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1. Introduction and statement of the main results

Equivariant Chow groups for actions of linear algebraic groups on schemes have been
introduced and studied by Edidin and Graham via an algebraic version of the Borel con-
struction in equivariant cohomology. In the present paper, we develop further the theory
of equivariant Chow groups in the case of torus actions, and we apply it to (usual) in-
tersection theory on varieties with group actions, especially to Schubert calculus and its
generalizations.

Indeed, equivariant Chow groups turn out to be modules over polynomial rings, and
usual Chow groups are obtained from them by killing the action of all homogeneous poly-
nomials. Moreover, the richer structure of equivariant Chow groups make them easier to
describe. This is what we do here for toric varieties, flag varieties and more generally for
projective, non-singular spherical varieties.

We counsider algebraic group actions on schemes over an algebraically closed field k& of
arbitrary characteristic. These actions are assumed to be locally linear, i.e., the schemes
that we consider are covered by invariant quasi-projective open subsets (and hence by
invariant affine open subsets in the case of torus actions). This assumption is fulfilled e.g.
for normal schemes.

We use Edidin and Graham’s definition of equivariant Chow groups (recalled in 2.1
below) and basic properties of these groups as well, see [E-G 1]. But except for §§6.6 and
6.7, the present paper is independent of Edidin and Graham’s deepest results.

Let T be a torus. Denote by M the character group of T' and by S the symmetric
algebra over Z of the abelian group M; then S is the character ring of 7. For a scheme
X with an action of T, let AT(X) be the equivariant Chow group. The equivariant Chow
group of a point identifies to S; more generally, AT(X) is an S-module. Our first result is
a presentation of this module, which is reminiscent of the definition of usual Chow groups.
Theorem (2.1). The S-module AT(X) is defined by generators [Y] (where Y C X is
a T-invariant subvariety) and by relations [divy (f)] — x[Y]| (where f is a non-constant
rational function on'Y which is an eigenvector of T of weight x ).

Another notion of equivariant Chow groups has been proposed by Nyenhuis, see [N1]
and [N2]. He considers the abelian group generated by classes [Y] as above, with relations
[divy (f)] for f a non-constant, T-invariant rational function on Y. A draw-back of this
notion is its non-invariance when X is replaced by X x M for a T-module M.
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By the theorem above, Edidin and Graham’s group is a quotient of Nyenhuis’. More-
over, the usual Chow group is a quotient of Edidin and Graham’s. More precisely:
Corollary (2.3). The (usual) Chow group A, (X) is the quotient of AT (X) by its subgroup
MAT(X).

As in equivariant cohomology, localization at fixed points is a powerful tool for study-
ing equivariant Chow groups, see [E-G 2| §5 where an algebraic proof of Bott’s residue
formula is given. Here we give a very simple proof of the localization theorem for schemes
with a torus action (see 2.3). Moreover, we obtain a description of the rational equivariant
Chow ring A%(X)q in the case where X is projective and non-singular.

Theorem (3.2), (3.3). Let X be a projective, non-singular variety with an action of T.
(i) The Sq-module A% (X)q is free.

(ii) The pull-back by inclusion of fixed points i : XT — X is an injective Sq-algebra
homomorphism

i AN(X)q = AR(XT)q = Sq @ A" (XT)

which is surjective after inverting all non-zero elements of M.
(iii) The image of i* is the intersection of the images of 1%, where T' C T is any subtorus

. . . ' . .
of codimension one, and where i : XT — X7 is the inclusion.

Properties (i) and (ii) are well-known for the rational equivariant cohomology ring
of a non-singular, projective T-variety; they are deduced here from the Bialynicki-Birula
decomposition (recalled in 3.1) as well as statement (iii). The formulation of the latter
1s related to a recent result of Goresky, Kottwitz and MacPherson concerning equivariant
cohomology of a topological space X with an action of a compact torus T, see [G-K-M]
Theorem (6.3): They obtain an exact sequence

0 — Hp(X,A) = Hp(X", A) = Hp(up X7, X7, 4)

for A in the equivariant derived category of X, under certain assumptions on X and
A. This result can be precised when X contains only finitely many 7T-invariant points
and curves: then H(XT R) consists in all n-tuples of polynomial functions on the Lie
algebra of T, where n is the number of fixed points. Moreover, the image of H3(X,R) in
H%(XT R) can be described by congruences involving pairs of fixed points, see [G-K-M]
Theorem (1.2.2). An algebraic version of this result is as follows.

Theorem (3.4). Let X be a projective, non-singular variety where T acts with finitely
many fixed points x ..., r, and with finitely many invariant curves. Then the image of

i* L AR(X)q = AR(X T ~ 5§

is the set of all (fi,..., fn) such that f; = f; (mod x) whenever z; and x; are connected
by an invariant curve where T acts through the character Y.

Together with Corollary 2.3, this gives a complete picture of the (usual) rational Chow
ring of X, which applies e.g. to flag varieties.

To study possibly singular varieties (for example, toric varieties and Schubert vari-
eties), we develop in §4 a notion of equivariant multiplicity at a fixed point = which is
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non-degenerate, that is, all weights of T in the tangent space T, X are non-zero. Such a
notion has already appeared for X a T-module with weights in an open half-space (see
[Jo] and [B-B-M]) and, more generally, for non-singular X in work of Rossmann; see [Ro].
A notion of equivariant multiplicity is studied in [N1] when X is any T-module. Here we
generalize Rossmann’s results and we relate them to equivariant Chow groups, as follows.

Theorem (4.2), (4.5). Let X be a scheme with an action of T, let x € X be a non-
degenerate fixed point and let x1,...,xn be the weights of T, X.
(1) There exists a unique S-linear map

er: AT(X) > ———8
Xl R Xn
such that e;[z] = 1 and that e¢,;[Y] = 0 for any T-invariant subvariety Y C X which does
not contain x.
(i1) The point x is non-singular in X if and only if

1

LT

In this case, we have for any T-invariant subvariety Y C X:

Yz

SR

where [Y], denotes pull-back of [Y]| by inclusion of x into X. Moreover, [Y]; is Rossmann’s
equivariant multiplicity.

In §5 we show that equivariant multiplicities separate points in the equivariant Chow
group of any toric variety. In the case where this variety is simplicial (i.e., it has quo-
tient singularities by finite groups), this leads to the following description of its rational
equivariant Chow group.

Theorem (5.4). Let X be a toric variety such that its fan 3 consists in simplicial cones.
Then AI(X)Q is isomorphic to the space of continuous, piecewise polynomial functions on

¥,

The corresponding statement for equivariant cohomology was proved in [B-V] by an-
other method.

In §6, we consider schemes X with an action of a connected reductive group G. Let
B be a Borel subgroup of G, let T be a maximal torus of B, and let W be the Weyl group
of (G,T). Then W acts on AT(X) compatibly with the S-module structure. It turns out
(see 6.2 and 6.3) that this action extends to an action of the ring D of operators of divided
differences, generated over S by the operators

Da:id—soZ

o

where « is a simple root and s, € W is the corresponding reflection. These operators were
introduced by Bernstein-Gelfand-Gelfand and Demazure for studying the cohomology ring
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of the flag variety G/B, see [B-G-G] and [D1], [D2]. Then Arabia described equivariant
cohomology of G/B in terms of these operators, see [Ar] and also [B-E].

In 6.4, we prove that the D-module AT(G/B) is freely generated by the class of the
B-fixed point in G/B. As an application, we present in 6.5 a short proof of Kumar’s
smoothness criterion for Schubert varieties (see [Ku| Theorem 5.5). We also obtain an
equivariant version of the Chevalley formula which describes multiplication by the class of
any Schubert variety of codimension one.

On the other hand, the equivariant Chow ring A%(G/B) turns out to be isomorphic
to A5(G/B x G/B) where G acts diagonally in G/B x G/B. Moreover, the latter ring is
isomorphic over Q to the tensor product S ® S over the subring of invariants S%. The
action of D is then given by D(u ® v) = D(u)v, and the class of the B-fixed point in G/B
identifies to the class of the diagonal in G/B x G/B, see 6.6. Therefore, to relate both
descriptions of A%L(G/B)q, it is enough to find a representative in Sq ® Sq of the class of
the diagonal. For G a classical group, this has been done (in a different formulation) by
Fulton (see [F3] and [F4]) and by Pragaz and Ratajski (see [Pr] and [Pr-Ra]). A formula
for arbitrary G has been obtained by Graham, see [Gr].

For example, in the case where G = GL,,, we have S = Z[xzy,...,z,] and the genera-
tors of D are the operators Dy, ..., D,_1 such that

flrr, ooz @igr, .o 20) — f(T1, 00 Tig1, Tiye ooy )

Ti — Ti+1

(Dif)($1,...,;cn) =

The T-equivariant Chow ring of G/ B is the quotient of the polynomial ring

Zlz1,...,Tny Y1 -y Yn]

by the ideal generated by the

ei(z1,. oy xn) —€i(yry- o yn)
where eq,...,¢e, are the elementary symmetric functions. The class of the B-fixed point
is represented by
IT (=i —w))
i+i<n

and the classes of the Schubert varieties are represented by the corresponding Schubert
polynomials, see [F3].

Back to the general case of a scheme X with an action of G, the rational G-equivariant
Chow group A%(X)q is isomorphic to the space of W-invariants AI(X)&V, see [E-G 1] 3.2.
In particular, the rational G-equivariant Chow group of the point is isomorphic to Sg.
This connection between G- and T-equivariant Chow groups can be precised:

Theorem (6.7). Let X be a scheme with an action of a connected reductive group G.
(i) The map
v: Sq@sw Al(X)q — Al(X)q
u R v — Uv



is an isomorphism of modules over Sq. Moreover, for all D € D, v € S and v € A%(X),
we have D(uv) = D(u)v.

(ii) The rational Chow group A.(X)q is the quotient of the rational equivariant Chow
group A%(X)q by its subgroup SY A%(X)q, where SY is the ideal of S generated by
homogeneous elementsof positive degree.

(iii) If moreover X is projective and non-singular, then the S&V—module A*G(X)Q 1s free.

At this point, let us point out that although several results of the present paper are
algebraic versions of known statements concerning equivariant cohomology, their proofs
are completely different. In fact, the analogy between equivariant cohomology and equiv-
ariant intersection theory can be misleading: for example, the map A% (X) — A, (X) is
always surjective over the rationals, whereas the corresponding statement in equivariant
cohomology can fail, e.g. when X = G where G acts by multiplication.

The final Section 7 contains applications of the previous theory to Chow groups of
spherical varieties. Recall that a normal variety X with an action of a connected reductive
group G is spherical if a Borel subgroup B of G has a dense orbit in X. Then it is known
that G (and even B) has finitely many orbits in X. It follows that X contains only finitely
many fixed points of a maximal torus 7' C B. If moreover X is projective and non-singular,
we describe the image of

i": Ap(X)q = A7(X)q

by congruences involving pairs, triples or quadruples of T-fixed points (Theorem 7.3).
Indeed, pairs of fixed points connected by a T-invariant curve give rise to a congruence as
in Theorem 3.4. Moreover, invariant curves in a smooth, projective spherical variety are
isolated or occur in a one-parameter family, which sweeps out a projective plane (containing
three fixed points) or a rational ruled surface (containing four fixed points).

A presentation of the G-equivariant rational cohomology ring for a class (“regular
embeddings”) of spherical varieties has been obtained by Bifet, De Concini and Procesi,
see [B-D-P]. For wonderful compactifications of symmetric spaces, a more precise result
is due to Littelmann and Procesi, see [L-P]. Our approach is quite different; it leads to
a less compact but more general description, which will be developed in a subsequent
paper. Both descriptions coincide in the case of the canonical equivariant completion of a
semisimple adjoint group, as shown in 7.3.

Finally, we express the action of operators of divided differences on the T-equivariant
Chow group of any spherical variety X, in terms of the action of the Richardson-Springer
monoid on the set of B-orbits in X, see [R-S] and [Kn].

2. A presentation of equivariant Chow groups for torus actions

2.1. Equivariant Chow groups

First we recall Edidin and Graham’s definition of these groups, see [E-G 1] 2.2. Let
X be a scheme with an action of a linear algebraic group G. Let V be a finite-dimensional
rational G-module, and let U C V a G-invariant open subset such that the quotient
U — U/G exists and is a principal G-bundle. Then, for the diagonal action of G on X x U,
the quotient X x U — (X x U)/G exists and is a principal G-bundle. Set n := dim(X),
| := dim(V) and d := dim(G). Define the i-th equivariant Chow group A (X) as the
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(141 —d)th Chow group of (X x U)/G, if codim(V \U) > n —1 (such a pair (V,U) always
exists, see [E-G 1]). Under this assumption, AY(X) is independent of the choice of (V,U).
Finally, set A% (X) := @; AY(X). Each closed and invariant subvariety ¥ C X defines a
class [Y] in AY(X) by setting [Y] := [(Y x U)/G].

In the case where G = T is a torus, the graded abelian group AT (X) has the structure
of an S-module, see [E-G 1]. To define it, it suffices to describe multiplication by yx € M.
Let k(x) be the one-dimensional T-module with weight x. The first projection U x k(x) —
U descends to a map (U x k(x))/T — U/T which defines a line bundle L(x) over U/T.
Then multiplication by x is the first Chern class of the pull-back of L(x) to (X x U)/T.
So M acts in AT(X) by homogeneous maps of degree -1.

Let X be a scheme with an action of T, let Y C X be a closed and invariant subvariety,
and let f be a rational function on Y which 1s an eigenvector of T' of some weight y. Then
the divisor of f defines a class [divy (f)] in AT(X). Observe that the equality

[divy (£)] = x[Y]

holds in the S-module AT(X). Indeed, f can be considered as a rational section of the
pull-back of L(x) to (X x U)/T, with divisor [divy(f)]. This observation leads to the
following description of AT(X).

Theorem. The S-module AT (X) is defined by generators [Y] (where Y C X is a closed,
invariant subvariety) and relations [divy (f)] — x[Y] (where f is a non-constant rational
function on 'Y which is an eigenvector of T of weight x ).
2.2. Proof of Theorem 2.1
Fix a non-negative integer i and consider the i-th equivariant Chow group A7 (X).
We begin by constructing a T-module V' and an open invariant subset U C V such that
the quotient U — U/T exists and is a principal T-bundle, and that codim(V \ U) > n — 1.
Choose a basis (x1,. . ., xd) of the free abelian group M of rank d. Set yg := —x1—--—
xa. Consider the T-module k%! where T acts with weights xo, x1, ..., xq¢ of multiplicity
one. Choose a positive integer N and consider the T-module V = (k9*1)V, Then V =
Vo x Vi x--- x Vg, each V; being a N-dimensional vector space where T" acts through the
character y;. Set

d

U:= {(UO7U17"'7Ud) |Uj %O\V’j}: H(VJ\{O}) .

j=0

Then, for each v € U, the orbit T - v is closed in V', and the isotropy group T, is trivial.
It follows that the quotient U — U/T exists and is a principal T-bundle. Moreover, the
codimension of V' \ U is N. We choose N so that N > n — .

Choose bases of Vy, Vi,..., Vi and denote by T; C GL(V;) the corresponding tori of
diagonal matrices. Then T' embeds diagonally into the product torus

T0><T1><...><Td::f“.

Moreover, T acts on V, and U is invariant under this action. This defines an action of T

on (X xU)/T.



By [F-M-S-S] Theorem 1, the abelian group A;((X xU)/T) is generated by the classes
of i-dimensional, T-invariant subvarieties of (X x U)/T. Moreover, the relations between
these classes are consequences of relations [div(f)] = 0 where f is a rational function on
an (7 + 1)-dimensional, T-invariant subvariety of (X x U)/T, which is an eigenvector of 7.
Translating these statements into the setting of equivariant Chow groups will lead to our
result, as follows.

Let Y be an i-dimensional, T-invariant subvariety of (X xU)/T. Let Z be the
preimage of Y in X x U. Then Z is invariant by the diagonal T-action and by the T-action
on U. Therefore, Z is invariant by the action of T x T on X x U, defined as follows:
(t,#)(x,v) = (tz,tv). But T = [17; acts on U = [[(V; \ {0}) with finitely many orbits.
So, by [F-M-S-S] Lemma 3, we have Z = Z' x [[Z; where Z' is a closed, T-invariant
subvariety of X, and where each Z; is a closed, Tj-invariant subvariety of V;\ {0}. Denote
by m; the codimension of Z; in V; \ {0}; set Y := (Z' x U)/T. Then we claim that we
have in the S-module AT (X):

Y]=xg° - xq" V']

To check this formula, recall that multiplication by y; in AT(X) is the first Chern class
of the line bundle on (X x U)/T, pull-back of the line bundle L(x;) on U/T associated
to the character x; of T. But L(x;) corresponds to the Cartier divisor D; in U/T =
(IT(Vi \ {0}))/T, image of (HZ;_‘](VZ \ {0})) x (H; \ {0}) where H; is a hyperplane in Vj.
It follows that

X0 XY = Dy D2 < [TV \{on)/T]

Now Z; is the transversal intersection of m; hyperplanes in Vj, and this proves our claim.

By the claim, the S-module AT(X) is generated by classes of invariant subvarieties
of X. We now describe the relations between these classes. Let Y C (X x U)/T be a
T-invariant subvariety of dimension 7 + 1, and let f be a rational function on Y which is
an eigenvector of T. Let Z C X x U be the preimage of Y. We consider f as a rational
function on Z, invariant under the diagonal action of T’ then f is an eigenvector of T x T.
We can write as above: Z = Z' x [[Z;. Moreover, by [F-M-S-S| Lemma 3, we have
f=f"11f; where f' € R(Z') is an eigenvector of T of some weight x, each f; € R(Z;) is
an eigenvector of T} of some weight «j, and (x + >_ «;)|T = 0 (this expresses invariance
of f under the diagonal action of T'). Then the T—Weight of fis ) aj.

Now the preimage in Z of the cycle divy(f) is the cycle

divz(f) = (divz (f) x [[ Zj) + (2" % divpy Zj(H i) .
Denoting by m; the codimension of Z; in V; \ {0}, we then obtain in AT(X):

[divy (f)] = x0™° -+ - x7 " ([divez <oy o (f') — x[(Z2" x U)/T]) .

So divy (f) belongs to the S-module generated by our relations (the latter correspond to
the case where Z = Z' x U).



2.3. Some applications.
An immediate consequence of Theorem 2.1 is the following relation between equivari-
ant and usual Chow groups.

Corollary 1. For any scheme X with an action of T, the map AT (X) — A,(X) vanishes
on MAT(X), and it induces an isomorphism

AT(X)/MAT(X) = A (X) .

Proof. The map AT(X) — A;(X) is restriction to a fiber of the morphism (X x U)/T —
U/T, see [E-G 1]. So this map vanishes on M AT\, (X) by definition of the action of M.
By Theorem 2.1, the abelian group AT (X)/MAT(X) is defined by generators [Y] (where
Y C X is a T-invariant subvariety) and relations [divy (f)] (where f is a non-constant
rational function on Y which is an eigenvector of T'). So the statement follows from [F-M-

S-S] Theorem 1.

This result will be generalized to schemes with an action of any connected reductive
group, 1n 6.6 below.

As another application, we give a very simple proof of Edidin and Graham’s local-
ization theorem for equivariant Chow groups (see [E-G 2| for another proof, which works
more generally for higher equivariant Chow groups).

Corollary 2. Let i : XT — X be the inclusion of the fixed point scheme. Then the S-
linear map i, : AT(XT) — AT(X) is an isomorphism after inverting all non-zero elements

of M.

Proof. Let Y C X be a closed, T-stable subvariety of positive dimension. If Y is not
contained in X7, then there exists a rational function f on Y which is an eigenvector of
T for a non-zero weight x. Indeed, ¥ contains a non-empty open, affine, T-stable subset
U. The algebra of regular functions on U is a non-trivial rational 7T-module, and hence
it contains an eigenvector of 7" with a non-zero weight. So we have after inverting x:
[Y] = x '[divy(f)]. By induction on the dimension of ¥, we obtain that i, is surjective
after inverting all non-zero elements of M.

For injectivity, assume that X is not fixed pointwise by 7. Then, as before, we can
find an irreducible component Y of X, and a non-constant rational function f on Y which
is an eigenvector of T' of non-zero weight, say x. Denote by D the union of the support
of the divisor of f in Y, and of the irreducible components of X which do not contain
Y. Observe that D contains all fixed points in X. Denote by p : (X x U)/T — U/T the
projection, and consider f as a rational section of p*L(x). More precisely, consider the
pseudo-divisor (see [F1] 2.2)

PL(), (D x U)/T, )

on (X x U)/T. It defines a homogeneous map of degree -1
j*+ Al(X) —» AT(D) .

Moreover, denoting by j : D — X the inclusion, the composition j* o j, is multiplication

by x. Therefore, the map
js  AT(D) — AT (X)
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is injective after inverting y. We conclude by Noetherian induction.

3. The equivariant Chow ring of a projective, non-singular variety

3.1. The Bialynicki-Birula decomposition

For a scheme X with an action of T, we denote by X7 its fixed point subscheme.
Similarly, for a one-parameter subgroup A of T, we have the fixed point subscheme X* D
XT. We call A genericif X*» = XT. It follows easily from Sumihiro’s theorem that generic
one-parameter subgroups always exist.

For a subvariety Y of X*, we define subsets X, (Y, ) and X_(Y,\) by

X+ (YN ={z e X | }1_% Atz exists and is in Y} .

We denote by pt : X4(Y,\) = Y the maps = ~ lim;_,o A\(#F)z. Then X (Y, )), X_(Y, )
are locally closed, T-invariant subvarieties of X, and p4, p_ are T-equivariant morphisms.

Observe that any complete T-variety X is the disjoint union of locally closed sub-
varieties X4 (Y, \) where \ is a fixed generic one-parameter subgroup, and where Y runs
over all connected components of XT. If moreover X is non-singular, a much stronger
result holds, due to Bialynicki-Birula (see [Bil], [Bi2], [Bi3]). To state it, we introduce the
following notation. For z € X*, the tangent space T, X is a module over the multiplica-
tive group, via A. We denote by (TpX)o (resp. (T3X)4, (TpX)-) the sum of the weight

subspaces of T, X with zero (resp. positive, negative) weights. Then

T,X = (T,X)_ & (TuX)o ® (ToX)4 .

Theorem. Let X be a complete, non-singular T-variety, and let A\ be a generic one-
parameter subgroup.

(i) The fixed point scheme X* = X7 is non-singular, and its tangent space at x is (T, X)o.
(ii) For any component Y of XT, the maps px+ : X1(Y,\) = Y make X4 (Y,)\) into an
equivariant vector bundle over Y whose fiber at x is the T-module (T, X )+ .

In particular, the plus stratum X4 (A, Y) and the minus stratum X_(\,Y’) are non-
singular, and they intersect transversally along Y.

3.2. Attaching strata

Definition. A scheme X with an action of T is called filtrable if it satisfies both following
conditions:

(1) X is the union of its plus strata X4 (Y, \) for some generic one-parameter subgroup A

of T.
(ii) There is an indexing Yy,...,3, of the set of strata such that, for all indices ¢, the
closure ¥; is contained in the union of ¥; with 5 > .

By [Bi3], any projective scheme is filtrable. We aim at an inductive description of the
equivariant Chow ring of any non-singular, filtrable scheme X with an action of 7. By

assumption, there exists a closed stratum F' = X (Y, ), and moreover X \ F is filtrable.
We describe the ring A%L(X) in terms of A% (F) and of A%L(X \ F).
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Denote by jr : F— X and by jy : U := X \ F — X the inclusion maps. Let d be the
codimension of F' in X, let N be the normal bundle to F' in X, and let cg(N) € A4(F)

be its top equivariant Chern class. Finally, let
q: A7(F) = Ap(F)/(cq (N))

be the quotient map by the ideal generated by ¢l'(N).

Proposition. (i) Multiplication by c;(N) is injective in A%(F)q.

(ii) The maps jp, : AT(F) — AT(X) and j; : AT(X) — AT(U) fit up into an exact
sequence

0— AT(F) - AT(X) - AT(U) = 0

over the rationals.
(iii) For any (3 € A% (U), choose v € A%(X) such that jf,v = . Then the element q(j5.(7))
of A%.(F)/(cT(N)) depends only on 3, and the map

m ARU) = AL(F)/(cf(N))
B = q(iF(7))

1s a S-algebra homomorphism.
(iv) The algebra homomorphisins

UF )+ Ap(X) = AD(F) x Ap(U)
and
g —m: AR(F) x Ap(U) = A%(F)/(cq (N))

define an exact sequence over Q:
0 — AL(X) = AR(F) x AR(U) = AR(F)/(cj(N)) = 0.

If moreover the abelian group A.(Y') is torsion-free, then all statements above hold over

Z.

Proof. (i) Because F' is an equivariant vector bundle over Y, we have A%(F) = AL(Y).
Moreover, A%(Y) = S ®@ A*(Y') by [E-G 2] Proposition 13 (alternatively, this follows from
Theorem 2.1). Under the resulting identification of A%(F) to S @ A*(Y), ¢} (N) goes to

d
H(Xi@l—l-l@ai)

=1

where x1,..., xa are the characters of N, = (T, X)_ for any v € Y, and where aq,...,aq
are the corresponding Chern roots. Therefore, we have

d
(N = xe1+v

i=1
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for some nilpotent v € S®A*(Y). It follows that c;(N) is not a zero-divisor in S®A*(Y)Q.
(ii) It suffices to check that jp, is injective over Q. But composition

jpojre t AL(F) — AL (F)

is multiplication by ¢I'(N).

(iii) Let v1, 72 in AT(F) such that j5(71) = ji5(72) = 8. Then 1 — v2 € jr AT (F)
and hence (1) — j(79) € (¢T(V).

(iv) By construction, we have (¢—7)o(j5,777) = 0, (JF,J{7) is injective over Q, and ¢—7
is surjective. Let (a, 8) € A%(F) x A%L(U) be such that (¢ —n)(«, 3) = 0. Write 8 = j(7)
for some v € A%(X). Then ¢(a) = #(8) = ¢(j5(7)) and hence a = jh(v + jr«(d)) for
some § € A%(F). So 8 = ji;(v + 7F«(d)) and («, 3) is in the image of (j5, 7).
Corollary 1. Let X be a non-singular, filtrable variety with an action of T.
(i) The inclusion map i : X7 — X induces an injective S-algebra homomorphismn

i" A7(X)q = Ap(X)q

which is surjective over the quotient field of S.

(ii) The Sq-module AT(X)q is free. If moreover the abelian group A,(XT) is free, then
the S-module AT (X) is free.

(iii) If XT consists in finitely many points 1, ..., Ty, then, for any generic one-parameter
subgroup \, the S-module AT (X) is freely generated by the classes of the closures of strata
Xi(Az;) for 1 <u<n.

Proof. Let F and Y be as above. Recall that AT(F) = AT(Y) = § ® A,(Y). Combined
with statement (ii) in the Proposition, this implies our corollary, arguing by induction over
the number of strata.

Consider now a non-singular complex algebraic variety X with an action of a complex
algebraic torus T. Then there is a cycle map clx : A*(X) — H*(X,Z) which doubles the
degree. Similarly, there is a cycle map cl;( : AN(X) — H5(X,Z) where H(X,Z) denotes
equivariant cohomology with integral coefficients, see [E-G 1] 2.8.

Corollary 2. Let X be a non-singular, filtrable complex algebraic variety with an action
of T. If the cycle map
cdxr: A*(XT)q - H*(XT,Q)

1s an i1somorphism, then both cycle maps
d% s A3(X)q — HH(X,Q)

and
cdx : A"(X)q —» H(X,Q)
are isomorphisms as well.

Proof. Observe that our inductive description of the equivariant Chow ring carries over
to equivariant cohomology without any change. Moreover, our assumption implies that
the cycle maps clg and ¢ly are isomorphisms for any stratum Y. Arguing by induction
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over the number of strata, it follows that clg;- is an isomorphism, and also that X has no
rational cohomology in odd degree. By [G-K-M] Theorem 14.1, the Sq-module H7(X, Q)

is then free, and the map
Hp(X,Q)/MHT(X,Q) = H*(X,Q)

1s an isomorphism. This implies that ¢/x is an 1somorphism.

3.3. The image of restriction to fixed points

Let X be a non-singular, filtrable T-variety and let i : X7 — X be the inclusion map.
For any subtorus T/ C T, let i : XT — X7 be the inclusion map. Because 7 factors
through i7, the image of i* : A%(X) — A%(XT) is contained in the image of i%,. This
observation leads to the following description of the image of ¢* over the rationals.

Theorem. Let X be a non-singular, filtrable variety with an action of T. Then the 1mage
of
" AR(X)q = AR(XT)q

1s the intersection of the images of
cx * T * T

where T' runs over all subtori of codimension one in T.

Proof: By induction over the number of strata. If X is a unique stratum, then X is
isomorphic to the total space of a T-equivariant vector bundle over its fixed point set.
Therefore, * and 1%, are surjective. In the general case, let F' C X be a closed stratum
and let Y be the fixed point set in F'. Let d, N and cg(N) be as in 3.2. Recall that A%.(F)
is isomorphic to A%(Y) = § @ A*(Y) via j¥. Under this isomorphism, ¢I'(N) goes to
H?:l (xi ®1 4+ 1® a;) where x1,...,xq are the weights of (T, X)_ for € Y, and where

a1,...,aq are the corresponding Chern roots of N. Decompose this product as

(i @1+1®a0) =[] e

1 X

d
=
where x runs over all characters of T' which are primitive (i.e., not divisible in M), and
where ¢, denotes the product of the x; ©® 1 +1® «; such that y; is a multiple of y. For x as
above, the kernel of y is a subtorus of codimension one of T', and ¢, is the top equivariant
Chern class of the normal bundle to F*'X) in X*er(X)| Qbserve that any subtorus of
codimension one of T' can be written as ker(y) for a primitive character y of T, uniquely
determined up to sign.

Let v € A%(XT)q be in the image of i%, for all subtori T’ of codimension one.
By the induction hypothesis applied to U, the class jj;z7v is in the image of the map
A%(U)q — AR(UT)q. Recall that UT = X7\ Y. Because jf; : AW(X) — A%L(U) is
surjective, we can find a € A%(Y)q and § € A%(X)q such that v = a 4+ i*5.

Let x be a primitive character of 7. Then a = v — *3 is in the image of i]’:er(x).

By Proposition 3.2 applied to the component of X**X) which contains Y, it follows that
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a is divisible by ¢, in A}(err(X))Q = A%(Y)q. Hence, by the lemma below (applied
to A = A*(Y)), a is divisible by HX cy = c;(N). So v —*F is in c;(N)A?I‘w(Y)Q =
*(jr AT (F)q) and v is in i* A%(X)q.
Lemma. Let A = $52, A,, be a graded ring with Ay = Q and A,, = 0 for n large enough.
Set B := A ® Sq and endow B with the grading B = &2, A, @ Sq. Let f, g, h in B
such that:

(i) f is divisible by g and by h in B, and

(ii) go and hg are non-zero and coprime in Sq.
Then f is divisible by gh in B.
Proof. Let N be the smallest integer such that A,, = 0 for any n > N. We argue by
induction over N, the case where N = 0 being trivial. We have f = gu = hv for some u,
v in B. By the induction hypothesis applied to the ring A/Ay, there exists w € B such
that f — ghw is in By. We may assume that the component of degree N of w is zero.
For homogeneous components, we have fy = (gu)ny = (hv)ny and moreover u,, = (hw),,
vn = (gw)p for all n < N. It follows easily that

goun + ho(grwn—1 + gawn—2+ -+ + gnwo) = hovn + go(hiwn—1+ -+ hnwg)
an equation in the free Sq-module By. Because go and hg are coprime, this implies
un = hown + hiwn-_1+ -+ hywg

for some wy in By. Then f = gh(w + wn).
3.4. A structure theorem for the equivariant Chow ring
We will deduce from Theorem 3.3 a complete description of the ring A%(X)q in the

case where X 1s projective, non-singular and contains finitely many invariant points and
curves. Other applications of Theorem 3.3 will be given in §7.

Theorem. Let X be a non-singular, filtrable variety where T acts with finitely many fixed
points xy,...,x, and with finitely many invariant curves. Then the image of

" A3(X)q —+ AR(XT)q

is the set of all (f1,..., fn) € Sq such that f; = f; (mmod x ) whenever x;, x; are connected
by an invariant curve where T acts through the weight x. If moreover all such weights x
are primitive in M, then the statement holds over the integers.

Proof. Let 7 be a primitive character of T. Then the space X*'(™) is at most one-
dimensional, because X contains finitely many invariant curves. Moreover, X¥¢"(7) is non-
singular, and hence it consists in a disjoint union of points and non-singular, irreducible
curves; let C' be such a curve.

If C' contains a unique fixed point z, then % : A%(C) — A%(z) = S is an isomorphism.
Otherwise, C is isomorphic to projective line. It follows that C' contains two distinct fixed
points x, y. Moreover, the image of

it AR(C) = AR(CT) =5 % S
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consists in all pairs (f, ¢) such that f = g (mod x) where T acts on C through the weight
X (a multiple of 7). Indeed, this image is the S-module generated by i&[z] = (x,0),
iely] = (0,—x) and 5, [C] = (1,1). Now apply Theorem 3.3 to obtain the statement over
the rationals.

In the case where all such x are primitive, the proof of Theorem 3.3 adapts to yield the
statement over the integers. Indeed, the lemma is replaced by the following observation:
if w € S is divisible (in S) by pairwise distinct primitive characters x1,..., xn, then u is

divisible (in S) by [[i—; xi-

4. Equivariant multiplicities at non-degenerate fixed points

4.1. Non-degenerate fixed points

Let X be a scheme with an action of 7. Call a fixed point = € X non-degenerate if
the tangent space T, X contains no non-zero fixed point. Equivalently, 0 is not a weight of
the T-module T, X. The set of weights (with multiplicities) of this module will be called
the weights of z.

Observe that a fixed point in a non-singular 7T-variety is non-degenerate if and only
if it is isolated; indeed, we have TI(XT) = (T X )o.
Proposition. Let * € X be a non-degenerate fixed point with weights x1,...,Xxn. Then
there exists an open affine T-invariant neighborhood U of = such that:
(i) The map i, : AT(z) = S — AT(U) is injective, where 7 is inclusion of  in X.
(ii) The image of i, contains x1---xn Al (U).
Proof. We may assume that X 1s affine. Then there exist regular functions fi,..., f, on
X which are eigenvectors of T' of weights x1,..., xn, such that fi,..., f, vanish at z and
that the differentials dfy(z),...,dfn(x) are a basis of T, X. We can assume furthermore
that = is the unique common zero to fy,..., fn; then x is the unique fixed point in X.

For any T-invariant subvariety Y C X, denote by j(Y) the smallest integer j such
that f; # 0 on Y. We claim that

(I wivleialx).
J23(Y)

This claim is checked by induction on the dimension of Y. Indeed, if this dimension is
zero, then Y = {z} and there is nothing to prove. For positive-dimensional Y, we have

Xin Y] = [divy (f5)]
and the latter is a combination of T-invariant subvarieties Z with dim(Z) = dim(Y) -1
and j(Z) > j(Y). So
( II xi)ldivy(£)] € i AT(X)
3>3i(Y)
by the induction hypothesis.

Now assertion (ii) follows from the claim, whereas (i) is a consequence of the localiza-
tion theorem.
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4.2. Equivariant multiplicities

Let Q be the quotient field of S; let N = Hom(M, Z) be the dual lattice to M, and
let Nq := N ®z Q be the associated rational vector space. Then Q is the field of rational
functions on Nq with rational coefficients.

Theorem. Let © € X be a non-degenerate fixed point with weights x1,..., Xn-

(1) There exists a unique S-linear map ez x : A*T(X) — Q such that e, x[z] = 1 and that
ex x|Y] = 0 for any T-invariant subvariety Y C X which does not contain x. Moreover,
the image of e, x is contained in (1/x1 -+ xn)S.

(ii) For any T-invariant subvariety Y C X, the rational function e, x[Y] is homogeneous
of degree — dim(Y') and it coincides with e, y[Y].

(iii) The point x is non-singular in X if and only if (x1 -+ Xn) €z,xX = 1.

Proof. (i) Let U C X as in Proposition 4.1. Denote by j : U — X the inclusion. By this
proposition, for any o € AT(X), there exists a unique 3 € S such that

Define e, x by
erx(a) = —b
Xl P Xn
Then e, x has the required properties.
Uniqueness of e, x follows from the localization theorem.
(ii) The assertion on the degree of e, xY follows from the definition of e, x given

above. Denote by 1y : Y — X the inclusion map. Then it follows from (i) that composition
€z,X O (Ly>* : AI(X) — Q

coincides with e, y.

(i) If ep, x X = 1/x1+++ xn then dim,(X) = n by (ii). But dim(7>X) = n and hence

z 1s regular. Conversely, if = is regular, then we can find rational functions fi,..., fa
which are defined at x, eigenvectors of T' of weights x1,..., xn and such that the divisors
div(f1),...,div(f,) intersect transversally at z. Then we have

X1 Xal[U] = [2]

in AT(U), and hence xq - - - Xnee,x[X] = 1.

For any T-invariant subvariety ¥ C X, we set e, x[Y] := €,[Y] (this makes sense
because of (ii)) and we call e,[Y] the equivariant multiplicity of ¥ at z.

Corollary. Let X be a scheme with an action of T such that all fixed points in X are
non-degenerate. Then, for any o € AT(X), we have in AT(X) ®s Q:
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Proof. By the localization theorem, 7, is surjective over Q. Therefore, we may assume
that a = [z] for some z € XT. Then the statement follows from (i) above.

4.3. The behaviour of equivariant multiplicities under proper morphisms
The following easy result will be used in §6 to compute equivariant multiplicities of
Schubert varieties.

Proposition. Let X, X' be schemes with an action of T, and let 7 : X' — X be a proper,
surjective, T-equivariant morphism of finite degree d. Let x € X be a non-degenerate fixed
point such that all fixed points in the fiber 7~!(z) are non-degenerate in X'. Then we
have

ex[X]| = % Z ex [ X'] .

2 eX'T n(z')=zx

Proof. We may replace X by any T-invariant neighborhood of z. Therefore, we may
assume that = is the unique fixed point in X. Then all fixed points in X’ map to = by =.
So we have by corollary 4.2:

X= 3 enlX0].

.’L‘lEX,T

Applying 7, to this equation, we obtain

diX]=( ) ewlXNa].

! eXIT

On the other hand, we have [X] = (e¢,[X])[z]. Together with Proposition 4.1 (i), this gives

our formula.

4.4. The case of an attractive fixed point.

Let X be a scheme with an action of T. Call a fixed point = € X attractive if all
weights in the tangent space T, X are contained in some open half-space of Mr = M @z R.
We denote by x1,..., xn these weights, and we set

oz :={AE€Nmr | (A xi) > 0for 1 <i<n}.

0

Then o, is a rational polyhedral convex cone in Ngr with a non-empty interior o .
Proposition. Let © € X be an attractive fixed point with weights x1,...,xn and let
A€ol

(i) The set X, := X4 (), z) is independent of \, and this set is the unique affine, T-invariant
open neighborhood of z in X.

(ii) The rational function e,[X] is defined at X\, and its value is the multiplicity of the
algebra of regular functions on X, graded via the action of \.

Recall that the multiplicity of a finitely generated, graded k-algebra
A=drlAn
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is the unique rational number e such that

'I'Ld

— d!

where d is the dimension of A, see [Sm|. For other approaches to equivariant multiplicity
in this setting, see [Jo| and [B-B-M].
Proof. (i) Let U be an open T-invariant affine neighborhood of  in X. Because all weights
of T, X lie in the open half-space where A > 0, the set U contains X (A, z) as an open
T-invariant subset. Moreover, any T-invariant regular function on Xy (), z) is constant,
and hence the same holds for U. It follows that z is the unique closed orbit in U. If
U # X4 (X, z) then the closed, T-invariant subset U \ X4 (A, z) contains a closed orbit and
does not contain z, a contradiction.

(ii) Let ¥ C X, be a T-invariant subvariety. Denote by (¢,Y)(\) the multiplicity
of the algebra of regular functions k[Y N X,]. Then it is easily checked that for any
f € k[Y N X,) which is an eigenvector of T of weight y, we have

(A (EY)(A) = Y ordp(f)(e2D)(N)

D

(sum over all irreducible, T-invariant divisors D C Y'). By induction over the dimension
of Y, it follows that the function

— Q
A= (2N

extends uniquely to a rational function on Nq, that is, to an element ¢,Y of Q. Moreover,
for any rational function f on Y which is an eigenvector of T' of weight x, we have

YErY = Z ordp(f)e.D .
D

So, by Theorem 2.1, the assignement ¥ — £,Y induces a S-linear map ¢, : AT (X) — Q
such that ¢, [z] = 1. By Proposition 2.2, we conclude that ¢, = e,.

4.5. The connection with Rossmann’s equivariant multiplicity

Let X be a non-singular variety with an action of 7', let * € X be an isolated fixed
point with weights x1,..., xn, and let Y C X be a T-invariant subvariety. An equivariant
multiplicity p,Y, with values in S, has been defined by Rossmann (see [Ro|; Rossmann’s
notation has been changed here). In fact, this notion is equivalent with ours, as shown by
the following

Theorem. For any isolated fixed point x in a non-singular T-variety X, and for any
T-invariant subvariety Y C X, we have
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where x1,...,xn are the weights of x.

Proof. Restriction to z induces an S-linear map ¢, : AT(X) — S such that e,[z] =
X1 ---Xn and that ,[Y] = 0 for any T-invariant subvariety ¥ C X which does not contain
z. By Proposition 4.2 (i), we then have ¢, = x1 ... xn€s-

So it suffices to prove that p,Y = x1 ... xnez[Y]. For a T-invariant subvariety ¥ C X,
denote by C,Y C T,X its tangent cone at . By Rossmann’s definition, we have p,Y =
po(C.Y). We claim that e,[Y] = ¢[C,Y]. Indeed, let X the space obtained from the
blow-up of X x A! (resp. Y x Al) at (z,0) by removing the projectivization of T, X (resp.
of C,Y). Let T act on X x Al by acting trivially on A!. This defines an action of T on X,

such that ¥ is a T-invariant subvariety. Moreover, we have a flat, T-invariant morphism

p:Y — A" such that p~'(0) ~ C,Y and that p~'(t) ~ Y for all t # 0. It follows that
[Y] = [C.Y]in AT(Y). Intersecting in X with the fixed point scheme (which is the strict
transform of = x A'), we obtain [Y], = [C;Y]o which implies our claim.

So we may assume that X is a T-module with weights x1,..., xn, that z 1s the origin,
and that Y is invariant under scalar multiplication. Set 7" := T x G,,, denote by 6 the
character (¢,u) — u of T, and let T act on X with weights x1 +6,..., xn + 6. Then the
origin is an attractive fixed point for this action. Using Proposition 4.4 (ii) and [R] p. 316,
we then obtain

(X1 +8) - (xn+0)e,[Y] =plY

where €, p' denote equivariant multiplicities with respect to T'. Now we conclude by the
following easy consequence of Proposition 4.2.

Lemma. Let + € X be a non-degenerate T-fixed point. Assume that the action of T
on X extends to an action of a torus T' O T which fixes x. Then x is non-degenerate
for the T'-action. Moreover, for any T'-invariant subvariety Y C X, the T'-equivariant
multiplicity ¢! [Y] specializes to e, [Y]| under the map S" — S.

5. Equivariant Chow groups of toric varieties

5.1. Toric varieties and fans

Let X be a toric variety, that is, X is normal and T acts on X with a dense orbit
isomorphic to T. Recall that X is determined by its fan ¥ in Ng, see e.g. [F2]. The cones
of ¥ parametrize the orbits in X; we denote by o — €, this parametrization, and by V(o)
the closure of Q, in X. Then Q, = T/T, where T, is the subtorus of T with character
lattice M/M N ot and with lattice of one-parameter subgroups N, (the subgroup of N
generated by N N o). In particular, the dimension of €, is the codimension of o.

Proposition. Let X be a toric variety with fan 3. Then the S-module AT(X) is defined
by generators F, = [V (o)] (where o € ¥) and relations

XFa' - Z <X7nar>Fr

where y € MNoL; the summation is over all 7 € ¥ which contain o as a face of codimension
one, and nyr € N/N, is the unique generator of the semigroup (7 N N)/N,.
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Proof. The T-invariant subvarieties in X are the orbit closures V(o). Moreover, any
rational function f on V(o) which is an eigenvector of T' is determined up to scalar multi-
plication by its weight x: a character of T which vanishes identically on . By [F2] p. 61,
the divisor of f on V(o) is then ) _(x,nsr)Fr. We conclude by Theorem 2.1.

5.2. Equivariant multiplicities of toric varieties
For a closed convex cone o in Ngr, we denote by

oV ={reMr|(\Nz)>0V)Ie€o}
its dual cone. Moreover, for A € Ngr, we set
P,(N):={zeo’ | {(\z)<1}.

If \isin 0% then P,()\) is a convex polytope.

Proposition. Let X be a toric variety with a fixed point x, and let o be the corresponding
d-dimensional cone in Y. Then, notation being as in 4.4, x is attractive, and o0 = o;.
Moreover, for any A € o°, the equivariant multiplicity e,[X]()\) is d! times the volume of
Py(N).

Proof. Recall that = is contained in a unique T-invariant open affine subset X, of X.
Moreover, the set of weights of T' in the algebra of regular functions on X, is the intersection
of M with . By Proposition 4.4 (i), it follows that = is attractive and that o, = . For
any A\ € 0¥, we have for the grading of k[X,| defined by A:

Z dim k[X,]m = card{x € ¥ | {x,\) <n}.

m=0

This function of n grows like n? times the volume of P,(\).

For z and o as above, we denote ¢, : AT(X) — Q by ¢,. More generally, for any
o € X, we will define an S-linear map e, : AZ(X) — Q, where Q, is the field of rational
functions on (N,)q.

Let X, be the unique T-invariant open affine subset of X which contains €, as a
closed subset. Then there exists a unique T,-toric variety S, such that X, is equivariantly
isomorphic to T X7, S,. Moreover, S, is affine and contains a fixed point of T,,. We define
€s as composition

AL (X) = A (S5) = Qo

where the first arrow is restriction to S5, and the second one is T,-equivariant multiplicity
for S,.

Corollary. Let o, 7 be cones in X..

(i) If T is not contained in o, then ¢, F,. = 0.

(ii) If 7 is contained in o, then, for any X\ in the relative interior of o, the value at X\ of
¢o Fy is (dim(o) — dim(7))! times the volume of the convex polytope in 7+ /cL, image of
the set P,(\) N 7+, In particular, e, F, = 1.
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Proof. Apply the proposition above to the affine toric variety S, N V(7) for the torus
Ty /T-. Then the associated cone is (o¥ N TJ‘>/0'J‘ in the linear space TJ‘/O'J‘.
5.3. An embedding of the equivariant Chow group

We will show that the equivariant multiplicities constructed in 5.2 separate points in
the equivariant Chow group of any toric variety. A complete description of this group will
be given in 5.4 in the simplicial case; the general case is still open.

Proposition. (i) For any toric variety X with fan ¥, the S-linear map

He,,:A*T(X)—) HQa

oEY oEY

1s injective. Moreover, this map induces an isomorphism over Q.

Proof: By induction over the number of cones in Y. Choose a maximal cone ¥ and consider
the commutative diagram

AT(Q,) — AT(X) — AT(X\Q,) — 0
\ 3

0 = Qb = I = ey — 0
which induces a map AI(Q,,) — Q,. This map is S-linear and sends [Q,] = F, to
esFy = 1. Moreover, AI(Q ) = AI(T/T,,) is the symmetric algebra over M/M N ot.
Therefore, our map A% () — Q, identifies with inclusion of this symmetric algebra into
its quotient field Q..

Remark. This description shows that the abelian group AT(X) is torsion-free. On the
other hand, there exist projective toric surfaces X such that A(X) has torsion, see [F2] p.
65. For such X, the S-module AT(X) cannot be free: the assumption of non-singularity
1s necessary in corollary 3.2.1.

(24

5.4. The case of simplicial toric varieties

Recall that the toric variety X is simplicial if each cone of its fan is generated by
linearly independent vectors; equivalently, X has quotient singularities by finite groups.
In this case, we will describe the equivariant Chow group AT(X) in terms of piecewise
polynomial functions.

Let ¥(1) be the set of one-dimensional cones in 3. For any p € (1), the semigroup
p NN has a unique generator n,. Because X is simplicial, any continuous and piecewise
linear function on the support of 3 is uniquely defined by its values at the n, for p €
Y(1). In particular, there is a unique continuous, piecewise linear function ¢, such that

¢vp(n,) =1 and that ¢,(n,) =0 for all p’ € (1), p’ # p. For 0 € X, we set

@y := mult(o) H ©p

pEa(1)

where mult(c) = [N, : EpEo‘(l) Zn,] is the multiplicity of o. Then ¢, is a continuous,
piecewise polynomial function which is homogeneous of degree dim(o) = codimx V(o) and
which vanishes outside the star of ¢ in X.
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We denote by Ry the ring of continuous, piecewise polynomial functions on the support
of ¥ which take rational values on N. Then Ry is a Sq-algebra; let Ay be the S-submodule
of Ry generated by the p,, o0 € X. Observe that Ay, is not a subalgebra of Ry in general;
but it generates Ry, as a Q-vector space, see e.g. [Brl] Corollary 1.2.

Theorem. Let X be a simplicial toric variety.
(i) For any cones o, 7 in %, restriction to o® of p,/p, is defined and equal to e, Fy. In
particular, 1/p, coincides with e, X on oV.
(ii) The S-linear map
AI(X> - HUEE Q‘T
u = (egu/esX)sex

is injective, and its image is Ay.
Proof. (i) is a straightforward computation, each polytope P,(\) being a simplex.

(ii) By Proposition 5.3, our map is injective; by Proposition 5.1 and (i), its image is
the S-module generated by the (e, Fr/€sX)sex = ¢r (7 € ).
Remark. For X as above, the rational equivariant Chow group AT (X)q has a ring struc-
ture, and the map AZ(X)Q — Ry is a ring isomorphism. Indeed, X is a quotient of a
smooth toric variety with respect to another torus T, by a subtorus of T which acts with
finite isotropy groups (see e.g. [B-V]), so the assertion follows from [E-G 1] Theorem 4.

6. Equivariant Chow groups for actions of connected reductive groups
6.1. A refined presentation of equivariant Chow groups

We obtain a refinement of Theorem 2.1 for schemes with a torus action which extends
to an action of a larger group.

Proposition. Let X be a scheme with an action of a connected solvable linear algebraic
group I', and let T' be a maximal torus of I'. Then:

(i) The equivariant Chow group AT(X) is generated as an S-module by the classes [Y]
where Y C X is a I'-invariant subvariety.

(i) If moreover the S-module AT (X)) is free, then the S-module of relations between these
classes is generated by the [divy (f)] — x[Y] where Y C X is a '-invariant subvariety, and
where f is a non-constant rational function on 'Y which is an eigenvector of I' of weight .

We ignore whether (ii) holds in full generality.

Proof. Define a S-module Ag)(X) by generators [Y] and relations [divy (f)] — x[Y] as
above. Then ASFF)(X) is graded, where the degree of [Y] is the dimension of Y. Consider

the natural S-linear map

u: A (X) o AT(X)
which 1s homogeneous of degree zero. It induces a map
7 AN (X)) MAD (X) = AT(X)/MAT (X)) .

The right-hand side is A,(X) by corollary 2.3.1, whereas the left-hand side is the abelian
group defined by generators [Y] and relations [divy (f)] for ¥ C X invariant by ', and f a
non-constant, I'-semi-invariant rational function on Y. By [F-M-S-S] Theorem 1, the map
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w 1s an isomorphism. We conclude by the graded Nakayama lemma, which can be applied

because the degrees in AST)(X) and AT(X) are bounded from above by the dimension of
X.

6.2. The action of the Weyl group on the equivariant Chow group

Let GG be a connected reductive group. Choose a Borel subgroup B C G and a maximal
torus T of B. Denote by W the Weyl group and by R the root system of (G,T). We have
the set Ry of positive roots and its subset ¥ of simple roots. For a € ¥, we denote by
Sa € W the corresponding simple reflection and by P, := B U Bs, B the corresponding
minimal parabolic subgroup. Recall that the group W is generated by the s,, a € 3.

Let X be a scheme with an action of G. Then W acts on the equivariant Chow group
AT(X) (this follows e.g. from the presentation of this group given in 2.1). To describe
this action, it suffices to calculate the action of a simple reflection s, on the class of a B-
invariant subvariety Y C X. This is what we do in our next proposition, after introducing
more notation.

Let P C G be a parabolic subgroup, and let Y C X be a B-invariant subvariety.
Denote by P xp Y the quotient of P x Y by the B-action given by b- (p,y) := (pb~!, by).
Then the map PxY — X : (p,y) — py factors through a proper morphism P x Y — PY.
In particular, PY is a closed subvariety of X. If moreover the parabolic subgroup P is
minimal and moves Y in X, then dim(P xpY) = dim(Y") 4+ 1 = dim(PY’) and hence the
morphism P xg Y — PY is generically finite.

Proposition. Let X be a scheme with an action of G, let Y C X be a B-invariant
subvariety, and let « be a simple root with associated minimal parabolic subgroup P = P,.
(1) IfY is P-invariant, then s,[Y) = [Y].

(ii) I Y is not P-invariant, then

salV] = [Y] — d(Y, a)a[PY]

where d(Y, a) is the degree of the morphism P xpY — PY.
(iii) If moreover PY contains a dense B-orbit, then denoting by Py the isotropy subgroup in
P of a general point in PY', we have: d(Y, a) = 2 if the image of Py in Aut(P/B) ~ PGL,
is the normalizer of a maximal torus in PGLy, and d(Y, a) = 1 otherwise.
Proof. (i) Because PY =Y, we have s,Y =Y and hence s,[Y] = [Y].
(ii) Set Z := P xp Y with inclusion map ¢ : ¥ — Z and projection 7 : Z — P/B. Then
P/B is isomorphic to projective line where B acts by the character —a. So m can be seen
as a B-semi-invariant rational function on Z with divisor —[i(Y")] 4 [s4¢(Y")]. Therefore,
we have in AT(Z):

—alZ] = —[i(Y)] + sali(Y)] -

Now comnsider the proper, surjective morphism

f:Z=PxY = PY

and apply f, to the identity above. Then we obtain our formula, because f is P-equivariant
and maps i(Y") isomorphically to Y.
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(ii1) is implicit in [R-S] §4 and in [Kn] §3; it can be checked as follows. Choose y € YV
such that By is dense in Y. Then the space P xg Y contains P xg By as a dense
P-orbit. This orbit is mapped by f onto Py = P/P,. Therefore, the degree of f is
[Py : Byl = [Py : P,N B]. Now P, = Py acts on P/B with a dense orbit (because B
has a dense orbit in Py) and with a finite orbit P,/P, N B. So our statement follows by
inspection of groups acting on projective line with a dense orbit.

Corollary. Let X, Y and a be as above, and let x € X be a non-degenerate fixed point.
Then sy is non-degenerate, and we have:

V] = Sa€r[Y] ifPY =Y
Csacl® ] = salex[Y] —d(Y,a)ae, [PY]) otherwise.

Proof. By uniqueness of ¢, : AT(X) — Q, we have
s, z|Y] = sa€z[saY] .

This formula implies both statements. Alternatively, one may apply apply Proposition 4.3
to the morphism f : P xgY — PY. Then the fixed points above x are i(z) and sqi(z).
Both are non-degenerate, and we have

i) [P xBY]=—a"e[Y], €5 i) [P xBY]=a "sales[V]) .

6.3. The action of operators of divided differences
Let Q[W] be the twisted group ring of W with coefficients in Q (the fraction field of
S), that is, Q[W] is the Q-vector space with basis W and multiplication

(Y fuw)(D gov)= > (> fuulge))w .

ueW veW weW w=uv

Let a be a simple root. Following [D1], define an operator of divided differences D, € Q[W]
by

D. — 1d — Sq
«
Then D, acts on Q. Observe that
D, (uv) =uDy(v) + Do(u)sa(v) Yu,v € Q
and that
Da(x) = (x, ") Vy €M

It follows that D, leaves S invariant.

Theorem. Let X be a scheme with an action of G. Then there exists a unique action of
D, on AT(X) such that:
(i) For allu € S and v € AI(X), we have Do (uv) = uDqy(v) + Do (u)sq(v).
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(ii) For any B-invariant subvariety Y of X, we have

0 i PY =V
Da[V] = {d(Y, P.Y] i PY AY

where d(Y, ) denotes the degree of the map Py xpY — P,Y, see 6.2
Moreover, we have for all u € AT (X):

aDq(u) =u — sq(u) .

Finally, D, commutes with G-equivariant proper push-forwards, flat pull-backs and Gysin
morphisms associated to l.c.i. morphisms.

Proof. Uniqueness of D, follows from Proposition 6.1. For existence, we fix an index 7 and
we construct an operator D, @ AT (X) — A;I:H(X) as follows. Let V and U be as in 2.1,
and set Z := X x U. Then the quotient map Z — Z/G factors through p: Z/T — Z/B
followed by ¢ : Z/B — Z /P where P := P,. By the lemma below, we can identify A.(Z/T)
with A,(Z/B) via p*. Define

D,: Ai{(Z/B) — Ai11(Z/B)
u = 7" (gsu).

Arguing as in the proof of Proposition 1 in [E-G 1], we see that D, is independent of the
choice of V. To prove that (i) holds, observe that ¢ : Z/B — Z/P is the projective line
bundle associated to the action of P on P/B. It follows that

A*(Z/B) = q*A*(Z/P) e q*A*(Z/P)

where ¢ € A'(Z/B) identifies to multiplication by a. Moreover, ¢*A,(Z/P) consists of
fixed points of s, in A,(Z/B). So, using the projection formula, it suffices to check (i) for
v = [Z/B] and for v = «[Z/B]. But both cases reduce to the well-known formula

U — Sqo(u)

«

*
q gsu =

in S (a consequence of Propositions 3 and 4 in [D2]).

To check (ii), let Y C X be a B-stable subvariety and set Y’ := (Y x U)/B. If
PY =Y, then dim(¢(Y’)) = dim(Y") 4+ 1. Therefore, ¢.[Y'] = 0 and D,[Y] = 0. On
the other hand, if PY # Y, then ¢|ys : Y’ — ¢(Y"') is generically finite of degree d(Y, o).
Indeed, we have d(Y,a) = [P, : B,] for general y € Y (see the proof of Proposition 6.2)
and hence d(Y, a) is the cardinality of the set

{p€ P |py€By}/B.

But this set identifies with the fiber of ¢ at (y,v)B for any v € U. It follows that
Do[Y] = d(Y,a)[g (q(Y")] = d(Y,a)[PY].
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By Proposition 6.2, we have [Y] — s,[Y] = aD,[Y] for any B-invariant subvariety Y
of X. Using Proposition 6.1 and (i), it follows that u — squ = aDyu for any u € AT (X).

Finally, we check that D, commutes with G-equivariant proper push-forward. Let X’
be a scheme with a G-action and let f : X’ — X be a proper, G-equivariant morphism.
Set Z' := X' x U; consider the induced maps fp: Z'/B — Z/B, fp: Z'/P — Z/P and
q :Z'/|B — Z'/P. Then we have a Cartesian square

Z'/B — Z'|P
i }
Z/B - Z/P

with flat horizontal arrows. It follows that (fp).q"™ = ¢*(fB)+ and hence that (fp).q* ¢, =
q*q«(fB)+ as required. The proofs of the other assertions are similar.

Lemma. Let B be connected solvable linear algebraic group, and let T C B be a maximal
torus. Let Z be a scheme with an action of B and a quotient = : Z — Z /B which is a
principal B-bundle. Then = factors through a smooth map p : Z/T — Z /B which induces
an isomorphism p* : A, (Z/B) — A4 nN(Z/T) where N is the dimension of B/T.

Proof. We can choose a sequence of connected subgroups

such that dim(B;) = dim(T') 4+ . Then 7 factors through the quotient map Z — Z/T
followed by composition of maps p; : Z/B; — Z/B;t1. Observe that

Z/Bl =7 XBi+1 Bi+1/Bi

and that B;yq1/B; is the affine line where B;1q acts either by the group of translations,
or by the full affine group. This identifies Z/B; with the total space of a projective line
bundle over Z/B;11, minus a section. Therefore, pf : A,(Z/B;11) — Aw41(Z/B;) is an

isomorphism (see e.g. [Vi] Lemma 1.4).

6.4. The ring of operators of divided differences
Following [D1], denote by D the subring of Q[W] generated by S[W] and by the
operators D, for all simple roots a. We call D the ring of operators of divided differences.
We have
SW]cDc Q[W].

Moreover, D can be seen as the ring of endomorphisms of the abelian group S which is
generated by the operators D, and by arbitrary multiplications by elements of S. Observe
that S"-linear endomorphisms, where S denotes the ring of W-invariants in S.

For any scheme X with an action of G, the ring S[W] acts on the equivariant Chow
group AT(X). By Theorem 6.3, this action extends to an action of the ring D. We will
describe the latter action in the case where X = G/ B is the flag variety of G. For this, we
introduce the following notation.

For any w € W, we choose a reduced decomposition

W= Sq,5q, """ Sqy
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where | = [(w) is the length of w. We define D,, € D by
D, :=D,D,, D, .

By [D1], the operator D,, is independent of the choice of the reduced decomposition of w.
Moreover, the D,, (w € W) are a basis of D as a left S-module.

Proposition. The D-module AT (G/B) is freely generated by the class of the B-fixed point
x. Moreover, D,[z] is the class of the Schubert variety BwB/B in AT(G/B). Finally,
denoting by fG/B : A%(G/B) — S the push-forward for the structural morphisin, we have
for all D € D:
D[z] = D(1) .
G/B

Proof. First observe that the S-module AT(G/B) is free, e.g. by Corollary 3.2. We
construct a basis of this module as follows. For w € W, denote by C(w) the Schubert cell
BwB/B and by X(w) the closure of C(w) in G/B. Then, by the Bruhat decomposition,
each C(w) is an affine space of dimension I(w), and G/B is the disjoint union of the C'(w)
(w € W). In fact, the C'(w) are the Bialynicki-Birula cells associated to a one-parameter
subgroup in the interior of the positive Weyl chamber. So, by Corollary 3.2, the classes
[X (w)] are a basis of the S-module AT(G/B).

Let w be a non-trivial element of W. Write w = s,7 with « simple and I(7) = I(w)—1.
Then the map P, xp X(7) — X(w) is birational. Using Theorem 6.3, it follows that
D,[X(7)] = [X(w)] and hence that [X(w)] = D,[z] in AI(G/B). Therefore, we have
AT(G/B) = D[z]. Furthermore, the S-module D is torsion-free of rank |W|, which is the
rank of the S-module AT(G/B). Tt follows that the map

D — AT(G/B)
D Dix]

1s an isomorphism.
Finally, for any w € W, we have

Dulel = [ Xl ={ e

G/B 0 otherwise.

Therefore, our formula for fG/B holds when D = D,,. By linearity, it holds for all D € D.

Remark. The proof above shows by geometric arguments that the D,, are independent of
the choice of reduced decompositions, and that they form a basis of the left S-module D.

6.5. Equivariant multiplicities of Schubert varieties

Denote by i : (G/B)T — G/B the inclusion of the fixed point set, and identify (G/B)T
with W. Then AT((G/B)T) identifies with the ring S[W] as a S-algebra with a compatible
action of W.

Proposition. (i) The image of
i+ AT(G/B) — S[W]
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consists in all EwEW’ fuw w such that f,, = fs, w (mod o) whenever w € W and a € RT.
(ii) We have

X ()] = (DT @) Y det(r) er[X(w)]

a€eRt r<w

where N 1s the number of positive roots, and where e, denotes equivariant multiplicity at
7 in G/ B, see §4. Moreover, e, is uniquely defined by:

ez =1, e-[z] =0forall 7 #1
where x is the B-fixed point in G/B, and by the recursive formula

er[X(w)] = sales,r[X(w)])

(8%

er[X(sqw)| =

for all simple roots « such that [(sqw) = [(w) + 1.

Proof. (1) follows from 3.4 combined with the description of all T-invariant curves in G/ B.
This description can be found in [Cal; we recall it for completeness. Let C C G/B be a
T-invariant curve with weight o € M. Then the kernel of « is a singular torus in the sense
of [Bo] (13.2), and hence « is a root. Let G, C G be the centralizer of the kernel of a.
Then G, is a reductive group of semisimple rank one. Moreover, C' is equal to G,wB/B
for some w € W. So CT = {w, sqw}. Now we conclude by 3.4,

(ii) Observe that any 7 € W is an attractive fixed point in G /B with weights —w(«)
(a € RT). Using 4.5, it follows that we have for all u € A%(G/B):

1Fu = Z Urp T = Z er(u)( H —7(a))T = (—l)N( H a) Z det(7T)er(u)T .

TeW TeW aERT aERT TeWw

Finally, the recursive formula follows from corollary 6.2.

As an application, here is a short proof of a smoothness criterion for Schubert varieties,
due to S. Kumar (see [Ku] Theorem 5.5). Let 7,w € W such that 7 < w. Then 7 is a
non-singular point of X (w) if and only if

(K) e[X(w)]= (=)™ J[ o

a€Rt s,7<w

Indeed, recall that the T-invariant curves through 7 in G/B are the Go7B/B where a
18 a positive root, and where G, C G is the corresponding reductive subgroup of semisimple
rank one. Moreover, G, 7B/B is contained in X (w) if and only if s,7 < w.

If 7 is a non-singular point of X (w), then the weights of T, X (w) are the weights of
the T-invariant curves through 7, 1.e., the opposites of positive roots a such that s,7 < w.
The number of such weights is dim X (w) = I(w). So (K) follows from 4.2.

Conversely, assume that (K) holds. Consider the unique open affine T-invariant neigh-
borhood X (w), of 7 in X (w) defined in 4.4, and denote by A the algebra of regular func-
tions on X (w),. By the proof of Proposition 2.2 in [Po], or by the proof of Proposition 5.2
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in [Ku], for any o € R such that s,7 < w, there exists f, € A which is an eigenvector of
T of weight —a. Moreover, the unique common zero of the f,’s is 7.

Because the degree of the rational function e,[X (w)] is — dim X (w) = —I(w), equation
(K) implies that the number of f,’s is the dimension of X (w). Therefore, the f,’s generate
a polynomial subring R of A and moreover A is a finite R-module. Moreover, because the
equivariant multiplicities of R and of A are equal, the rank of the R-module A 1s one. It
follows that A = R, i.e., X(w), is an affine space.

6.6. The rational equivariant Chow ring of the flag variety

The results in 6.4 and 6.5 give a picture of the equivariant Chow group AT (G/B) as an
S-module. In this section, we will describe the rational equivariant Chow ring A%.(G/B)q,
the action of D on this ring, and its relation to the previous picture and to the rational
G-equivariant Chow ring A (G/B x G/B)q as well.

For any x € M, consider the G-equivariant line bundle G xp k(x) over G/B and
denote by ¢T(y) its T-equivariant Chern class. Then ¢T(y) is in AL(G/B). The additive
map

M — AL(G/B)
X o= cx)

extends to a ring homomorphism: the characteristic homomorphism
¢S — A%(G/B) .

Proposition. (i) The map
SxS — A%(G/B)
(f,9) = fc'(g)
is SW-bilinear.
(ii) The induced map
v:S®sw S — AL(G/B)

is an isomorphism over the rationals. If moreover G is special, then v is an isomorphism.

(iii) For all D € D and f, g in S, we have

D(fc"(g)) = D(f)c" (9)

and moreover

i LI @ =L o) s Y det(y o)

a€ERT weWw

(iv) For any character x of T, we have in A%(G/B):

T ()X (w)] = w()[X (w)] + Y (x, B)[X (wsp)]
5

(sum over all positive roots (3 such that [(wsg) = I(w) — 1). In particular,

T(x) = wo(xX)[G/B] + Y _(x,@)[X(wosa)]
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(sum over all simple roots a ), where wq is the longest element in W.

Proof. (i) Observe that i*(fcT(g)) = Yowew Jw(g)w. It follows that the map

SxS —  SW]
(fr9) = i*(f<T(9))

is SW-bilinear. Now (i) follows from injectivity of i*.
(ii) The map v induces a map

7:(Sesw S)/M(S@sw S)=S/SYS — A%(G/B)/MA}(G/B) = A*(G/B)
where SE/ denotes the ideal of SW generated by homogeneous elements of positive degree.
By [D1], the map 7 is an isomorphism over the rationals; if moreover G is special, then 7 is

an isomorphism. Therefore, v is surjective over the rationals, by Nakayama’s lemma. But
Sq is a free module over SS/ and hence Sq ®S(‘3’ Sq is a free module over Sq. It follows

that v is an isomorphism over the rationals (resp. an isomorphism if G is special).
(iii) For any simple root «, we have

(id = sa)(fe"(9)) = (f = sa(f))e" (9)
because ¢! (g) is W-invariant. Moreover, the S-module A%(G/B) is free, and therefore

Du(fc"(9)) = Da(f)c"(g) -

Finally, we have by Bott’s residue formula (see [E-G 2] §5, or use Corollary 4.2):

/G LIT@ = Fulg)el6/Bl=5 3 wlo) T (-wle)

weW weWw aERT

which 1mplies our second formula.

(iv) Let u € AT(G/B). Using the formula
Da(xu) = sa(x)Da(u) + (x, @)u

(valid for any simple root «) and induction over the length of w, we obtain

Duy(xu) = w(x)Du (1) + > (X, 3)Dus, (1) .
B

In particular, taking v = [z], we obtain



But x[z] = ¢T(x)[z] (as can be checked by restriction to fixed points). Moreover, by (iii),
multiplication by ¢?(x) commutes with D,,. So we obtain

Dy(x[X]) = ¢" (x)Dule] = ¢" (x)[X (w)]

which proves the first formula. The second one follows by taking w = wo; then the positive
roots ( such that l(wsg) = l(w) — 1 are exactly the simple roots.

Statement (iv) implies readily an equivariant version of the Chevalley formula which
describes multiplication by the class of a Schubert subvariety of codimension one in G/B.
Recall that these varieties are the X (wgsq) (where a is a simple root) and that their
classes generate the S-algebra AT(G/B); so the following result describes (in theory)
multiplication of classes of all Schubert varieties.

Corollary. For any simple root a, we have in A%(G/B):

[X (wosa)][X ()] = (w(wa) = wo(wa) )X (w)] + Y (wa, B)[X (wsg)]
E

(sum over all positive roots 3 such that [(wsg) = l[(w) — 1), where w, Is the fundamental
weight which is not orthogonal to o.

Finally, we interpret the T-equivariant Chow group of G/ B as the G-equivariant Chow
group of G/B x G/B. Let V be a G-module, and let U C V be an open G-invariant subset
such that the quotient U — U/G exists and is a principal G-bundle. For any scheme X
with an action of B, denote by G xp X the quotient of G x X by the diagonal action of
B. Then the maps

(X xU))T - (X xU)/B~((GxpX)xU)/G
induce an isomorphism of degree NV
A% (G xp X) = AT(X) .
If moreover X = G/B, then the map

GxpX — G/BxG/B
(9,u)B  +—  (gB,guB)

is a G-equivariant isomorphism, where G acts diagonally on G/B x G/B. It follows that
there is an isomorphism

A%(G/B) = AL(G/B x G/B)

which maps each [X(w)] to [G(z, X(w))]. In particular, the class of the B-fixed point =
is mapped to the class of the diagonal in G/B x G/B. Moreover, v is identified to the
characteristic homomorphism of G/B x G/B.

Similarly, taking for X a point, we obtain that the characteristic homomorphism

S = A%(pt) » AL(G/B) is an isomorphism.
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6.7. The module structure of equivariant Chow groups
By the results of 6.6, there is an isomorphism

Sq®sw AY(G/B)q — Al (G/B)q.

Moreover, the rational Chow group A.(G/B)q is the quotient of AY(G/B)q by its sub-
group SE’A*G(G/B)Q. In this section, we will show that both results extend to any scheme
X with an action of G.

Recall the isomorphism (see [E-G 1] Proposition 6)

A9(X)q ~ AT(X)E

(If moreover G is special, then this statement holds over the integers.) In particular, the
rational G-equivariant Chow group of the point is isomorphic to S& . Therefore, the S-

module structure on AT (X) restricts to the structure of a Sg—module on A% (X)q together
with a map

7 8q @y AY(X)q = A/ (X)q -

Observe that the left-hand side is a D-module via D(u ® v) = D(u) ® v (this makes sense
because D consists in $"-linear endomorphisms of $). By Theorem 6.3, the right-hand
side 1s a D-module, too.

Theorem. Let X be a scheme with an action of a connected reductive group G with
maximal torus T. Then the map

71 5q ®sw A7 (X)q = A/ (X)q

is an isomorphism of D-modules. If moreover G is special, then the statement holds over
the integers.

Proof. As in the proof of Proposition 6.3, it is enough to check that the map

7 Sq@sy AlZ/Glq = A«(Z/B)q
u@uv — ce(u) N ¥
is an isomorphism of D-modules. Here Z — Z/G is a principal G-bundle, 7 : Z/B — Z /G
is the associated complete flag bundle, and ¢ is the characteristic homomorphism, defined
as follows: a character y € M acts by multiplication by the first Chern class of the line
bundle Z x g k(x) over Z/B.
It has been shown by Vistoli that v is an isomorphism (see [Vi] Theorem 2.3). A

somewhat simpler proof is as follows. The case where Z = G (with the left action of G)
has been treated in 6.6. In the general case, we claim first that ~ is surjective, 1.e.,

A (Z/B)q = ¢(Sq) N1 A(Z/G)q .

Indeed, we can find an open subset U C Z/G and a finite map ¢ : U" — U such that pull-
back by ¢ of the bundle p: Z — Z/G is trivial. Then pull-back by ¢ of 7 : Z/B — Z/G
is the trivial flag bundle G/B x U’ — U’. Therefore,

AnHU') xu U')q = Au(G/B)q @ 7" A, (U')q = ¢(Sq) N 7" A,(U')q
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where the first equality holds e.g. by [F-M-S-S] Theorem 2. This implies that
Aum T (U))q = c(Sq) N7" Au(U)q -
On the other hand, we may assume by Noetherian induction that
A (7 Y Z/B\U)q = c(SqN7*A(Z/G\U)q .

This implies our claim.
Now we check that ~ is injective. By a theorem of Chevalley, we can find a basis
(aw)wew of the Sg’—module Sq consisting of homogeneous elements. Consider the map

SQXSQ — Q
(f,9) = frg=D) (aers 07" Xuew det(w)uw(fg) -

Clearly, this map takes values in Sg and is Sg/—bilinear. We claim that it is non-
degenerate. Indeed, by 6.6, the induced map

(Sq/SY Sq) x (Sq/5 Sq) =+ Q
coincides with the intersection pairing

A*(G/B)q x A*(G/B)q — Q
(fag> = fG/B fg

and the latter is non-degenerate. We denote by (by)wew the dual basis of (a,) for this
dot pairing. Now let (uqy)wew be a family in A,(Z/G)q such that

Z c(aw) N T Uy, = 0.

weW

Fix 7 € W and apply n*m.c(b;) to the relation above, to obtain

Z T mc(awbs) N7 Uy =0
weW

by using the projection formula. But ¢(a - b) = n*m,c(ab) for all a, b in Sq (this follows
from 6.6; see also [Br2] Proposition 1.1), so we obtain a, = 0.

Finally, we check that v 1s D,-linear for each simple root a. By the proot of Propo-
sition 6.3, we have D, = ¢*qx where ¢ : Z/B — Z/P, is induced by = : Z — Z/G. But
g«(m*v) =0 for all v € A,(Z/G) and hence we have for all u € S:

Dy (c(u) Nm*v) = (¢*gsc(u)) N7 = ¢(Dou) N 7¥v .

Now we combine this theorem with our previous results for tori, to study the module
structure of AY(X)q over the polynomial ring Sg/.
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Corollary. Let X be a scheme with an action of G.

(i) The rational Chow group A,(X)q is the quotient of the rational equivariant Chow
group A%(X)q by its subgroup SY A¢(X)q where SY denotes the ideal of S generated
by all homogeneous elements of positive degree.

(ii) If moreover X is projective and non-singular, then the S&V—modu]e A% (X)q is free.

Proof. (i) follows immediately from the theorem above, together with Corollary 2.3.
(ii) By corollary 3.2, the Sq-module AT (X)q is free. Moreover, the S&V—module Saq
is free, and hence the Sg/—module AT(X)q is free, too. Now the Sg—module A;T(X)g is

a direct summand of AT(X)q, and hence it is projective. Moreover, A'*T(X)g is graded,

with degrees bounded from above. Therefore, it is free over Sg.

7. Equivariant Chow groups of spherical varieties

7.1. Fixed points of codimension one tori in spherical varieties

Let G be a connected reductive group, B C G a Borel subgoup and T' C B a maximal
torus. Let X be a projective, non-singular G-variety. Assuming that X is spherical (i.e.,
B has a dense orbit in X ), we will apply Theorem 3.3 to the description of the rational
equivariant Chow ring A% (X )q. For this, we study fixed points of codimension one subtori
of T'.

Recall that a subtorus T’ C T is regular if its centralizer Cg(T") is equal to T;
otherwise T" is singular. A subtorus of codimension one is singular if and only if it is the
kernel of some positive root a. Then « is unique, and the group Cg(7") is the product of
T" with a subgroup S isomorphic to SLy or to PSLy. Observe that the fixed point set of
T’ in any G-variety inherits an action of the group C¢(T")/T’, a quotient of S.

Proposition. Let X be a spherical G-variety, and let T' C T be a subtorus of codimension
one.

(1) If T' is regular, then the fixed point set X7 is at most one-dimensional.

(ii) If T" is singular, then XT' is at most two-dimensional. If moreover X is complete and
non-singular, then any two-dimensional connected component of XT' s (up to a finite,
purely inseparable equivariant morphisimn) either a rational ruled surface

Fn == P(Opl b Opl (TL))

where Cq(T") acts through the natural action of SLy, or the projective plane where Cq(T")
acts through the projectivization of a non-trivial SLy-module of dimension three.

Proof. Let Y be an irreducible component of X7, By a result of Luna (personal commu-
nication), the Cg(T")-variety Y is spherical. Luna’s proof is as follows: Let A be a generic
one-parameter subgroup of 7"; then C'¢(T") = C(A). Denote by G(A) the set of all g € G
such that lim; 0 A(t)g\(¢#7') exists. Recall that G(\) is a parabolic subgroup of G, with
Levi subgroup C(\). Moreover, the Bialynicki-Birula stratum X (Y, \) is invariant under
G()), and the map p4 : X4 (Y, \) = Y is a G(\)-equivariant retraction, where G()) acts
on Y through its quotient Cg(A). Because X is spherical, it contains only finitely many
orbits of any Borel subgroup of G. Therefore, a Borel subgroup of G(X) has finitely many
orbits in X1 (Y, A), and finally a Borel subgroup of Cg()) has finitely many orbits in Y.
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If T' is regular, then C(T") acts on X7 through the one-dimensional torus T/T",
whence (i). If T is singular, then Y is a spherical S-variety. So the dimension of Y is at
most the dimension of a Borel subgroup of S, whence the first statement of (ii).

If moreover X is complete and non-singular, then the same holds for Y. Choose a
point y such that the orbit -y 1s open in Y, and denote by H the preimage in SLy of the
1sotropy group Sy. Then the map

SL,/H — Y
gH  —g-y

is dominant and purely inseparable.

Because H is a spherical subgroup of SLa, three cases can occur:
(1) H is a one-dimensional torus. Then the homogeneous space SLy/H admits P' x P!
as an equivariant completion, with boundary the diagonal A. The rational, S-equivariant
map

f:P'xP' — — 5V

is defined at some point of A, and hence everywhere because A is a unique S-orbit.
Moreover, f cannot contract A, and therefore f is finite.

(2) H is the normalizer of a one-dimensional torus. Then SLy/H admits P(sly) (the
projectivization of the Lie algebra of SL;) as an equivariant completion, with boundary
the conic of nilpotent matrices. By the argument above, the rational equivariant map

f:Y — — = P(sly)

is everywhere defined and finite.

(3) H is the semi-direct product of the subgroup U C SLy of unipotent matrices, by the
cyclic group Z, of diagonal matrices with eigenvalues ((,(~") where ¢ is a n-th root of
unity.

First consider the case where n = 1. Then SLy/H = k*\ {0} as an SLj-variety.
Arguing as before, we see that any non-singular completion of SLy/H is isomorphic to
P(k? & k) or to its blow-up at the origin, i.e. to Fy.

Finally, for any integer n, the homogeneous space SLy/UZ,, admits F,, as an equiv-
ariant completion. Moreover, the boundary consists in the curves P(Op: & 0) and P(0 &
Op1(n)). Both curves are homogeneous, and therefore the inclusion SLy/H — Y extends
to a morphism f : F,, - Y. For n > 1, no boundary curve can be contracted to yield a
non-singular surface, and hence f 1s finite.

7.2. Equivariant Chow rings of rational ruled surfaces
Let D be the torus of diagonal matrices in SLy and let o be the character of D given

2 0
a(o t_1>=t2.

We will identify the rational character ring of D with Qla].
Consider a rational ruled surface F,, with ruling = : F,, — P!. Observe that F,
contains exactly four fixed points z, y, z, t of D where z, y (resp. z, t) are mapped to 0

by
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(resp. oo) by m. Moreover, we may assume that y and z lie in one G-invariant section of
7, and that x and ¢ lie in the other G-invariant section. This ordering of the fixed points
identifies A% (FT) with Q[a]*.

On the other hand, denote by P(V') the projectivization of a non-trivial SLy-module V
of dimension three. The weights of D in V are either —a, 0, a (in the case where V = sly)
or —%, 0, § (in the case where V = k* @ k). We denote by z, y, z the corresponding fixed
points of D in P(V), and we identify A% (P(V)T) with Q[a]®.

Proposition. Notation being as above, the image of
i*: Ap(Fa)q — Sg

consistsin all (fy, fy, f, fi) such that f, = f, = f. = fi (mod «) and that fo—fy,+f.—fi =

0 (mod o?). Moreover, the image of
* Ap(P(V))q — Sg

consists in all (fz, fy, f-) such that f, = f, = f. (mod «) and that fy, —2f,+ f. =0 (mod
a?).
Proof. First we consider the case of P(V'). The closures of the Bialynicki-Birula cells are
then: the point z, the line (yz) and the whole P(V). The classes of these closures are
mapped by * to

(0,0,2a%), (0,a,2a), (1,1,1)

in the case where V = sly, and to

2

o o
(0707 ?)7 (07 5,&), (17 17 1)

in the case where V = k? @ k. By Corollary 3.2 (iii), the image of i* is generated as an
S-module by images of closures of cells. This implies easily our statement.

The proof for F,, is similar; it is enough to check the result for Fo and Fy (indeed,
for any positive n, the surface F,, is the quotient of Fy by the action of a cyclic group of
order n which commutes with the action of D).

7.3. Equivariant Chow rings of projective, non-singular spherical varieties

Recall that any spherical G-variety contains only finitely many orbits of GG, and there-
fore only finitely many fixed points of 7. Combining Theorem 3.3 wih the results of 7.1
and 7.2, we obtain immediately the following

Theorem. For any projective, non-singular, spherical G-variety X, the map
% * * T
" Ap(X)Q = AP(X T )q

is injective. Moreover, the image of i* consists in all families (f;),exr such that:
(i) fo = fy (mmod x) whenever x and y are connected by a T-invariant curve with weight

X-
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(ii) fo —2fy + f» =0 (mod o? ) whenever a is a positive root, z, y, z lie in a component
of Xker(@) jsomorphic to P2, and z, y, z are ordered as in 7.2.

(iii) fr — fy + f- — ft = 0 (mod o?) whenever a is a positive root, z, y, z, t lie in a
component of X*"(®) jsomorphic to a rational ruled surface, and z, y z, t are ordered as

in 7.2.

This approach to equivariant Chow rings of spherical varieties will be pursued in a
subsequent paper. Here we observe that case (ii) occurs e.g. when X is the space of
complete conics; then X¥r(@) is ejither the space of pairs of lines through a given point,
or the space of pairs of points on a given line. An example where case (iii) occurs is the
blow-up of the diagonal in P? x P?; then X*°*(®) is the strict transform of £ x £ where ¢
is a line in P?. Finally, here is an example where cases (ii) and (iii) do not occur.

Let G be a connected semisimple adjoint group of rank r. Consider G as a G x G-
variety for the action given by (g1,92) - ¢ = g1gg; " (this variety is spherical, by the
Bruhat decomposition). There exists a canonical smooth equivariant completion G C G;
its boundary G\ G consists in r smooth irreducible divisors intersecting transversally along
an orbit of G x G. The construction of G is due to De Concini and Procesi over C (as
a special case of their construction of canonical compactifications of adjoint symmetric
spaces); it was extended by Strickland to arbitrary characteristic, see [St].

Let T be a maximal torus of GG, with normalizer N and Weyl group W = N/T. Then
the closure N of N in G is smooth, and is the disjoint union of |W| copies of T'; moreover,
N contains all T x T-fixed points in X, see [L-P] 4.1. It is easy to see that G contains
only finitely many 7 x T-invariant curves, and that all such curves are contained in N.
Therefore, using Thorem 3.4, we see that the restriction map

A:}XT(@>Q — A:}XT(N)Q

is an isomorphism. It follows that composition

A*GXG(@)Q = A%‘XT(@HJXVV — A’?XT(N>(§/XIV = (SQ ® A’?(TDVV

is an isomorphism. This was proved in [L-P] 2.3 for equivariant cohomology and k = C.

7.4. The action of operators of divided differences

Let X be a spherical G-variety. Then X contains only finitely many B-orbits. Equiv-
alently, the set B(X) of B-invariant, closed, irreducible subvarieties of X is finite. A short
proof of this result was given by Knop (see [Kn] Corollary 2.6), based on the action on
B(X) of a monoid W* defined as follows: W* is the set W endowed with the product *
such that

BwB * BrB = BwBTB

in . This monoid had already appeared in Richardson and Springer’s work on B-orbits
in symmetric spaces, see [R-S]. Its action on B(X) is defined by

w*Y = BwY .

We will relate this action to the action of D on AT(X). For this, we associate to Y and w
as above, an integer d(Y,w): If the map BwB xp Y — BwY is generically finite (i.e., if
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dim(BwY) = dim(Y) + I(w)), then d(Y, w) is its degree; otherwise, d(Y,w) = 0. Observe
that d(Y, so) = d(Y, @) with notation as in 6.1.

Proposition. Let X be a spherical variety. Then, for any w € W and Y € B(X), the
integer d(Y,w) is 0 or a power of 2. Moreover, we have in AT (X):

D,[Y] = d(Y,w)[w Y] .

Proof. Choose a reduced decomposition w = sy, 84, *** So,- LThen the map

Bsy,B xp Bso,B Xp--- xp Bsy, B — BwB
is birational. It follows that
dY,w)=d(Y,oq)d(Y,az)---d(Y, o)

which implies the first statement, using Proposition 6.2 (iii). The second statement follows

from Theorem 6.3 (ii).

Remark. CallY € B(X) induced if there exists w € W and Z € B(X), such that Y = w+Z
and that Z # Y. If YV is not induced, call it cuspidal. By the proposition above, the D-
module AT (X) is generated by classes of cuspidal B-orbit closures. This raises the question
of their description. In the case where X is a unique orbit of G, observe that any closed
B-orbit is cuspidal. The converse holds in G/B by the Bruhat decomposition, and also in
symmetric spaces by [R-S] Theorem 4.6, but not in general.
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