G) and la(G) satisfy the following inequalities:
la(G) — 1 <tw(G) <2a(G) - 1.
We prove the following results:

Theorem 1. If A € My, where T is a tree all of whose vertices have degree < 3,
d(A1(A), A) < n. Moreover, if d(X\, A) > 2n + 1, there ezists {i,j} € E(T) and
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@ € ker(A — X) such that, if Ty and Ty are the two connected components of T' with
the edge {i,j} deleted, then:

(1) p(i) = ¢(j) =0
(ii) there exists a € V(T1) and b € V(T3) such that p(a) # 0, ¢(b) #0.

Definition 3. Let Z be some submanifold of Herm(C" ) or Sym(RY). We recall
that an eigenvalue A of A € 7, where d(X, A) =1, is Z-stable if 77 and W,  intersect
transversally at A where W}y is the manifold of all matrices B in Herm(CV) or
Sym(RV) such that dimker(B — ) = L.

Let us write ds(A\, 4, 2) = d(X\, A) if A € o(A) is Z-stable and d;(A\, A, Z) = 0
otherwise. Here 7 = Mg C Herm(CV) or Z/ = Rg C Sym(IRV).

It is possible to make the transversality condition more algebraic:

Definition 4. Let G = (V, E) be a graph. If i € V, define ¢;(z) = |2;|? (quadratic
form on RY or Hermitian form on €V and, if {i,j} € E, define

¢ j(x) = zixj, {i,j} €F

(quadratic forms) and

(Hermitian forms).

Proposition 2. If F = ker(A =), the transversality condition is equivalent to the
fact that the space of Hermitian forms (resp. quadratic forms) on F is generated
over R by the restrictions to F of the |V |+ 2|E| forms¢;, i € V

and Eg,j) 6;',,]" {Z;J} S E

(resp. of the |V |+ |E| forms e;, i €V and ¢; ;, {i,j} € E).

We have the :

Theorem 2. 1) If A € Mg, d;(M(A4), A, Mg) < la(G) and,
¥k, dy(\(A), A, M) < 2la(C);
2) if A € Re, ds(M(A), A, Re) < la(G) and,
Vk, ds(As(A), A, Re) < 2la(G).

Of course, these estimates remain valid if A € Og.

It is possible to reformulate Theorem 2 by introducing the following invariants
of graphs :

Definition 5. Let us define
vy (G) = max{d,(As(A), 4, Ra)|4 € Ra}

v (G)) = max{ds(\x(A), A, Mg)|A € Mg} .
Remark : we may have defined p(G) by the following equation :
1(G) = max{d, (X2, 4,06) | A€ Og} ,

and we have :
u(G) < E(G)

One of the main results of our paper is the following :
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Theorem 3. The invariants v satisfy
i (G') < v (G
for every minor G' of G.
Remark : One can show that V%K(KL;),) = 2 while V‘QC(KL?,) =1.
Is it true in general that :
Ve (G) 2 v (G) ?
With definition 5, Theorem 2 becomes :
Theorem 4. For K =R or C, we have:

(i) vi*(G) < la(G)
(#1) vE(G) <2 1a(G) .
In particular, u(G) < 2 la(G).

As an easy corollary of the previous statements, we have the following charac-
terization of forests which we prove in section 7 :

Theorem 5. The following conditions are equivalent :
(i) G is a forest,
(i1) VE(G) = 1,
(iii) vI(G) = 1.
It is interesting to observe that the new invariants vX (G), which we have intro-

duced above, are not at all related to planarity :
we describe in section 7 a sequence of planar graphs G}, such that

I/F(Gn) = V(E(Gn) =n,
and
la(Gp) =n .
Note : this paper is a complete revision, including new results (in particular,
concerning eigenvalues A with k > 1) and new proofs, of my preprint [8] .
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2. A CRUCIAL LEMMA

Lemma 1. Let G = (V, E) be a finite connected graph and {1,2} € E(G) such
that G' = (V, E \ {1,2}) is not connected. Let A € Mg,, F = ker A, and let
r:F—=C" @C" be given by

Then dimr(F) < n.

Proof. The proof is based on Green’s formula. Let V} be the set of vertices of the
connected component of 1 in G’. For any ¢, € F, let us denote by 1,1 the
truncated functions defined by (i) = (i) if i € Vi and ¢1(i) = 0if ¢ ¢ Vi
P1(3) = (7)) if i € Vi and 91(¢) =0 if i ¢ V1.

Let us compute explicitly the righthand side of the following identity:

0=<Api|tp1 > — < p1|A1 >,
using the fact that the only contribution to the scalar products is the value at vertex

1 (ifi £ 1, Ap1(i) = 0 or ¢1(i) = 0).
Let us compute Ag; (1) using the fact that Ag (1) = 0; we get

Apr (1) = —A12(p(2)) -

Hence, the expression to be evaluated reduces to

0 =< A12(p(2)) ¥ (1) > — < p(1)|A12(¥(2) >,

which we call Green’s formula.
Let us write B = Ay 3 and denote by w the Hermitian form on C* @ C* given
by:

w((21,22), (11,92)) = V=1(< Baa|lyn > — < 1[Bys >) .
It is easy to see that w is non degenerate, so that any isotropic subspace has

dimension at most n; in particular, this is true for r(F). O

There exists a modification of the above result which we state without proof:

Lemma 2. Let A € Mg, Vi CV and let Ey = {e; = {a;,b;} € E, j=1,--- ,n}
the set of all edges e = {a,b} of G such that a € Vi and b ¢ Vi; let F = ker A,
Vo ={a;,b;, j=1,---,n} (we have #Vy < 2n).

Ifr . F — C" is given by the restriction to Vo, then dimr(F) < n.
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3. PrRooF oF THEOREM 1

Let T be a finite tree with vertices of degree < 3.

For each edge {i,j} € E(T), let us denote by 7; ; and T} ; the two subtrees of T
obtained by deleting the edge {i,j} and such that i € V(T; ;) and j € V(Tj;).

Let » > 1 be some integer and A € My j,.

Let us write F' = ker A. For each {i,j} € E(T), let us denote by F; ; C F the
vector space of those ¢ € F' which vanish at 7 and j and whose support lies inside
V(T 5)-

Ifr=r;: F— C"@®C" is defined by r(¢) = (¢(4), ¢(4)) it is easy to check
that:

ker Ty = Fi}j D Fj’i .

We have then the :

Lemma 3. Ifdim F' > n, there exists {i,7} € E(T) such that

(i) F; ; is not 0,

(ii) degree(i) = 3,

(iit) the maps €, : F;; — C" defined by ¢ — ¢(a), where a is one of the
neighbours of 1 with o # j, are injective. In particular, 1 < dim F; ; <mn.

Corollary 1. If dim F' > 2n, there exists {i,j} € E(T) such that
dim Fi,j > 1, dim Fj,i >1.

Corollary 2. If A > 0 (i.e. the quadratic form associated to A is positive),
dim F < n.

Proof. (Corollary 1)
Choose {i, j} according to the lemma and put F, = ker(r; ;), we have: dim F, >
n+1 (lemma 1), and, because F, = F; ; ® F; ;, and dim F; ; < n, F}; is not trivial.
O

Proof. (Corollary 2)
If dim F > n, by (i), there exists ¢ € F; ;\ 0, and by (iii) ¢(a) # 0, where a # j
is any neighboor of i. Define ¢ by (k) = ¢(k) for k € V(T ;) and ¢(k) = 0
otherwise. Then ¢ € ker A:
(Ayly) =0,

because At vanishes where 1 does not.
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Set Q(f) = (Af|f) and let § be the numerical function on V(7') which is defined
by §(i) =1 and d(k) = 0 if k # 4.
Evaluating Q(v¢ + edv) for v € C* and € > 0, we find:

Q) + €dv) = 2eR(v|Ai o (¥(a))) + O(e?) .

It is always possible to choose v such that

Q¢+ edv) <0

for € > 0 small enough (because A; , is non singular and ¥ (a) # 0).
This gives a contradiction with the fact that A > 0. (]

Proof. (Lemma 3 )

Choose first arbitrarily some edge {i1,j1} of T. By lemma 1, we may then
assume that Fj, ; is not trivial (otherwise permute 4, and j;).

It is clear that i1 is of degree 2 or 3.

If this degree is 2 and if {«,j;1} is the set of neighbours of i1, Yo € F;
p(a) = 0. We take then iy = «, ja = 41 and iterate.

If this degree is 3 and if {j1, «, 5} is the set of neighbours of i1, then, if the map
¢ — @(a) is not injective on F;, ; , one of the spaces F, ;, or Fg;, is not trivial;
we may assume that the space Fy ;, is not trivial, set io = o, jo =41 and iterate.

This process will stop, and yields a solution. O

1,519

Reducing to A1 = 0 and A = 0, Theorem 1 is an easy reformulation of corollaries 1
and 2.
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4. LAGRANGIAN COMPACTIFICATION

4.1. Introduction. We want to stabilize the multiplicities of eigenvalues with re-
spect to minors.

Let us explain what this means.

Consider the graphs W,, = Pap41 X Ko (P is the path with [ vertices) and S,
with V(Sn) = {1,2,-++,2n + 1} and E(S,) = {{i,i+ 1}, {2j — 1,2j + 1}]i =
1,---2n, j = 1,--- ,n}. For any A € My, , dimker A < 2: if ¢ € ker A vanishes
at the two vertices in {a} x V(K2) where a is an end of the path, it is easy to see
that ¢ vanishes identically.

There exists some A, € Rs, which is > 0 and dimker A, = n+ 1. S, is the
union of n triangles and we define the quadratic form ¢ associated with A, by
q(z) = 3", (zi + zj + zx)? where the sum is on the n triangles ¢ = {i, j, k} of S,.

It is easy to check that S, is a minor of W,.

In some sense, the small dimension of dimker A, for A € My, , is not stable with
respect to minors.

If W is a submanifold of some manifold M and j : N — M is a smooth map
whose differential is injective, we will say that j is transversal to W at z, € N if

J(z,) € W and
Tiw)M = Tj(a)W + ' (20) (T2, N) -

We want ot use the basic property of transversality, see [12] p. 27 :

if jo (¢ small real number) is a smooth map from N to M converging to j in the
C'-topology near z, to j (it means that j. and its first order derivatives converge
uniformly to j on some neighbourhood of z,), then, for ¢ small enough, there exists
z(¢) € N such that j. is transversal to W at z(e).

Let Ay = 0 be the k-th eigenvalue having multiplicity I of A € Mg ; we can
think of this situation as follows : A belongs to the intersection of two submani-
folds in Herm(CVl): the manifold j(Mg) (where j is the embedding of Mg into
Herm(@vl)_) and the manifold T¥; of matrices whose kernel has dimension /.

If G’ is obtained from G by deleting the edge {1,2}, we will denote this by G' =
D1 5(G) and we have V = V’'. We can consider the maps j. : Mg — Herm(@vl)
defined by j.(q) = j(q) +¢lz1 — z2|*

ds(0,A,, Mg) =l is equivalent to ”j is transversal to W, at A,”.
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As j.(Mg') C Mg, the basic property of transversality shows that v¢(G') <
vE(G).

If G’ is obtained from G by contracting the edge {1,2} (we shall write G' =
C1,2(G)), we need to embedd Mg and Mg as submanifolds into the same manifold :
this is possible using appropriate Grassmann manifolds.

We will now describe the appropriate general tools in order to make stabilization ;
of course, the same kind of proofs as in [3] applies, but we want to have a more
natural setting, even if this seems to imply more geometric material !!

4.2. Lagrangian Grassmann manifolds and quadratic forms. In the follow-
ing, X 1is a real N-dimensional vector space. In fact, up to obvious changes, every-
thing extends to the complex case.

Proofs will be given only for the real case.

For applications to graphs, X will be RY (or CV).

Let us denote by Z the space T*(X) = X & X*, where X* is the dual of X,
endowed with the canonical symplectic form w defined by

w((z,€), (2", &) = €(2) = ' (2) -
We denote by Lx (or £ if no ambiguity arises) the Grassmann manifold of the
Lagrangian subspaces of Z. Let us recall that a Lagrangian subspace of 7 is a
maximal subspace which is w-isotropic: such subspaces are of dimension N and Lx
is a real analytic compact manifold of dimension N(N + 1)/2, cf Duistermaat [11].
Remark: in the complex case, we need to consider the canonical Hermitian form
we on X @ X* where X* is the antidual of X, given by

wel(x,€), (2, €) = V-1(E(") — €' (x)
and the corresponding Grassmann manifold which is of dimension N2.

Denote by Q(X) the vector space of all (real) quadratic forms on X (or all
Hermitian forms on X in the complex case).

Every quadratic form ¢(z) = (Az|z)x+ x on X can be identified with the sym-
metric linear map A from X to X* and this defines an embedding J : Q(X) — Lx
where J(q) is the graph of the linear map A.

We give the following

Definition 6. p = (¢, F) will be called a generalized quadratic form on X if F is a
subspace of X and ¢ € Q(F).

To each generalized quadratic form p = (¢, F'), we associate some Lagrangian
space:
J(p) = {(z, &)z € Fand ¥y € F, Cy(z,y) = £(y)}
where C, is the symmetric bilinear form associated with ¢. In other words, if
By : F — F* is the linear map associated with ¢

J(p) ={(2,§) € F x X*| §r = Bz} .

Conversely, if I is a Lagrangian subspace, we associate with it a generalized
quadratic form K(L) = p = (q, F) where F is the projection of L onto X and
Ve, y € F, Cy(x,y) = &(y) where (x,£) € L. The fact that £(y) is independent of
the choice of (z,£) € L comes from the fact that I is a Lagrangian: if (z,§) and
(,€') are in L, then (0, — &) € L and, for (y,n) € L,

0=w((0,6 =&, (y,m) =£y) =& (y) -
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Using w((x,€), (y,n)) = 0, it is clear that Cj is symmetric.

It is easy to check that J and K are inverse maps.

In this way, we have a bijection of £ with the set of all generalized quadratic
forms. Since £ is a compact manifold, we have also a compactification of Q(X). The
corresponding topology on generalized quadratic forms will be called the Lagrangian
topology.

Given a Lagrangian space Lo, it is possible to identify the tangent space of £ at
Lo with the space @(Lg) in the following way: there exist an open dense set in £ of
Lagrangian spaces Lq such that 7 = Lo & L; and w identifies L; with the dual of
Lg. Lagrangian spaces L which are close enough to Ly can be considered as graphs
of linear maps from Ly to L; and these map are symmetric once L is identified,
using w, with the dual L} of L,.

In this way, we get charts of £ near Lg.

The following proposition is proved in Duistermaat [11] :

Proposition 3. All these charts give rise to the same identification of the tangent
space at Lo with Q(Lg).

4.3. Some examples of singular limits. We consider a family of symmetric
operators from X to X* of the following type :

1
A(E)IA0+EA1,67$0.

Proposition 4. In the manifold £, the graph of A(e) has a limit for ¢ — 0 which
is the generalized quadratic form ®(A,) = (¢, F) where F = ker Ay and q is the
restriction to F of the quadratic form associated with Ay.

Moreover the maps ®. from Sym(X) to L defined by ®.(A,) = J(A, + %)
converge in the C' topology to ®.
Proof. Let us consider the decompositions X = U & V, with U = ker A; and
A1(V) C V*, and X* = U* @ V*. We describe then the graph of A(e) in the
following way. For u € U, v € V, let us write A(g)(u,v) = (£,n) with £ € U* and
n € V*, then we have :

1
& = B(u,v), n=C(u) + D(v) + gGv ,
(here B: X - U*, C:U = V* Dand G:V — V* are linear maps and G is
non-singular) which may be rewritten as
€ = B(u,0), (G+eD)(1) = el — C(u))
For £ small, G 4 €D is close to G and hence invertible ; from the second equation,
we obtain, for ¢ small enough :

v=cK(e)(n,u),
where K(g) : V¥ @ U — V is linear, and inserting into the first one :
€= Le)(n,u) ,

where L(g) : V* @ U — U* is linear. This shows that the graphs L. of A(¢) admit
a limit L, as ¢ goes to 0 which is the graph of the map

(77’“) - (v =0,§= B(u,O))
from V* @ U into V & U*.
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It remains to check that K (L,) is the generalized quadratic form p = (q,U) where
q is the restriction to U of the quadratic form associated with A,. This comes from
the definition of B.
The C1 convergence of ®. to ® comes from the fact that D — (G + ED)_1 1S
ct.
O

More generally, we can prove the following result:

Proposition 5. Any meromorphic map from some open set Q@ C C into Sym(X)
extends to a holomorphic map into L x.

4.4. Stratification of the Lagrangian Grassmann manifold. Fix some La-
grangian space Kg € £ and denote by W, the set of all Lagrangian spaces L such
that dim(Z N Ky) = L.

If7Z7=X&X* Ko=X®0 and if p = (¢, F) is a generalized quadratic form,
it is equivalent to say that J(p) € W; and that dimker ¢ = [. this definition of W}
is the natural extension to the generalized quadratic forms of the definition of W o
given in definition 3.

The following theorem is proved in Duistermaat [11] :

Theorem 6. W; is a (non closed) submanifold of L whose tangent space at L is
the set of quadratic forms on L which vanish identically on LN Lg.

Comments: this result is strongly related to the perturbation theory of degener-
ate eigenvalues. If 7 = X @ X* and Ly = X 0, for any A € Sym(X) whose graph
is L4, we have :

dimker A = dim(Ly N L,) .
Moreover, if this dimension is > 1, eigenvalues close to 0 of A. = A+ eB are very
close to eigenvalues of the quadratic form associated to B restricted to ker A.
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5. MONOTONY FOR MINORS

In this section, we will show how to stabilize bounds on multiplicities with re-
spect to minors, using the previous tools (transversality, Lagrangian Grassmann
manifolds).

5.1. Minors. We will say that G’ is a minor of G if G’ is obtained from G by a
sequence of the following three operations :
(D) which consists in deleting one edge.
(C) which consists in contracting one edge and identifying its two end vertices.
(R) which consists in deleting one isolated vertex.
It is possible to describe this in a more global way :
let us give a partition V = U,ew Vi, of the vertex set of GG into connected subsets.

V(G') is a subset of W, and B/ = E(G") satisfies :
({a, Bt e E') = (FieVs,jeVs {i,jt€E).

If we study some property (P) of graphs which is hereditary with respect to
minors (for instance, the existence of an embedding in a given surface), a deep and
difficult result (Wagner’s conjecture, proved by Robertson and Seymour in a series
of papers in JCTB) states that this property is characterized by a finite number of
excluded minors : there exists a finite list of graphs such that (P) is equivalent to
the property of having no minor in this list.

The simplest example is the characterization of forests by excluding the triangles
as a minor.

Some further classical example is Kuratowski’s characterization of planar graphs
by excluding Ky and K33 as minors.
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5.2. Monotony. We will now prove Theorem 3.

Proof.

We will give the proof in the real case (i.e. K = R).

It is enough to show the result for G = Dy 5(G) or G' = Cy 2(G) where {1, 2}
is some edge of G. The most difficult case is the contraction of an edge since then
R is not equal to RY. We will only give the proof for this case.

Let us denote by 0 the vertex of G’ which is obtained by contracting the edge
{1,2} € E(G), by B the set of vertices of G which are adjacent to 1, but not to 2,
by C the set of vertices which are adjacent to 2, but not to 1, and by D the set of
vertices which are adjacent to 1 and 2.

We will define maps j., £ > 0, from Rg to Rg C Sym(RY) C Lv. Let us denote
by k¢ the embedding of Sym(RV’) into Ly, which associates to the quadratic form
q on RVI, the Lagrangian space J(p) where p = (@, D1,2) on RY is defined in the
following way : its domain D » is the subspace defined by the equation {z; = z2}
and @ is defined by transferring ¢ to D; 5, using the bijection ¢ : RY' — D1 o
defined by : ¢(zo, 23, -, &n) = (xo, 0,3, - ,&n). We will then prove, using
proposition 4, that j. converges in the C'! topology to jo, the restriction of kg to
Ray.

Let g(zo, za, -, xn) be some quadratic form in Rg/, we associate to it j.(q) =
J(qc) in the following way :

let us write

q(zo, 23, ,zN) = Wozg + Zco,j(xj —zo) 4 r(xs, -, 2N) .

j~0

We define :

1

ge(@r, o an) = — (o1 = 22)" + Woat + Z co,j(z1 — aj)* + Z coj(2 — x;)?
jeB jecC
co s
+Z %((Tl _xj)2+ (-772_13j)2)+7’(]73,-~~ ,l'N) :
JjeED

With this definition, ¢ € Rg and the restriction of ¢. to Dq 5 is the same as
q(xla I3, al‘N)'

Using proposition 4, we see that j. converges smoothly to jg.
Let us denote by W/ C Sym(RVY") the set of matrices whose kernel is of dimen-
sion [. Tf d;(0, Ag, Rgr) = I, by definition
Sym(RY") = Tu, W/ + Ta, Re .

If 7 = ko(Sym(RY")) and Y = jo(Rg), and using the fact that ko(W/) = W, N Z,
we observe that, writing Lg = jo(Ao), Tp,Z = T, Y + T, (W, N Z).
We have then the :

Lemma 4. Using the same notations as before, jo : Rg: — Ly is transversal to
Wi at Ay : absolute and relative transversality are identical.

Proof. We begin with the following observation:
Tr,(Lv) =Tt Wi +T1,Z .

Indeed, using proposition 3 and theorem 6 and writing H = LoN(RY ®0) = ker Ay,
we have : Ty, (Lv) = Q(Lo), T, Wi = {q € Q(Lo)|gyz = 0} and Ty (Z) = {Son}
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where 7 is the projection from Ly to Dy 5 and S € Q(D; 2). The observation follows
then from the fact that H C Dy ».
We use now the fact that

Tr,(Z) = Tr,(WinNZ) + jo(Ta,(Rar))

to concluse that :

Tro(Lv) = TrL,(Wi) + jo(Ta,(Rar)) -

O

Let qo be the quadratic form associated with Ag € Rgr such that A (Ag) =0
and

d,(0, Ay, Rar) =1 .

We have seen that j. converges smoothly to jo. By the basic property of transver-
sality, for ¢ > 0 small enough, there exists some A. € j. (Reg) such that Ay (A.) =0
and d,(0, Ac, j.(Rg')) = [. Then, because j.(Ra') C Ra, ds(0, Ac, Rg) = (.

This completes the proof of theorem 3.

5.3. Proof of Theorem 2. First, define the product K = G x H of two graphs
G and H by:

V(K)=V(G)x V(H),
and

{(g1,h1), (92, h2)} € E(K) if and only if g1 = g2 and {h1,h2} € E(H)

or hy = hs and {g1,92} € E(G) .

Let us now prove the second part of Theorem 2 (i.e. the real case):

Proof. Let G be a graph such that la(G) = n; then, there exists some tree 7" with
vertices of degree < 3 such that G is a minor of T' x K,,. Hence

V(G < v (T x Kp) .

We will use the natural identification of CV (T*%») with the space of maps from
V(T) into C™.

Using this identification, every scalar elliptic self-adjoint operator A on T' x K,
becomes an elliptic self-adjoint n—differential operator on T

k=1: in this case, by Theorem 1, the multiplicity of the ground state of 1" x K,
is always < n.

k arbitrary: ifl/,EK(TxKn) > 2n, there exists A € Rry i, such that ds(Ax, A, Rrxk,) >
2n. Applying Theorem 1 (and using the notations there), let us denote by ¢;, i =
1, 2 the restrictions of ¢ to V(T;) extended by 0 outside T;. Then ¢; € ker(A— Ag),
for any a € V(T x Kp), €a(1,¢2) = 0 (we identify here €, with the associated
bilinear form) because supports are disjoint, and for any {a,3} € E(T x K,),
€a,8(¢1,¢2) = 0, because there is no edge {a, 8} for which o1 (a)p2(8) # 0.

This shows that transversality does not hold.

O
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6. TREE-WIDTHS

In [18], N. Robertson and P. Seymour give the following definition for the ¢ree-
width tw(G) of a graph G: we define a tree-like decomposition of G as a pair (T, X)
where T is a tree and where X = {X;|t € V(T)} is a family of subsets of V(G)
indexed by t € V(T'), such that the following conditions hold :

(6.1) V(G) = Urev () Xs
(6.2) Ve = {a,b} € E(G), 3t such that a,b € X,
(6.3) Ve,y e V(T),Vz €]z, y[, X, NX, C X,

Here ]z, y[ denotes the set of interior vertices of the unique path between z and y.

We define then the width of (7, X) by :
w(T, X) = max|X;| — 1,
and
tw(G) = minw(T, X)

where the min is among all tree-like decompositions of G.

On the other hand, we define some closely related invariant la(G) as follows.

We define la(G) as the minimum N such that G is a minor of some product
T x Ky where T is a tree and Ky 1s the clique with N vertices.

We want to prove proposition 1.

Remark: in [14] p. 91, Hein van der Holst proves a sharper inequality:

tw(G) <la(G) .
Proof. (tw(G) < 2la(G) — 1)

By definition, there exists a tree 7' such that G is a minor of 7' x Ky where
N = la(G). Since tw is monotonous with respect to the minor relation we have
tw(G) < tw(T x Ky) and it is hence enough to prove the inequality tw(7T x Ky) <
2N —1.

We will construct a tree-like decomposition (T, X) of T' x Ky: orient first T'
from some choosen root o and write X; = {¢{_,¢} x V(Ky) where {_ is the unique
predecessor of ¢ (for t # a) and X, = {a} x V(Kn).

It is clear that we get in this way a tree-like decomposition of 7' x Ky whose

width i1s 2N — 1. O

Proof. (la(G) < tw(G) +1.)

Let (T,X), X = {X:|t € T}, with tw(G) = w(T,X) = N — 1, be a tree-like
decomposition of G.

Let G' be the graph whose vertices are the pairs (¢, ) with ¢t € V(T), z € Xy,
and whose edges are of the form {(¢, z), (¢,2")} with {z,z'} € F and of the form
{(t, ), (t',z)} where {¢,t'} is an edge of 7" and = € X; N Xy.

Then G is a minor of G’ : contract the edges of the form {(¢, z), (¢, )} and use
the fact that Ay = {¢|]x € X:} induces a connected subgraph of T' (a reformulation
of property (6.3) of a tree-like decomposition) to embed the resulting vertex set in
V(G). This vertex set is actually V(G) by (6.1) and all edges of G are present by
(6.2).

And G’ is aminor of T'x Ky: to see this, it is enough to construct some injective
map

J:V(GE)=>V(T)yx {1,--- N}
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which satisfies
1) j(t @) = (t,n(t z))
2) for any € Xy N Xy, n(t,z) = n(t', x).
We construct j starting from some root a of 1": we choose an arbitrary numbering
of X, and propagate it along the edges of T' using the condition 2).
O
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7. Tue Grarus G,

Here, we will give an explicit family of planar graphs G, = (V,,, Ey) such that :

(i) Vf((Gn) =nfor K =R and for K = C,

(ii) la(Gn) = n.

Remark : T do not know a proof of la(G)) > n not using spectral methods !!

G, can be considered as the 1-skeleton of the regular subdivision of an equilateral
triangle into (n — 1)? small equilateral triangles. Each edge of the big triangle is
divided into n—1 edges belonging to some small triangles. We may describe vertices
of G, by their Cartesian coordinates in the basis (e, f) of R2 = C (e = (1,0), f =
(55

7 72
Vi=A{Smr=me+kfl0<m<n—1,0<k<n—1 m+k<n—1}.

It is easy to check that G, is a minor of Ps, x P,, where P is the path with &
vertices ; this shows that la(G,) < n. We will prove that v*(G,) = n ; the same
kind of proof works for K = R. By Theorem 4, it shows that la(G,) > n.

First, for any A € Mg, , dim(ker(A)) < n : otherwise there exists a nonzero
function in ker(A) which vanishes on the n vertices Soo, S1,0, -+, S—1,0. It is
clear that such a function ¢ vanishes identically because we can compute (using
Ay = 0) by induction on k its values on the vertices S, from its values on the
vertices S g/, k' < k.

For the converse, we exhibit an element A € Mg, . The most simple one has real
coefficients : J

Aple) = ¥ pl)+ Sola).
where d(z) is the degree of z (d(z) = 2,4 or 6 depending on the position of z). Tt
is easier to define A by his quadratic form ¢4 (z) =< Az|z >.

Call a triangle of G, black if it is of the form (z,z 4 e,z + f). Then we have :

ga(z) = > (@it +a)?,

T:{i7j7k}
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where the summation is on all black triangles T'.

It is easy to check the following facts :

(i) A € Rg,, because each edge of Gy, is (in a unique way) an edge of some black
triangle,

(ii) A is non negative,

(iii) the dimension of the kernel F' of A is n because ¢4 is written as a sum of
|V(Gn)| — n (number of black triangles) squares of independent linear forms.

More precisely, there exists functions

e (1=0,---,n—1)
where ¢;(S; o) = d;; which form a basis of F.
What remains to be done is to check transversality.
Proof. We need first the
Lemma 5. The support of ¢; consists of the Sy, 1 in V,, which satisfy:
l—-k<m<l.
The lemma follows from the relations :

01(Smk) = —(@1(Smk=1) + @1 (Smt1,k-1))
which are very close to the relations between binomial coefficients and can be solved
explicitly :
1(Smyk) = (=1 Ot

We will use proposition 2.

Let us introduce some notations. F is identified with C{%% using the basis
@;. We denote by H = Herm(F) the set of Hermitian forms on F' and introduce a
filtration

n—1}

HyCH C---CHy,.1=H
in the following way : H; is the set of Hermitian matrices whose entries h; ; vanish
for |1 —j| > L.
We introduce the space @ C Herm(CV~) which is generated by the n? indepen-
dent forms (using the notations of definition 4) :

5m70:55m,0) m:0,~-~,n—1,

Ein,k = Elz,z—fa 617,1713 = Ele,z—‘f )
for z=Smur, k2> 1.
We introduce the filtration Qo C -+ C Qn_1 = @ where Qg is generated by the
€m0, and @y, for [ > 1, is generated by Qo and the €], , and €]/, ; with k <.
It is enough to prove that, if p: Q@ — H is the restriction to VF, p is an isomor-
phism.
In fact, p is compatible with the filtrations :

p(Q1) C Hy .
For example, we have:
1
P(Em i) (i 25) = (@i (Sm k)i (Smk=1) + @i (Sm k1)@ (Smk))
which vanishes if |i — j| > k by Lemma 5.
We shall check that :
Q _, H

Q-1 Hi_4

pi
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is an isomorphism for { > 0 (setting ), = H_; = 0).
Both spaces have the same dimension (n if [ = 0 and 2(n —1) if { > 1).

Let us compute
B = p(eh ) (D wii, y_ wigi)

B= %(Z 2;Z50i (Sm k)i (Smk=1)) ,

and the product ©;(Sm x)@;(Smk—1) vanishes if |i — j| > k and, if |i — j| = k, it
vanishes too unless j = m, ¢ = m + k. This shows that p; (! > 0) has a diagonal
non-singular matrix with respect to the basis

we find:

! "
m,l Em,l

3

for Q;/Q,_1 and the basis of H;/H;_; consisting of elementary Hermitian matrices
with nonzero entries at places where |i — j| = [.

O

Remark : we started with a (slighly) more complicated example which is gauge
equivalent to this one.

Let us define a holomorphic function on V(Gy) by the condition that the image
of any direct black triangle has to be a direct equilateral triangle.

Define B € Mg, by the associated Hermitian form

a8(9) = Y le(z+ 1) = ¢(z) = ™oz +¢) — ()",

where the summation is on the z = Sy, p with m + k < n — 1. Then the kernel of
B is the space of holomorphic functions on G, and B is unitarily equivalent to A
by the gauge transformation :

P(Sm) = )

25w

3 301 (Sm,k) bl

ie. qp(p) = qa(pr).

It remains to prove Theorem 5. In one direction, it follows from Theorem 2. In
the other one, it follows from the fact v¥(G3) = 2 and from the characterization
of forests as graphes whose (G5 is not a minor.

8. QUESTIONS

Here is a selection of open questions which were presented at a CWI seminar.

1. Computability questions

Find algorithms computing (G) and v (G) for a given graph G. Theoretically,
there exist algorithms because everything can be expressed in terms of intersections
of algebraic manifolds. Of course, it would be nice to have a computer program
which computes these numbers.

2. Maximizing the gap

Let us come back to the real case. For many purposes it is interesting to have
matrices A in Or with a large gap ( gap(A)=A2 — A1). The problem is to find an
appropriate normalization condition which insures that the problem is well posed.
Moreover, it seems reasonable to think that the multiplicity of A3(A) is the largest
possible if A maximizes the gap. Compare with [17] for the continuous case.

3. vX(G) and tw(G)
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From general results by Robertson and Seymour, there exist functions F : N —

N such that
tw(G) < Ff (v (G))

holds for planar graphs G. The question is to find some explicit functions FX :
N — N, in other words to find explicit upper bounds for tw(G) in terms of v (G).

4. Higher dimensional complexes

The question is to extend the invariants considered in this paper to higher dimen-
sional complexes, and find the relationship with Hodge-de Rham Laplace operators
on forms.

5. Chromatic number

This problem is the most exciting: prove or disprove

x(G) S p(G)+1,

where x(G) is the chromatic number of G. This would imply the 4-color theorem
and is weaker than the Hadwiger conjecture.

6.Prescribing spectras

Describe all possible spectra for A € Og or A € Rg or A € Mg. Already for
special graphs like trees this problem is not yet solved. Tt is solved for paths and
for cycles.

For the cycle on N vertices C'n, we have the following set of inequalities for any
A€ Ocy:

A <A <Az < <Az <n

It is known that for any graph G with N vertices and any subset ¢ = {A\1 <

Ay < -+ < An} of R, there exists A € O¢ such that

Spectrum(A4) = o .

There is a general question: 1s it always true that the restrictions on possible
spectra are given by restrictions on the multiplicities of eigenvalues 7 More pre-
cisely, if there exists A, € Og whose spectrum is {A\1 < A2 < -+ < Anx} with
multiplicity (A;) = n;, 1 < i@ < N, does there exists for any given p1 < -+ < pun
some A € Og whose spectrum is {g1 < -+ < pn} with multiplicity (p;) = ni, 1 <
i<N?

7. Lex Schrijver’s question

Is it always true that

u(G) = min _ m(G')

G minor of G’

where m(G’) is the maximal multiplicity of the second eigenvalue for A € Og ?

This is true for example for planar graphs because p(G) < 3 if G is planar and
we can use the characterisations given in [3] of graphs with u(G) = 1,2, 3.

Same question for v/ (G).

8. Bounds on multiplicities using fluxes

Given some A € Mg, we may define the flux of the magnetic field through
each cycle of G as a number in R/27Z : if v = (a1,as,an) with Vi (1 < i <
N), {ai,ai+1} € E(G) (an41 = a1, the flux of the magnetic field associated with
A is the argument of the product Hf\élAMH.

Question: is there any upper bound of dim(ker A) for A € Mg in terms of
information on the flux?

For this problem, it is interesting to compare with the paper of Lieb and Loss [15].

9. Critical graphs
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(1]

(2]
(3]

(4]

(5]
(6]

(7]
(8]
(9]
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Find critical graphs for u(G) and v (G) ; G is critical for v if every strict minor
of G satisfies v(G') < v(G).
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