THE ANDREOTTI-VESENTINI SEPARATION THEOREM
AND GLOBAL HOMOTOPY REPRESENTATION

C. LAURENT-THIEBAUT AND J. LEITERER

0. INTRODUCTION AND STATEMENT OF THE RESULT

Let X be an n-dimensional complex manifold and E a holomorphic vector bundle
over X.

Notation. We denote by C’g,,(X, E) the space of continuous E-valued (s, r)-forms
on X (we omit F, when F is the trivial line bundle), by ZEW (X, E) the subspace of 0-
closed forms, and by EEVT(X, E) the subspace of §-exact forms (ES,O(X; E) :={0}).
As usual,

HY"(X,E):=Z{ (X, E)/E{ (X, E).

0.1. Definition. X will be called ¢-concave-q*-convez where ¢, ¢* are integers with
1<g<n—1and0 < q¢* <n—1if there exists a real C? function p on X such
that if

‘= inf d b=
a:= inf p(¢) an Elel)gp(é’)

and ¢ < a@ < # < b, then the set {( € X | a < p({) < B} is compact and the
following two conditions are fulfilled:

(1) There exists ag €]a, b such that if £ € X with p(§) < ag, then the Levi form
of p at £ has at least n — ¢ + 1 positive eigenvalues.

(ii) Tf ¢* = 0, then, for all « €]a, b, the set {{ € X | p(¢) > a} is compact, i.e.
X is g-concave in the sense of Andreotti-Grauert (resp. (n—g)-concave in the sense
of [H-L]). If 1 < ¢* < n — 1, then there exists Gy €]a,b[ such that, for all £ € X
with p(§) > fo, the Levi form of p at £ has at least n — ¢* 4+ 1 positive eigenvalues.

The starting point of this paper is the following

0.2. Theorem. Suppose X is q-concave-¢*-convere where 1 < ¢ < n — 1 and
0<q¢ <n—q—1. Then:

(i) Egm_q(X, E) s closed with respect to uniform convergence on the compact
subsets of X.
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2 C. LAURENT-THIEBAUT AND J. LEITERER
(1) dim H" (X, E) <oo  4f ¢"<r<n—g—1.

Part (ii) of this theorem is the well-known Andreotti-Grauert finiteness theorem
[A-G]. Part (i), which we call the Andreotti- Vesentini theorem, was proved by An-
dreotti and Vesentini [A-V] for ¢* = 0. The case ¢* > 0 can be found in the paper
[R] of J.-P.Ramis, where the more general situation of sheaves on complex spaces
is studied.

For the sake of completeness, we begin this paper with a direct proof of Theorem
0.2(i): Using integral operators of the Grauert-Henkin-Lieb type, we first prove
that dim H29t1 (X, EF) < oco. The separability of H"~9(X, E) then follows by
Serre duality. We want to point out that, although we use integral formulas which
are famous for their uniform estimates up to the boundary, in this proof, we do not
use any such estimate. Working with forms with compact support, we need only
simple well-known estimates for the Bochner-Martinelli operator.

0.3. Definition. An open set Q CC X will be called strictly ¢q-concave-q*-convez,
1<¢g<n—10<gq* <n-—1,if there exists a real C3-function p on X such that

Q={CeX[0<p(() <1},

dp(¢) # 0 for ¢ € 09, and the following two conditions are fulfilled:
(i) For each & € 90 with p(¢) = 0, the Levi form of p at & has at least n — ¢ + 1

positive eigenvalues.

(i) If ¢* = 0, then p(¢) < 1 for all ( € X, i.e. Q is strictly g-concave in the
sense of Andreotti-Grauert (resp. strictly (n — g)-concave in the sense of [H-L]). If
1 < ¢* <n—1, then, for each £ € 9Q with p(&) = 1, the Levi form of p at £ has at
least n — ¢* + 1 positive eigenvalues.

Notation. If D CC X is open, then we denote by Cf’r(ﬁ, F) the Banach space of
continuous (s, r)-forms on D, and Cgr(ﬁ, E), 0 < a < 1, will denote the Banach

space of Hélder a-continuous (s, r)-forms on D. Further, then we set

(D,E)=C.(D,E)ynZ] (D, E),

EY?°D,E)=C.(D,E)ynac,”” (D,E)ifr>1,  E7D,E)={0},

s,r—1

HYy oD, E) = 7] (D, B)/E}?7(D, E).

The spaces Z{ (D, E) and Esl/r2_’0(ﬁ, E) will be considered as normed spaces with

the max-norm. Z{ (D, E) then is a Banach space.

Using now also the uniform estimates up to the boundary for the Grauert-
Henkin-Lieb operators mentioned above, from Theorem 0.2 one can deduce the
following version with uniform estimates:
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0.4. Theorem. lLet Q@ CC X be a strictly q-concave-q*-conver open set such that
1<g¢g<n—-1and0<q¢* <n—q—1. Then

(i) Eéf:;o(Q,E) is closed with respect to uniform convergence on .

(ii) dime}g%(ﬁ, E)=dim H*"(Q, F) < oo if ¢*<r<n—gq-—1.

Part (ii) can be obtained using the results of subsections 15.2, 15.3, 22.2 of [H-L];
essentially it is contained already in [F-Li, Ra-Si,Ho, Li]. Part (i) follows by means
of 12.4 (iii) in [H-L] (for the ¢*-convex part of the boundary) and 3.1 in [La-L] (for
the g-concave part of the boundary). Note that uniform estimates as in Theorem
0.4 (i) were proved for the first time in Sect. 19 of [H-L], but the conditions on
supposed in [H-L] are not the same as in the present paper, also the proof in [H-L]
is essentially more complicated than the arguments mentioned above.

Recall that, for ¢* = n — ¢, statement (i) in Theorems 0.2 and 0.4 is not true

in general. This follows from the example of Rossi [Ros] (see also Sect. 24 in [H-
L]) which is a strictly 1-concave-1-convex domain Q in a 2-dimensional complex
manifold with a “hole which cannot be repaired”. For this €, Eé/f_m(ﬁ) and

ER 1(Q) are not closed. In fact, in Sect. 23 of [H-L] it is shown that Eé/f_m(ﬁ)

cannot be closed. By the arguments mentioned above (12.4 (iii) in [H-L] and 3.1
in [La-L]), then also E{ () cannot be closed. However statement (i) in Theorems
0.2 and 0.4 becomes true also for ¢* = n — ¢, if one supposes that “the hole can be

repaired” (cf. Sect. 19 in [H-L]).

The purpose of the present paper is to prove the following global homotopy
representation:

0.5. Theorem. Let Q CC X be a strictly q-concave-q™ -conver open set such that
1<g¢<n—=1and0< q¢* <n—q—1. Then there exist continuous linear operators

1/2=50,~ 1/2 =
Tneg : Eohi o) (@, E) — Coli_ .1 (Q, E),
TT:C(()),r(ﬁaE)—)Cé,/rz—l(ﬁaE)’ q*Srﬁn—q—l

(T, =0 if r = ¢* = 0) and continuous linear projections P, in ngr(ﬁ, E), ¢ <

r<mn-—gq-—1, with

(0.1) dimIm P, <oco, TmP, CZ, (0 E) and Ker P, D Ey/?7°(Q, E)
such that

(0.2) Ol f +Tr310f = f — Pof

forall f € ng,(ﬁ, E) such that 0f is also continuous on Q, ¢* <r<n—q—1.

Note that Theorem 0.4 is contained in Theorem 0.5. In fact, from (0.1) and (0.2)
it follows that

(0.3) Zgy,(ﬁ, E) = Eé/,Q_)O(ﬁ, EypIm P, if ¢*<r<n-—q-—1,
(0.4) Anf=f if FEB/QE) and ¢ <r<n—q.
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Equation (0.3) shows that

dime}Z_}O(Q,E):dimImPr<oo ifg" <r<n-gq-1,

and (0.4) shows that Eéy/rzﬂo(ﬁ, E)isclosed if ¢* <r <n—gq.

For forms of bidegree (0, ) with max (1,¢*) <r <n—q—1, a local counterpart
of the global homotopy representation (0,1), (0.2) is well-known. Namely, from [F-
Li, Ra-Si, Ho, Li] (see also 7.8, 9.1, 13.6 and 14.1 in[H-L]) the following proposition
follows:

0.6. Proposition. If Q@ CC X is a strictly q-concave-¢*-conver domain with
¢* < n—q—2, then, for each £ € 0Q and any neighborhood Ug of § there erist a
neighborhood V; C U of & and continuous linear operators

Tf : ng,(Ug nQ) — Cé,/,,z_l(Vg nQ), max (1,¢*) <r<n-—gq—2,

with

(0.5) ITEf + 154,91 = flvam
forall f € Cg,r(UE NQ, E) such that 3f is also continuous on Uz N €2, max (1, ¢*) <
r<n—q-—2.

It is clear that for r = ¢* = 0 there is no such local representation. But also for
forms of bidegree (0,q — 1) such a representation cannot exist:

0.7. Proposition. Let Q CC X be a strictly q-concave-q* -conver domain with the
following property: If p is as in Def. 0.3, then there is a point & € 0 such that
p(&) = 0 and the Levi form of p at & restricted to the complex tangent space of O
has n — q positive and ¢ — 1 negative eigenvalues. Then we can find a neighborhood
Ug of & such that, for no neighborhood V; C Ug of £, there exist continuous linear
operators

06)  TE: 8, (TFAD) — O (D), r=n—g—ln—g
with

(0.7) ITs_ (i f+T5_0F = flvma

for all f € ngn_q_](m) such that 0f is also continuous on Ug N Q.

Proof. By a theorem of Andreotti and Hill [A-Hi] (see also Theorem 18.5 in [H-L}]),
there exist a neighborhood ©¢ of ¢ and a form g € Zqu(m) such that there
is no neighborhood V¢ of ¢ for which g|v,nq is f-exact. From the approximation
theorem 10.1 in [H-L] then we obtain a neighborhood Us C ©¢ of ¢ and a sequence
g; € Zgyn_q(Ug) converging to g, uniformly on Us N Q. We may assume that Ug is

pseudoconvex and hence g; = guj for some u; € an—q—l(UE)-
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Assume now that there exist a neighborhood Ve C U of £ and continuous linear
operators (0.6) satisfying (0.7). Then
Tt uj+ TE_ gi = ujly,
n—qg—1%] n—qgj J1VenQ
and hence gqugj = gilvinn Eor all j. Since g; — ¢ and ngj — qug, uniformly
on Ve N, this implies that 3Tq§g = g|v.na which is impossible, for g|v,nq is not
O-exact. [

Note that, essentially, Proposition 0.7 is already contained in Remark 18.7 of
[H-L]. Note also that Proposition 0.7 is closely related to the observation of Nagel
and Rosay [Na-Ro] (see also [T]) that on certain C'R submanifolds of C” there is a
maximal “small” degree for which the tangential Cauchy-Riemann equation admits
local right inverses but no local homotopy representations.

Local integral representations of the Grauert-Henkin-Lieb type form the main
tool of this paper. Since such representations exist also on certain C'R manifolds,
the constructions of the present paper admit corresponding generalizations to CR
manifolds. Statements of the Andreotti-Vesentini type on C'R manifolds are al-
ready known. Henkin [H 1] obtained an Andreotti-Vesentini theorem for imbedded
compact g-concave C'R manifolds. Then Hill and Nacinovich [Hi-N] proved this for
the abstract situation. In the survey article [H 2] of Henkin, one can find also an
Andreotti-Vesentini theorem for manifolds of the form M\ Q where M is an imbed-
ded compact g-concave C'R manifold and Q is a strictly pseudoconvex domain in
the ambient complex manifold. The method of Sect. 1 below can be used to prove
this result of Henkin (and certain generalization of it).

Aknowledgements. We are very grateful to G. Henkin who convinced us in the
course of several discussions that the Andreotti-Vesentini theorem holds also on the
conditions considered in the present paper (and not only on those of [H-L]). It was
also G. Henkin who turned our attention to the work of J.-P. Ramis [R].

1. PROOF OF THE ANDREOTTI-VESENTINI THEOREM

Here we prove Theorem 0.2 (i). By Serre duality [S] (with respect to Dolbeault
cohomology, see also Sect. 20 in [H-L]) for that it is sufficient to prove the following

1.1. Theorem. Let X be an n-dimensional q-concave-(n — q — 1)-convex complex
manifold, 1 < q <n — 1. Then, for all holomorphic vector bundles F over X,

(1.1) dim HY9H (X F) < oo

where H»9T1 (X, E) denotes the Dolbeault group of bidegree (0,q+ 1) for E-valued
forms with compact support in X.

First we introduce some notations and prove some lemmas.

Let X be a complex manifold and E a holomorphic vector bundle over X. If
D CC X is open, then we denote by C¢,.(D; X, E), 0 < a < 1, the Banach space
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of forms f € CE,T(X; E) with
spp fCD and  fly € C2 (D, ).

O (X, E) denotes the Fréchet space of forms f € C’EV,(X, E) such that flm €
Cg,(ﬁ, F) for each open D CC X, endowed with the topology of convergence in
each C’fir(ﬁ, E).

If Y is an arbitrary subset of X, then we denote by C’s‘f,(Y; X, E) the subspace
of all f € CF,(X,FE) with supp f C Y endowed with the Fréchet topology of
O (X, E). We set

Z8. (Y X, E) = Z2,.(X,E)N C2,(Y; X, E).

Zsoir(Y; X, E) will be considered also as Fréchet space endowed with the topology
of C¢, (X, E). Note that if Y is compact, then C*_ (Y; X, E) and Z¢, (V; X, E) are
Banach spaces.

Cg(c; X, E) denotes the linear subspace of C7, (X, F) which consists of the
forms with compact support. Set

Z5n(6 X E) = 75, (X, E) NG (e X, E).

These two spaces will be considered as topological vector spaces endowed with the
inductive limit topology of the spaces C7,(K; X, E), K CC X compact.

Further, we denote by Egyr(c; X, E) the space of all ¢ € nyr(c; X, E) of the form
© = O with ¢ € CY,_1(e; X, E)if r > 0, and we set EY (¢; X, E) = {0} if r = 0.
With these notations, H" (X, E) = nyr(c; X, E)/Egy,(c; X, E).
1.2. Lemma. Let X be an n-dimensional compler manifold, E a holomorphic vec-

tor bundle over X, and p a real C? function on X whose Levi form has at least
n —q + 1 positive ergenvalues everywhere on X, 1 < g <n —1, such that if

a:= inf and b:=su ,
Jnf p(C) sup £(¢)

then, for all o, 3 €]a,b|, the set {a < p < B} is compact. Then, for all o, €]a,b|
with a < B and for any § > 0, the following two assertions hold:

(i) There exists a continuous linear operator
Ten : Z0gm{a <ph X B) — ([ Coy{a =8 < p < B+ 6} X, E)
e>0

such that
T = on {p< Bl

for all f € 78 41 ({o < p}: X, E).
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(ii) There exists a continuous linear operator

Tf—q : Zg,n—q({p < ﬂ}aX) E) — ﬂ Cé;ﬁ—q—l({a -4 <p< [))+6})XJ E)
e>0

such that
b _
Iy_ f =171 on {p>a}

forall f € Z{,{n_q({p < B} X, E).

Proof. Part (i): Lemmas 12.3 and 12.4 (iii) in [H-L] immediately imply the following
statement: If f € Zqu_H({oz < p}; X, E), then there exists u € C’qu(X, E) with
Ju = f on {p < B}. Moreover, the proof of Lemma 12.4 (iii) in [H-L] (see page 107
in [H-L]) shows that this solution can be given by an operator 7%, as required.
Part (ii): Theorem 16.1 in [H-L] says that, for each f € Z(()),n—q({P < L X, E),
there exists u € CF ,,_,_1({p < B+ 4}; X, E) with Ju = f on {p > a}. The proof
of this Theorem (see page 145 in [H-L]) shows that this solution can be given by
an operator Tf_q as required . [

1.3. Theorem. Let X be an n-dimensional q-concave-(n — q — 1)-conver complex
manifold, 1 < q<n-—1, F a holomorphic vector bundle over X, and let p, a, b be
as in Def. 0.1. Further, let o, aq, Bo, 3 € RU {0} be given such that: a < a < ag
and g is as in condition (i) of Def. 0.1, fo=F =00 ifg=n—1, a0 < fo << b
and o is as in condition (i) of Def. 0.1 if g <n— 1.

Then, for all § > 0, there exist continuous linear operators

Tyr1: 20 gpi{a < p < BY X E) — () Co(fa— 8 < p< B+6} X, E)

e>0
and
Kop1: 28 gifa < p < B X E) — [ 2551 (oo < p < o} X, B)
e>0
such that

Ty f = F+ Kgqi f
forall f € Zqu_H({oz <p< p}L X, E).

Proof. We may assume that d is sufficiently small. Then
ag + 6 < [)’0 —)

and, by Lemma 1.2, there exist continuous linear operators

Tir : Zogn{a < ph X, B) — [ o (fla =6 < p < ag+ 3} X, E)
e>0
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and
Tov 20 lp < 81 X, B) — [ Cog ({fo =6 < p < B+ 6} X, E)
e>0
such that
— J
I f =171 on {P<ao+§}
and
= )
oL f=1T1 on ﬂo—§<p .
Take a C*° partition of unity xu,Xxgs, X1,---, X~ on X such that

(a) xa = 1 in a neighborhood of {p < ag} and xo = 0 in a neighborhood of
{ao+6/2< p};

(b) xg = 1 in a neighborhood of {#; < p} and x3 = 0 in a neighborhood of
{p < Po—6/2}

(c) for 1 < j < N, the support of x; is contained in certain open ball U; CC
{ag < p < fo} (with respect to some holomorphic coordinates in a neighborhood
of U;).

Since the U; are balls, we have continuous linear operators

T :Zqu_{_](X, E) — mcé,;E(UjaE)a I<j<N,
e>0

such that '
aTc}7+1.f = f|Uj

for all f e Zqu_H(X, E) (see, e.g., 2.11 in [H-L]).

Now the operators
N .
Tgp1 = onTéx+1 + XﬁTqﬁ+1 + ZXjTg-I-l
j=1

and

N
Kogr = OxXa AT +Oxp ANThy + D 0x; Aoy,
j=1

have the required properties. [

Proof of Theorem 1.1. Let p, a, b, a, aqg, Po, B, 8, T, K, be as 1s Theorem 1.4
where 0 is so small that a < o —d and 4+ 6 < b. Then Zqu_l_l({a <p<pLX,E)
is a Banach space,

(12) Tq+1 (Z((]),q+1({a S p S ﬂ})XJ E)) g C((]),q(c;Xa E)
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and, by Ascoli’s theorem, Kgq1 is_compact as an operator acting from Z87q+1({a <
p < B} X, E) into itself. Since 0Ty41 = id + Kg41 on this space, it follows that
01y41 is a Fredholm operator in Z87q+1({a <p<p}; X, E). Hence

5TQ+1 (Z(()J,r({a S P S ﬁ};Xa E))
is of finite codimension in Z§ ., ({a < p < 8}; X, E). Since, by (1.2),
5Tq+1 (Z((]),q-f] ({a S P S /B}a X; E)) g E87q+1(c; X; E);

this implies that

013 dim |2 1o < p < 213, 8) |
(Eg,q+1(c5X: E) N Z(()],q+1({a <p< ﬂ};X; E)) < 0.

Moreover, Theorem 1.3 implies the relation
(1.4)
Z87q+1(c; X, E) = linear hull of E87q+1(c; X, E)U Z87q+1({a <p<pLX,E).

(1.1) now follows from (1.3) and (1.4). O

2. PROOF OF THE GLOBAL HOMOTOPY REPRESENTATION (THEOREM (.5)

In this section, F is a holomorphic vector bundle over an n-dimensional complex
manifold X and Q CC X is a relatively compact C3 domain in X which is strictly
g-concave-g*-convex where 1 < g <n—1and 0 < ¢* <n—qg—1,1i.e. the hypotheses
of Theorem 0.5 are fulfilled. Further we assume that p is as in Def. 0.3, and we set

Q2 =00n{p=0} and 01Q=90N{p=1}.

An open set D CC X will be called a local g-concave domain (cf. Def. 2.1.1 in [La-
L] - note that there ¢ is on the place of n—g) if there exists an open set U CC X and
a real C? function ¢ on U such that, with respect to some holomorphic coordinates

Z1,...,zn in a neighborhood of U, the following holds:
(1) U is convex with respect to the underlying real coordinates;

(i) D={0 < p <1} CCU, D ={p =0}U{p =1}, {p = 0} # 0,
{o =1} #0, and dp(¢) # 0 for all { € ID;

(iii) on {1 < ¢}, @ is strictly convex with respect to the underlying real coordi-
nates of z1,..., 2, and, everywhere on U, ¢ is strictly convex with respect to the
underlying real coordinates of z1,...,z,_g41.

If D CC X is alocal g-concave domain, then we set

doD = {¢ =0} and hD={p=1}.
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A collection [D; U, V, V', V" A] will be called a 8yQ-adapted local g-concave do-
main if D CC X is a local ¢g-concave domain, V CC V' CC V" CC X are open
sets, and X is a real C'*°-function on X such that

VNOD=VNdhD=VNdhY, VND=VN(QUHQ),
(2.1) DNAC (QuUQ), (V' \V)nDcce,
suppA CC V", AX=1 in aneighborhood of V',

It is clear that a local g-concave domain remains such a domain after a pertuba-
tion of the boundary which is sufficiently small in the C3-topology. Therefore from
Lemma 2.1.4 in [La-1.] we obtain the following

2.1. Lemma. For each point £ € 002 there exists a 0oQ-adapted local q-concave
domain [D; U, V, V', V" X with & € V.

2.2. Lemma. For each local q-conver domain D CC X, there exist continuous
linear operators

T,:C3,.(D) — C)24(D), 0<r<n—1, (Ih=0)

L:C§,(D)— () Co75(D), 0<r<n—1,
e>0
such that the following asssertions hold:
(i) If f e ngr(ﬁ) such that also 8f is continuous on D, then

f=L.f+0T.f+Try10f on D, 0<r<n.

(ii) If K is a closed subset of 0oD and f; € ngr(ﬁ) is a sequence with f; = 0
on oD\ K which converges uniformly on K to some f € ng,.(ﬁ), then, for each
open U C D with U C D\ K, L, f;|g converges to L, f|g, in the topology of each
C’é;a(ﬁ), e>0,1<r<n.

(ite) If 1 <r<n—q—1, then L, f =0 for all f € ngr(ﬁ). Moreover, Lof =0
forall f e 0870(5) with f =0 on 01 D.

(iv) Ln_q0u =10 ifu e CY, _, (D) such that du is also continuous on D.

Proof. Take for T,, L, the operators for D constructed in Sect. 2 of [La-L]. (The
fact that D is of class C* assumed in [La-L] is not used there for the construction
of these operators.) Then the estimates claimed for these operators can be proved
as usual (cf., e.g., the proofs of Theorems 9.1 and 14.1 in [H-L]), and (i) holds by
Theorem 2.2.4 in [La-L]. By Lemma 2.2.5 (i) in [La-L],

(22 i@ = [ FOAE
80D

where the kernel A,(z,() is of class C'' for z # (. This implies (ii). Moreover,

by Lemma 2.2.5 (iii) and (iv) in [La-L], A,(2,{) = 0if0 <r <n—-g¢—1 and

¢ Aq(z,¢) = 0, which implies (iii) and (iv). O
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2.3. Lemma. Let [D;U,V,V' V" X be a 0oQ-adapted local g-concave domain,
and let L,_, be the operator from Lemma 2.2 for D. Then, by (2.1), we have a
continuous linear operator

Lr‘;fﬂ( ) Can _)ﬂCOn qVﬂQ)
e>0

defined by [LXD(?(/\ ) (£) = Luq(Af)lvaa. This operator has the following addi-
tional property:

If f € Byli2 (@), then LYO2(Af) € N,so CO70 VD) and if B2 @) is

considered as normed space endowed with the maz-norm’, then the operator

1/2 0
e>0

18 continuous.

Proof. Let f; € Eé/:__:lo () be a sequence which converges uniformly on Q. Since,

by the Andreotti-Vesentini theorem 0.2 (i), Egyn_q(Q) is closed with respect to
uniform convergence on compact sets, then, by Banach’s open mapping theorem,
there is a sequence u; € C(()),n—q—1(Q) which is uniformly convergent on compact

sets such that du; = f; on Q. By Lemma 2.2 (iv),

(2.3) L,—L_q(}\fj) = —Ln_q(g)\ A U,j).

Set K = (V“\V')ﬂaol). Since, by (2.1), K cC Q,VNQ C D\ K and 9 = 0 out-
side K, it follows from (2.3) and Lemma 2.2 (ii) that the sequence L,_4(Af;)lvaa
converges in (.5 Cé;;(v nQ). O

2.4. Lemma. For each point ¢ € Q, there exist a neighborhood U of ¢ and contin-

uous linear operators (Eo/zﬂo(ﬂ E) is considered as normed space endowed with
the mar-norm)

Aneq: B2, E) — G2 (TAQ, E),

O,n—gq On—g—1
o) Kn_q: Ey/220(@,B) — G/ (TG, E),

A:COT(Q E)—)C’é/fl(UﬂQ,E), ¢ <r<n-—gq-1,
K, :CY, (2 E) — CHUNQLE) ¢"<r<n—q—1,

(Ao := 0 tf ¢* = 0) such that

(2.5) 0An_gf = f+ Kngf on UNQ

1We do not use here that Eé/j__)qo

In the proof below we use only that, by Theorem 0.2 (i), Eg,n—q(Q) is a Fréchet space. The fact
that Eé /712__20 (Q) is a Banach space then follows (see Corollary 2.6 below).

(Q) is a Banach space, as we know from Theorem 0.4 (i).
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for all f € B/*2°(Q, E), and

0,n—gq
(2.6) A f+Arp10f = fF+K.f on TUNQ, ¢F<r<n-—g-1,
forall f € ngr(ﬁ, E) such that also 3f is continuous on Q.

Proof. If ¢ € Q, this folows from the Bochner-Martinelli-Koppelman formula. If
& € 0182, one can use fhe fact that 91 Q is strictly ¢*-convex in the sense of Andreotti-
Grauert (see, e.g., Theorems 7.1 and 9.1 in [H-L]).

Now let & € 9pQ2. By Lemma 2.1 we have a dyQ2-adapted local g-concave domain
[D; U, V, V' V" Xl with £ € V. Let L, and T, be the operators from Lemma 2.2 for
D. Set U = V. Then it follows from (2.1), the corresponding continuity properties
of the operators T, and from Lemma 2.3 that, by setting

An_gf =T qg(Af)lgag and
By = ~Taeg1 (ON)lgmm = Ln-oM)lomer for [ € 55/ 70(@ B),
A f =T (Af)lgag and
K.f ==Trs1(0Mf)lpag for f€CH,.(QE), ¢"<r<n-q-1,
one obtains continuous linear operators as in (2.4). Relations (2.5) and (2.6) follow

from Lemma 2.2 (i) and (iii). O

2.5. Lemma. There exist continuous linear operators (Eé/:jqo (Q, E) is considered

as normed space endowed with the maz-norm)

An_q: E)P20@Q E) — €7 (@, B),

O,n—gq On—g—1
Kn_g: B220(Q,B) — G2 (@, ),

A GO F) — O @QUE), ¢ <r<n—q-1, (Ag=0ifq" =0),
K, :CY (@ E) — G E) ¢ <r<n—q-1,
such that
(2.7) OAn_qf =F+ Kngf on Q
for dll f € Ey/’20(Q, E), and
(2.8) A f+ Arp10f = f+ K.f on Q, F<r<n-—gq-1,
forall f € 087,(5, E) such that also 0f is continuous on Q.

Proof. By Lemma 2.4 there is a finite number of open sets Uy,..., Uy C X such
that Q C Uy U...U Uy and, for each j € {1,..., N}, we have continuous linear
operators

An_qi  ESP20@Q B) — G2 (T;09, E),

n—q,j - ~0,n—q 0n—q—1
K- Eoi 20 (@, B) — Gl (T, 09, E),
Anj COL(QE) — Gl (U7 N, E), ¢*<r<n—gq-1,

K j:C8 (L E) — CATAQE) ¢ <r<n—q—1,
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(Ao := 0 if ¢" = 0) such that
gAn_qyjf =f+ [{n_qyjf on U;N Q

for all f € E1/2—>0(§’ FE), and

O,n—gq
IA f+ Arp10f = f+ K.f on U;NQ, F<r<n-—q-1,

for all f € ngr(ﬁ, E) such that also df is continuous on Q.

Take C'*°-functions x1,...,xny on X with supp x; CC U; such that x1 + ...+
X~ = 1 in a neighborhood of Q, and set

N
A, = Z X;Ar and
=1

N
KT:—ZEXJ-/\AM-, F<r<m—q-1. 0O
j=1

2.6. Corollary. The spaces Eé/f_m(ﬁ, E), ¢ <r<n—q, are closed with respect

to uniform convergence on Q, and, for ¢* < r < n—q— 1, these spaces are of finite
codimension in Z&,(ﬁ, E). (If ¢* = 0 this means in particular that the space of

holomorphic sections Z&O(ﬁ, E) is finite dimensional.)

Proof. Let A, and K,, ¢* <r < n—q, be the operators from Lemma 2.5. First we
. —1/250 — —
consider the case r = n — ¢. Denote by Eo,/njq (Q, E) the closure of Eé{f:IO(Q, E)
with respect to uniform convergence on Q. Let Zn_q and Wn_q be the continuous

. —1/250 — . .=
extensions of A,_; and K,,_, to EO{njq (Q, E), respectively. Since 9 is closed, then

it follows from (2.7) that

—1/250 =

O Ap_gf =f+Kn_gf on Q forall feFy,_, (R F).

Hence
Im (1 +Kney) C B2 E).
. . - . . o=1/2-0 =
Since, by Ascoli’s theorem, K,_4 is compact as operator in Fg,_. (2, F) and

therefore Tm (7 + Fn_q) is closed and of finite codimension in Fé{jjqo (ﬁ, E), this

implies that E(])(nzjqo (QE)= Fé{j:}qo (Q, E).
Now let ¢* < r < n—q—1. Then it follows from (2.8) that

A f=f+K.f forall feZi.(QF).

Since K, is compact in ng(ﬁ, E), this implies that dim Z&O(ﬁ, E) < if ¢* =0,
and Eé/f_m(ﬁ, E) is of finite codimension in Z0 (Q, E)ifr>1. O
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Proof of Theorem 0.5. Let domd, be the space of all u € C&T(ﬁ, E) such that
Ou is continuous on Q, set D, = domd, N Cé/,?(ﬁ, FE) and D, = Cp ner(6;Q, E*)
where E* is the dual of E| ¢* <r <n—¢—1. Denote by D;®D,~_1, ¢ <r<n-—gq
the space of operators

S:C8,.(Q,E) — G2, (@, E)

of the form
N
SfZZUf/\w] uj,  f€C.(QE),
j=1 /e

where uy,...,uny € Dr_1, ¢1,...,0N € D;, N < o0 (DE)®D_] = {0} if ¢* = 0).
By Corollary 2.6, we have continuous projections @, in ngr(ﬁ, E) such that

dim Im @, < oo, Im@, ® Eé’(ﬁﬂo(ﬁ,E) = Zgyr(ﬁ, E), ¢F<r<n-—q-1.

Let A, and K., ¢* <r < n — ¢, be the operators from Lemma 2.5.

Now it follows from the theorem in Sect.1 of [L] that there exist operators
S; € D; ® Dy_1, ¢* <r <n —q,such that the following holds:

Set

Ky=K,—008, —S4100—Q, for ¢*<r<mn—q—1,
Kp_g=FKn_q—00S, 4.

M,=1-K,, for ¢°<r<n-—gq.

é’/,f__}qo(ﬁ, F), the operators M,, ¢* < r <

n —q — 1, are isomorphisms of C&,(Q, E) with M, (domd,) = domd,, and, setting

Then M, _,4 is an isomorphism of F
T = (AT—I—ST_)Mr_la ¢ <r<n-—gq,and Pr:Qer_la ¢"<r<n—q-1,

we obtain continuous linear operators

T,

n—q
TT:Cg,r(ﬁﬂE)_)Cg,r—l(ﬁ)a q* S’“S”—q—la

: E1/2_}0(§, E) — C,?_q_l(ﬁ) and

0,n—gq

and continuous linear projections P, in C§ (Q, E), ¢* <r <n—q— 1, such that
(0.1) and (0.2) hold.

That the operators 7, admit the Holder 1/2-estimates required in Theorem 0.5
follows from the equation 7, = (A, + S,«)M_1 and the fact that A, and S, ad-

r

mit these estimates, M "', ¢* < r < n — ¢ — 1, is continuous as operator in

CP (Q,E), and Mn__lq is continuous as operator in E(l)/,?__;(](ﬁ, E) endowed with

the max-norm. O
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