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1 Introduction

Let # : Z — X be a projective birational morphism of smooth surfaces.
Assume 7 is an isomorphism outside 7~ (Q) for some closed point @ € X.
For each factorization 7 — Y — X, where Y is a normal surface, one has
that Y is the blowing up of a complete (i.e. integrally closed) ideal I on X
with 1O invertible and support at ). Since 7 is the composition of the
successive blowing ups of a finite set C of infinitely near points (we will call
C a constellation) to @, the theorem of Zariski on unique factorization of
complete ideals allow to describe all these sandwiched surfaces Y as well as
the contractions Z — Y. Such a contraction becomes the minimal resolution
of the singularities of Y (a class of rational singularities called sandwiched).

Zariski asked the question of extending to higher dimensions the theory
of complete ideals. Unique factorization is not true in general. Lipman in [7]
has showed that one has unique factorization with integer (maybe negative)
exponents if the morphism 7 is obtained by blowing up a constellation of
i.n.p. to a smooth point in dimension d > 3. In this case complete ideals are
said to be finitely supported and they are studied in [1] by means of clusters,
i.e. integer weighted constellations. For toric constellations, i.e. when X is a
toric variety and the points of C are closed orbits, all the sandwiched varieties
can be described in terms of C. If, furthermore, the toric constellation is a
chain, i.e. a sequence of i.n.p. such that each one is in the exceptional
divisor created by its predecesor, then one has unique factorization with non
negative exponents and Zariski’s result and conclusions follow in the same
way.
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Cutkosky [2] approaches the general case (of projective birational mor-
phisms © : 7 — X where 7, X are normal) by means of the characteristic
cone P(Z/X), i.e. the cone in N'(Z/X)®yz R spanned by the classes of
the m-generated line bundles. Since sandwiched varieties correspond one to
one to topological cells of P(Z/X) (a result which follows from Kleiman
[3]), one can study factorizations properties of complete ideals from the cone
structure of P(Z/X) as, according to [6], complete ideals are nothing but
sets of global sections of m-generated line bundles. In Zariski’s situation the
cone P(Z/X) is regular polyhedral (a consequence of unique factorization).
Cutkosky gives two examples showing that the cone P(Z/X) could be non
polyhedral and even non closed. Both examples are cases of non chain con-
stellations with respective cardinalities 10 and 17. In the first case one has
infinitely many sandwiched varieties.

Two natural questions arise. First, to give conditions in order that the
number of sandwiched varieties is finite. Second, in the case of constellations
which are chains, to investigate if Zariski result holds.

This paper deals with the above two questions. In Section2 we prove
that the number of sandwiched varieties is finite if the cone NE(Z/X) of
relative nef curves is (finite) polyhedral. For the case of constellations, we
prove, in Section3, that NE(Z/X) is polyhedral if NFE(F;) is so for every
component F; of the exceptional divisor of w. If d = 3, we derive that
NE(E;) is polyhedral if the set of points blown up to create F; from the
projective plane is either toric or it has cardinality at most 8. Finally in
Section4, we show examples of chains proving that the characteristic cone
can be polyhedral non simplicial, or regular with semigroup of complete
ideals smaller than that of lattice points of P(Z/X), or even non polyhedral
and non closed (the cardinalities of involved constellations is at most 10).
Thus, Zariski’s results of dimension 2 fail in higher dimension even for chains.

2 Characteristic cones, complete ideals and sand-
wiched varieties

Consider a projective birational morphism 7" — S where I" and S are normal
algebraic varieties over an algebraically closed field k. Let @) € .S be a closed
point and set B = Ogg, X = SpecR, Z =T xs X and 7 : Z — X
the induced projective birational morphism. Denote by Ny(Z/X) (resp.
N1(Z/X)) the abelian group of 1-dimensional cycles on Z whose support
contracts to () (resp. Cartier divisors on Z) modulo numerical equivalence.



Here a one dimensional cycle C' (resp. Cartier divisor D) is numerically
equivalent to 0 iff one has C'- D = 0 for all Cartier divisors D (resp. all
complete curves contracted to () on Z.

Set A1(Z/X) = Ni(Z/X)Qz R, AY(Z/X) = NY(Z/X)RzR. Since
7=1(Q) is a projective scheme over k and the vector space A'(7/X) maps
injectively into A' (771 (Q)), the dimension p(Z/X) of A'(Z/X) is finite and,
therefore, the intersection pairing makes A;(%/X) and A'(Z/X) dual vector
spaces.

Let NE(Z/X) be the convex cone in A;(7/X) generated by the classes
of the effective curves in Z which contract to Q. In the dual space A'(Z/X)
we will consider two cones P(Z/X) and P(Z/X). P(Z/X) is the dual cone
of —-NFE(Z/X), i.e. the cone consisting of the vectors [ such that ¢-/ < 0
for every class ¢ of a contracted effective curve in Z. In other words the
cone P(Z/X) is minus the semiample relative cone for the morphism 7 at
Q (see [3]). P(Z/X) is the convex cone generated by the classes of the
Cartier semiample divisors D such that Oz (—D) is generated by their global
sections. The cone P(Z/X) is called the characteristic cone for 7 at @, the
terminology being due to Hironaka.

Since a divisor whose ideal sheaf is generated by its global sections is
numerically effective, one has P(Z/X) C P(Z/X). On the other hand,
according to [3], one has that the topological interior P°(Z/X) of P(Z/X)
is minus the relative ample cone (i.e., the convex cone generated by the
classes of divisors such that Oz(—D) is ample or, equivalently such that
C - D < 0 for every effective contracted to @ curve C' on 7). Since some
multiple of an ample divisor is generated by its global sections, it follows
that P°(Z/X) C P(Z/X) and hence P°(Z/X) = P°(Z/X).

The characteristic cone can also be seen as the convex cone generated
by the Cartier divisors D such that Oz(—D) = 10y for some ideal I C R
(see [6]). Among the ideals I with the above property there is a largest one,
namely the integral closure I of I. Integrally closed ideals are also called
complete ideals since Zariski showed that they are the local analogous to
complete linear systems. Thus, IB(Z/X) can be understood as the convex
cone generated by the divisor classes corresponding (by the correspondence
I — D given by 10z = Oz(-D)) to the complete ideals of R such that
107 is invertible. Notice that the set of such complete ideals is a semigroup
for the x-operation given by I x J = I.J and that the above correspondence
takes the operation * to the summation of divisors. Denote this semigroup,
or its additive image in A'(Z/X), by S(Z/X). If S(Z/X) is the additive
semigroup of lattice points of P(Z/X),i.e. S(Z/X) = P(Z/X)NN'(%Z/X),



one obviously has S(Z/X) C S(Z/X) and both semigroups generate the
cone P(Z/X).

For a sandwiched variety we will mean a normal scheme for which 7
factorizes as a product of birational projective maps Z — Y — X. From
Kleiman [3], it follows that there is a one to one correspondence between
sandwiched varieties and topological cells of the characteristic cone (see [2,
theorem 13]). Moreover, for two sandwiched varieties Y and Y, the cell as-
sociated to Y is included in the one associated to Y if and only if there is a
birational morphism Y’ — Y. The correspondence works as follows: the rel-
ative interior of the cell associated to Y contains exactly the classes of those
divisors corresponding to complete ideals T such that Y is the normalized
blowing up of I.

For a convex cone K generating a vector space R™, the cells are defined
in the following way. The only m-dimensional cell is K and, by descending
induction, the other cells are those of the maximal convex cones contained in
K\ K°, where the upper index ° means the relative interior. For the cones
P(%/X) and P(Z/X), which both generate A'(Z/X), the only p(Z/X)-
dimensional relative interior of a cell is P°(Z/X). The cells are uniquely
determined by their relative interior.

Theorem 1 The inclusion of relative interiors of cells gives an injective
map from the set of cells of P(Z/X) into that of P(Z/X).

Proof: Let U be a cell of P(Z/X) with associated sandwiched variety Y.
Then the morphism Z — Y contracts exactly those curves C such that
C'- D = 0 where D is any divisor with class in U°. Thus, all such divisors
D have classes contained in the same cell U of P(Z/X) and, therefore since
those divisor classes generate U°, one has U° C U° and the map is well
defined. Assume that for a second cell U’ of P(Z/X) one has U C U® and
take complete ideals I, J with respective divisor classes in U°, U’°. Then the
divisor class of I J is in U"° C U°for a third cell U”. For the associated
sandwiched varieties Y, Y’, Y one has birational morphisms Y” — Y and
Y"” — Y'. Moreover, the curves of 7 in 77'(Q) contracted in the three
varieties Y, Y’ Y" are exactly the same. On the other hand, since Y #Y
and both Y”,Y are normal, there exists a complete curve C” in Y" which is
contracted in Y. Take a curve C' in the inverse image of C” in Z dominating
C" (it always exists because we are dealing with algebraic varieties). Now,
C' is contracted in Y but it is not in Y” which is a contradiction. This
completes the proof.



Corollary 1 [f the cone NFE(Z/X) is polyhedral then the set of sandwiched
varieties relative to w is finite.

Proof: Since —NFE(Z/X) is polyhedral, its dual cone P(Z/X) is also poly-
hedral, so it has finitely many cells and, hence, there are finitely many sand-
wiched varieties.

3 Cones and constellations of infinitely near points

From now on, we will consider the case in which X is smooth and 7 is the
composition of a sequence of blowing ups at closed points. The semigroup
S(Z/X) is studied in [7] and [1]. We will use here the description in [1].

Assume X = SpecR is smooth and dimX = d > 2. For a constel-
lation of infinitely near points (i.n.p. in short) to ) we mean a set ¢ =
{Qo,Q1,...,Qn} where Qo = @Q and each @); is a closed point in the blown
up variety of the variety containing );—1 with center at ¢J;_1 which maps to
@ in X. Let m: Z — X be the composition of the successive blowing ups of
the points of C. Denote by B; the exceptional divisor of the blowing up with
center at Q;, by F; (resp. EY) the strict (resp. total) transform of B; in Z.

Both, the classes of {Fy, E1, ..., F,} and those of {Ej, EY, ..., EX} are
basis of the lattice N1(Z/X). The basis change is given by

Ey=FEf =Y Ef
]
where 7 — 7 means that @); is proximate to ();, i.e. that zkJ@); belongs to
the strict transform of B; in the variety containing ¢);.

For each ¢, one has F; dominates B; and the restriction = : F; — B;
is a map obtained by composition of the successive blowing ups at the
points of the set C; of proximate points to @; (C; can be considered as
union of (d-1)-dimensional constellations). Since Pic(Z/X) — Pic(E;)
is surjective, one has an injective linear map A, (F;) — A1(Z/X), where
Ay (E;) = N1(E;) @z R and Ny (E;) is the group of 1-cycles modulo numeri-
cal equivalence on F;. The cone N F(F;) generated by the classes in Ny (F;)
of effective curves on F; is mapped, by the above linear map, into the cone
NE(Z/X). 1t is clear that N F/(Z/X) is nothing but the convex sum of the
images of the cones NE(FE;) in Ay (Z/X).

Proposition 1 If NFE(F;) is a polyhedral cone for every i, then the number
of sandwiched varieties relative to © s finite.



Proof: The convex sum N FE(Z/X) is polyhedral, so the result follows from
Corollaryl.

For each index i, NFE(F;) is a polyhedral cone in each of the two fol-
lowing cases. First, if the set C; is toric, i.e. if it consists of i.n.p. which
are 0-dimensional orbits of some structure of toric variety on the projective
space B; = P%! then NE(E;) is the cone generated by 1-dimensional or-
bits, hence it is rational polyhedral (see [5], [1]). Second, one can apply
Kawamata’s theorem [4] which guarantees that N E(F;) is rational polyhe-
dral if it is contained in the half space ¢+ K, < 0 where K, is the class of
the canonical divisor of Ej, i.e. if the anticanonical bundle of E; is ample.
Thus one gets the following result.

Corollary 2 If for eacht one has eitherC; is toric or the anticanonic bundle
of E; 1s ample, then the number of sandwiched varieties relative to w s finite.

In particular, if the whole constellation C is toric (i.e. if (g is a closed or-
bit of a toric structure on the affine d-dimensional space and all the i.n.p. @;
are also closed orbits for the derived toric structures on the blow up spaces)
the cones NE(Z/X) and P(Z/X) are rational polyhedral. Moreover, as
shown in [1], in this case one has P(Z/X) = P(Z/X), S(Z/X) = P(Z/X)n
N'(Z/X), and the extremal rays in N E(Z/X) can be described explicitly in
terms of the combinatorics of the constellation. Thus, one can characterize
[1, 2.20] those toric constellations for which the cone N E(Z/X) is simplicial.
One sees that in this case NE(Z/X), and so also P(Z/X) = P(Z/X), is a
regular cone and S(Z/X) is a free semigroup. This characterization includes
the case of chains, i.e. constellations such that ;41 € B; for each 7z > 0.
Later on, we will show with some examples that these results are not true
in general for non toric chains.

One can use Kawamata’s theorem with some weaker assumptions than
in Corollary2. For fixed i and j — i, denote by F;; = ;N Ej, K = KN ET
(here N means the cycle given by the proper intersection). The canonical
divisor of F; is given by —dH} + (d — 2) 37, ,, k5, where H} is the total
transform in F; of a general hyperplane in B;. Assume that the linear system

of effective divisors I" on B; such that 7*F" > (d — 2) 3, ,; E}; has a base
point set §; of dimension at most one. Then, if C/ C B; is an irreducible
curve not contained in supp(S;), it follows from Bezout’s theorem (applied
to C" and some convenient member of the above linear system) that the class
¢ in Ny(F;) of the strict transform of C' in F; satisfies ¢ - K, < 0. This

means that N F(F;) is generated by the curves in the region ¢ - Kg, < 0,



the classes of the curves in supp(S;) and the exceptional curves in the region
c-Kg, > 0 (exceptional means contracted by ;). Kawamata’s theorem gives
information on the intersection of Ni(FE;) with the region ¢+ Kg, < 0 (the
set of extremal rays in this region is discrete). Thus, since the classes of the
exceptional curves will appear also in others N F/(F};), it is possible to know
the contribution of NE(FE;) to NE(Z/X) if one controls the curves with
class in the hyperplane ¢- K, = 0.

We will precise the above situation for d = 3. Assume that the linear
system F; of curves I in B; = P? with 771" > 7. . k7 is non-empty (no-
tice that this is always true if card(C;) < 9), i.e. one has dim(S;) < 1. Thus
NE(F;) is generated by its intersection with ¢ - Kg, < 0 and finitely many
more classes of curves, namely those in supp(S;) and the exceptional ones.
Furthermore, if the linear system I contains a pencil (e.g. if card(C;) < 8),
then N E(F;) is generated by its intersection with ¢ Kg, < 0 and finitely
many more classes, namely those of the exceptional curves and those of the
irreducible components of the members of the pencil. Notice that this set
of classes is finite as all the general curves of the pencil have the same class
in N1(FE;) and, hence, this also happens for the classes of their irreducible
components.

Now, the extremal rays of Ni(F;) in the region ¢+ Kg, < 0 are those
corresponding to irreducible curves C' C F; which can be contracted on
a smooth surface, i.e. those irreducible curves such that p,(C) = 0 and
C-C = -1, or equivalently C'-C' = C - Kg; = —1. Consider on the lattice
N1(F;) the basis given by the classes of the cycles —H and —E7; for j — .
Thus, if the class of C' has coordinates (—n, {e;} ;) in the above basis, then

the conditions ' - C' = '+ K, = —1 are written in the following way
Ze?:nQ-l—l, Ze]‘:f&n—l.
J— J—

Notice that, if the irreducible curve (' is not exceptional then n is the degree
of its image C’ in B; and ¢; is the multiplicity at @; of the strict transform
of C'. If C is exceptional, then n = 0 and C', being irreducible should be
one of the curves F;; with j maximal (i.e. such that there is no index / with
I —iand [ —j).

Lemma 1 With notations as above, keep the assumption d = 3. For each 1
denote by R; the set of rays in N E(E;) which are either extremal for N E(E;)
in the region ¢+ K, < 0 or generated by classes of irreducible curves in the
hyperplane ¢ - Kg, = 0. Then one has:



(1) If card(C;) < 8 the set R; is finite.

(11) If card(C;) = 9 the set R; has at most one limit point, namely the
ray generated by the class of Co = 3H] — 3, ,; E7;.
Proof: Any ray in R; is generated by a vector of coordinates (—n, {e;};-:)
where either >°, ;e; = 3n — 1 and >, ; e? = n* + 1 (extremal rays in
¢ Kp, < 0)or 3 ;e =3nand 3o, el = n* 42 (classes of curves
with C' - Kg, = 0 and p,(C) > 0). Since for any value of n there are
only finitely many possible values of {e;};; fitting in one of two above
arithmetical situations, any limit ray of R; should be a limit of rays generated
by vectors as above with n — oco. Such a limit is generated by a vector of
type (—1,{z;};5:) with z; > 0, Y, ;2; = 3 and ) ; ;27 = 1. Now, if

= card(C;), the h-variable function 3= ,; 22 has an absolute minimum at
x; = 3/h for every j — i, the minimum value being 9/h. Thus, if & < 8 the
equality >-; ,; m? = 1 is impossible and therefore the set R; is discrete and
hence finite. If h =9, the equality >, ,; z? = 1 implies that z; = 1/3 for

J
each j — 17, so the ray generated by (g is the only possible limit point of R;.

Theorem 2 Let () be a smooth closed point of a 3-dimensional variety and
7w Z — X a morphism obtained by blowing up a constellation C of i.n.p. to
Q. Assume that for every Q; € C either Q; is toric or card(C;) < 8. Then
The cone NE(Z/X) is polyhedral and the number of sandwiched varieties
relative to 7 1s finite.

Proof: If C; is toric, the cone N FE(F;) is polyhedral. If card(C;) < 8, then
by Lemmal NFE(F;) is generated by the finite set R, and finitely many
other curves (the linear system F; contains a pencil in this case), so the cone
NE(FE;) is also polyhedral. Thus NFE(Z/X) is also a polyhedral cone and,
hence, by Corollaryl the set of sandwiched varieties is finite.

Remark 1 If card(C;) = 9, the cone NFE(F;) could be non polyhedral as
shown, for instance, in example 1 [2, p. 37] when C = {Qo,@1,...,Q9}
and @1, ...,{Qq are the intersection points of two general cubics in By. The
method to discuss the examples in next section shows us how in practice,
even for nine points, in many cases, one can decide if the cone NFE(FE;) is
polyhedral or not.



4 Clusters and chains of infinitely near points

Let 7 : 7 — X = Spec(R) the morphism obtained by blowing up a constel-
lation C of i.n.p. to the smooth closed point @ € Spec(R). The classes of the
divisors EF are a basis for the lattice N1(Z/X) = Pic(Z/X). Thus to give
a relative divisor D =3 m;F; is equivalent to give an integer weight on the
points of C by assigning to (); the weight m;. Such a weighted constellation
is called a cluster. A cluster is called idealistic if the divisor DD comes from
a complete ideal I such that 1Oy is invertible, i.e. if it belongs to the semi-
group S(Z/X). Thus, S(Z/X) can be considered as the additive semigroup
of the idealistic clusters and P(Z/X) as the cone generated by those clusters.
The cone P(Z/X) is given by the so called proximity inequalities (see [1]),
i.e., for each irreducible exceptional curve C' and ¢ the only index such that
C C E; and its image €' in B; is not a point, the inequality

deg(C"ym; > Z e; (C"Ym;

j—i

where deg(C") is the degree of C” in the projective space B; and €;(C") the
multiplicity at (); of the strict transform of C'. Corollary2 and Theorem?2 give
conditions under which the cone P(Z/X) is given by finitely many proximity
inequalities.

A classic result by Zariski, which has given rise to the theory of complete
ideals, asserts that if d = 2 the cone P(Z/X) is polyhedral regular and that
one has P(Z/X) = P(%/X) and S(%/X) = P(Z/X) N N'(%/X). This
follows from the obvious fact that N F(7/X) is the regular cone generated
by the classes of the curves F; and the fact that any cluster satisfying the
proximity inequalities is idealistic. In [1] it is shown that the same is true if
d > 3 and the constellation is toric and it is a chain. By a chain we mean that
C={Qu,Q1,...,Qn} and Q;4+1 € B; for every i > 0. The example quoted
in Remark1 shows that P(Z/X) could be non polyhedral for a suitable con-
stellation and therefore S(Z/X) is not a finitely generated semigroup. Even
P(Z/X) could be non closed, and hence P(Z/X) # P(Z/X) as shown in
example 3 in [2, p. 37], where C = {Qo,Q1, ..., @16} the sixteen last points
being in general position in By.

The result of Zariski in dimension two implies that, in this case, the
semigroup S(Z/X) is free, i.e. that one has unique factorization with non
negative exponents in terms of the irreducible elements. Zariski proposed
to extend to higher dimensions this kind of results. The discussion in terms
of the structure of the various cones can provide several types of generaliza-



tions of the Zariski’s above factorization property. Thus, to be P(Z/X) a
simplicial cone means that one has semiunique factorization, i.e. unique fac-
torization with rational exponents in terms of the primitive extremal vectors
of S(Z/X). To be P(Z/X) polyhedral but not simplicial means non unique
semifactorization and P(Z/X) # P(Z/X) or P(Z/X) non polyhedral which
means non unique semifactorization in terms of infinitely many primitive
extremals. Lipman in [7] showed that for any constellation, the semigroup
S(Z/X) contains a concrete lattice basis of N'(Z/X), so that in terms of
the basis one has unique factorization with integral exponents.

A natural question is to ask if Zariski’s result is true for constellations
which are chains. Next examples show that this question has a negative
answer. For the all three examples we assume d = 3.

Example 1 Consider the chain C = {Qo, @1, -..,Qs} where @1, ..., Q5 are
five consecutive points on a smooth conic G in By, i.e. Q;41 € B; for
¢t > 0 and @7 is on G and @; on the strict transform of G for ¢ > 2.
In particular ¢ — 0 for ¢ > 1, the embedding N;(Fy) — Ny(Z/X) is an
isomorphism and it takes the cone NFE(FEy) to NE(Z/X). Take the basis
{-H}, —FE§y,...,—FEj}s} on Ni(Fy) and represent the vectors in A, (FEy) by
their 6-uple of coordinates.

The linear system Fy contains the pencil generated by the cubics G+ L,
G + L', where L, L' are generic lines in By. Thus after the comments in
Section3, the cone N F/(Fp) is generated by the class ¢ = (=2,1,1,1,1,1),
the exceptional classes f; = (0,—1,1,0,0,0), f» = (0,0,—1,1,0,0), f3 =
(0,0,0,-1,1,0), f, = (0,0,0,0,—1,1), fs = (0,0,0,0,0,—1) and the vectors
(—n,e1,...,e5) with 322 e? =n?241,57 ¢, = 3n—1and n > 0 (all these
vectors are classes of effective curves in Fjy, may be non irreducible ones, as
the number of imposed conditions by the multiplicities e; is (1/2) > ei(e;+1)
which is one unit less than the dimension of the space of n forms). Since
card(Co) = 5, the only possibilities for these vectors are [ = (—1,1,1,0,0,0)
and g = (=2,1,1,1,1,1). Thus NFE(FEy) is generated by the seven vectors
L, fi,---, f5,9 and it is not a simplicial cone.

The dual cone P(Z/X) of —NFE(Z/X) is given by the following proxim-
ity inequalities mg > mq 4+ mgy, 2mg > my + -+ ms, my > mg > my >
mg > ms > 0. By looking to solutions with equality at least in 5 of the
above inequalities one gets the following 9 extremal vectors: (1,0,0,0,0,0),
(1,1,0,0,0,0), (2,1,1,0,0,0), (2,1,1,1,0,0), (2,1,1,1,1,0), (3,2,1,1,1, 1),
(4,2,2,2,1,1),(5,2,2,2,2,2),(6,3,3,2,2,2), the six first ones being the Lip-
man basis.
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Since in this case one has P(7Z/X) = P(Z/X) one has non unique semi-
factorization: The cone P(Z/X) is not simplicial, hence it is not regular.

Example 2 Consider the chain C = {Qo, @1, -..,Qo} where @1, ..., Qg are
consecutive points on an inflection point ¢ of a rational cubic Cq in By.
As above one has NFE(Fy) = NF(Z/X) and the vectors A;(Fy) can be
represented by a 10-uple of coordinates.

The linear system F; contains the pencil generated by Cy and 3L’ where
L' is the tangent line to Cy at Q1. From Section3, N F(FEy) is generated by
the class [ = (-1,1,1,1,0,0,0,0,0,0) and the exceptional classes fi,..., fg
as above (i.e., f; has —1 as i-th entry, 1 as (i + 1)-th entry for i < 8 and
0 as entry otherwise). In fact, notice that the class of the transform of Cq
and those of the effective curves with C'- C' = C' - Kg, = —1 are in the cone
generated by [, f1,..., fo (since C'- (C' = Kg,) =0 and L (C — Kg,) <0,
where L is the strict transform of L/, it follows from Bezout theorem that I
should be a component of C, so C'is not irreducible).

One has P(Z/X) = P(Z/X) so P(Z/X) is a regular cone. If Q; is the
origin of the curve y = 2>, then there is no cubic having intersection multi-
plicity 8 with Cy at @1, so the cluster with weight m = (3,1,1,1,1,1,1,1,1,0)
satisfies the proximity relations but it is not idealistic (otherwise the tan-
gent cone of the hypersurface given by a general element of the ideal would
achieve the intersection multiplicity 8). Thus one has S(Z/X) # S(Z/X).
One has unique semifactorization and the Lipman basis contains the vector
(4,1,1,1,1,1,1,1,1,0), s0 in Lipman factorization there are clusters (for in-
stance the cluster with weight 2m) with negative exponents. The semigroup
S(Z/X) has more than 10 irreducible elements, so if one wants non negative
integral coefficients one has non unique factorization.

Finally, if we consider only 8 points €); instead of 9, one gets an alterna-
tive example with identical characteristics.

Example 3 Consider the chain C = {Qo, @1, -..,Qo} where @1, ..., Qg are
consecutive points on a non inflection smooth point ¢, of a rational cubic
Co in By. Take, for instance, @, the origin of y = 22 4 27.

Since the only irreducible curve A in By having intersection multiplicity
with Cy greater or equal than 3deg(A) is the same curve Cy, it follows that
NE(E)p) is included in ¢+ K, < 0 and its intersection with ¢ Kg, = 0 is the
cone generated by the classes ¢ = (-3,1,1,1,1,1,1,1,1,1) and fy,..., fs
(as in Example2). Thus N E(Ep) is generated besides cg, f1, ..., fs by fo and
those ¢ = (—m,€1,...,69) suchthat n > 0,30 e? = 241,57 ¢, = 3n—1

k3
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and e; > ey > -+ > eg > 0. One can see that each such a ¢ is the class of an
irreducible curve, so those ¢ are extremal vectors for N F/(Ey). Finally, notice
that there are infinitely many values of ¢ (take, for instance the sequence
(=32 +3), 2+ t, 42+ 2,2+ 1,2 + 1,2 + 1,12+ 1,2 + 1,42 + 1,12 — 1)), so
N E(FEy) is not a polyhedral cone.

Thus the dual cone P(Z/X) is also not a polyhedral cone. Moreover,
since. NFE(Fp) is included in ¢+ Kg, < 0, the cluster with weight m =
(3,1,1,1,1,1,1,1,1,1) satisfies the proximity inequalities but sm is not an
idealistic cluster for every s > 1 (otherwise the tangent cone to a general ele-
ment of the ideal will be the curve of degree 3s with intersection multiplicity
9s with Cp at @1 and not containing Cq in its support). It follows that one
has P(Z/X) # P(Z/X) and S(Z/X) is a non finitely generated semigroup.

Finally, we remark that this is an example of non closed characteristic
cone obtained by blowing up only ten points (in a chain).
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