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Abstract

The main result of this note is that a contractible open 3-manifold W2, which has the same simple
homotopy type as a geometrically simply connected simplicial complex P, is simply connected at infinity.
This is obtained as a consequence of the fact that W3 is simply connected at infinity provided that it has a

geometrically simply connected enlargement. The latter is a generalization of a theorem proved by Poénaru
in [7].
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1 Introduction

We consider the following definitions:

Definition 1.1 An enlargement (with strongly connected 3-skeleton) of a smooth k-dimensional man-
ifold M* is a locally finite simplicial complex X which fits into a commutative diagram

MFod X
idN, |7
Mlc

having the properties:

1. i is a proper PL embedding with respect to the (unique) PL structure on M* compatible with the
DIFF structure.

2. w is a proper PL map.

3. The 8-skeleton ske>X of X is strongly connected, i.e. for any two 3-simpleres o and T of
X there exists a sequence of 3-simplexes 0 = 01,09, ...,0, = T such that o; and 041 have a
common 2-dimenstonal face, for all j =1,2,...,n — 1.



The simplest examples of enlargements are the regular neighborhoods of embeddings in Euclidean
spaces. In this sequel, we will consider that all the enlargements have a strongly connected 3-skeleton
unless the contrary is explicitly stated.

Definition 1.2 An open contractible 3-manifold W3 is simply connected at infinity (s.c.i.), and
we write also °(W) = 0), if for any compact set Ky, there exists another compact set Ky, with
K, C Ky C W3, such that any loop in W3 — Ky is null-homotopic in W3 — K.

Definition 1.3 A locally finite simplicial complex P is geometrically simply connected (g.s.c.) if
there exists an exhaustion Zy C Z1 C Zy C ...0y C ... of P by finite sub-complexes with all Z,, being
connected and simply connected.

We first prove the following theorem:

Theorem 1.1 Let W3 be an open contractible 3-manifold, and X™ be a finite dimensional enlarge-
ment of W3. If X" is geometrically simply connected (g.s.c.) then the manifold W3 is simply
connected at infinity (s.c.i.).

Actually, we will prove a stronger statement: under the same hypotheses, there exists an exhaustion
7y C Zy C Zy C ... 7, C ... of W3 by compact connected and simply connected sub-manifolds Z,,. In
dimension 3, this condition implies that 7 (W3) = 0.

It is well-known that the simple connectedness at infinity is invariant under a proper homotopy,
without any dimension restriction. However, our result is purely 3-dimensional, and is not a conse-
quence of the previous remark, as it may seem at the first glance. First of way, the g.s.c does not
imply (in other dimension than 3) the simple connectivity at infinity. For instance, from “W™ x DF
is g.s.c.” we cannot derive a priori that “W™ x D* is s.c.i.”, in order to conclude that W™ is, too.
Here D* is the closed k-ball. Much more this is not true if the dimension n of W" is n > 3.

Moreover the condition g.s.c. is a consequence of the s.ci. In ([18] p.350, [19]) the (partially
known) relation between the (usual) connectivity and the geometric connectivity is discussed. Further
in [11] it is proved that, W" is s.c.i. open, simply connected and its dimension is n > 5, implies that
W is g.s.c. The authors conjectured that the s.c.i. condition is necessary. Observe that this would
imply both theorems presented here.

However, the last conjecture cannot be extended to more general non-compact manifolds with
boundary, like the products W x D* with closed k-balls. There exist manifolds W™ in every dimension
n > 4 (e.g. the Poénaru-Mazur manifolds, see [5, 3]), such that W x DF¥ is g.s.c. for some k, but
W x D* (and henceforth W) is not s.c.i., so our result is not extendible in higher dimensions.
Such examples W are interiors of compact contractible manifolds, whose boundary has nontrivial
fundamental group. Also in dimension 4 there is an obstruction (due to A.Casson) for the geometric
simple connectivity (still in the compact case): if the fundamental group of the boundary has a
nontrivial representation in a Lie group, then the manifold is not g.s.c. In particular the Poénaru-
Mazur manifolds are not g.s.c.

Remarks 1.4 1. Consider X™ = W3 x D"=%, D* being the closed k-ball, or, more generally that
X is a proper codimension 0 sub-manifold of W3 x D"™3 which engulfs the zero-section (i.e.
W3 x0C X"®CW?3x D" 3). Then Poénaru’s result ([7]) states that, if X™ has no 1-handles,
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then W3 is simply connected at infinity. In fact, the condition to have no 1-handles implies
that, after triangulating the manifold and taking a sufficiently fine subdivision, we obtain a
g-s.c. simplicial complex (see [1], PL-lemma p.441). Thus the corollary 1.5 (see below) can be
viewed as an extension of this result.

If we had worked in a DIFF context,by considering only those enlargements which are manifolds,
then the “g.s.c.” condition in definition 1.1 should be replaced by “without 1-handles™.

. In the case where it is not required that m verifies the condition (2) in the definition 1.1, we
can take X™ = W3 x int(D" ) and complete the diagram above in an obvious manner. From
the results of Mazur ([4]), for large n, the manifold W3 x int(D"3) has no 1-handles, since
its homeomorphism class depends only on the homotopy type of W3. However, there are many
ezamples where W3 is not simply connected at infinity, as the Whitehead-type manifolds (see
[15]). Thus the properness is an essential condition for the validity of the theorem 1.1.

. The theorem 1.1 implies that, whenever W3 is not simply connected at infinity, X" = W3x D"3
must have 1-handles. Further, the existence of at least one 1-handle implies the existence of an
infinite number of such 1-handles. Assume now, that a sequence of 2-handles by, bs, ..., by, ... are
recurrently attached to X™, in order to kill all 1-handles. Since W3 is contractible we can slide
the 2-handles to have their attaching circles i, Yo, .., Vi, ... on W3 x 0D"3. We claim that the
unton of these circles cannot be a closed subset of 0X™. Suppose the contrary holds: then the
manifold Y™, obtained by surgery on these circles, would be without 1-handles. Meantime X"
embeds in Y™ and the projection X™ — W3 extends to a proper map Y™ — W3. Therefore Y
would be a g.s.c. enlargement of W? so that n°(W?3) = 0, which is a contradiction. Thus, the
unton of these circles must have a non-void set of accumulation points, say Xx.

. Qur g.s.c. property is the same as the property P for a triangulation of a manifold considered
by Poénaru in [7].

. Remark that any manifold (or union of manifolds of dimensions greater than 3) satisfying the
first two conditions from the definition 1.1 is automatically an enlargement.

. Our result is in some sense sharp: with the given method we obtained the most general conditions
on X assuring the simple connectivity at infinity for W3.

Concerning the first remark, we can obtain the following result:

Corollary 1.5 If W3 has a finite dimensional enlargement which is a non-compact manifold with
boundary and without 1-handles, then W3 is simply connected at infinity.

The proof is reminiscent to Whitehead’s (Smooth) Hauptvermutung (see [16]): any two triangulations
compatible with the same DIFF structure on X have isomorphic subdivisions (the PL structure
subjacent to the DIFF structure is uniquely defined). Then we may use the same proof as for the
theorem 1.1. O

'We recall what means “to have no 1-handles” for a non-compact manifold with boundary (following [7, 10]): there
exists a proper smooth function f : X — [0, 00) whose critical points are in int(X), they are non-degenerate and each of
them has index different from 1. Furthermore the restriction of f to the boundary X has only non-degenerate critical
points: those meaningful (or non-fake) points ¢ € X, for which the inclusion f~!(—oo0, f(c) —¢g] C f=1(—o0, f(c) + €]
is not a homotopy equivalence, must have also the index different from 1.
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Intuitively, the third remark from above says that the set of accumulation points Xx is the
obstruction for W3 to be simply connected at infinity. Moreover, this set has many similarities with
the limit sets arising in the collapsible representations for open 3-manifolds (see [9, 10]).

As an application of the theorem 1.1 we derive:

Corollary 1.6 If m°(W?3) # 0 then the set T(Xx) = Sw C W? is larger than a tame Cantor subset
of W3.

Proof: First W3 — Xy is s.c.i. because it has a enlargement without 1-handles. If C is a tame
Cantor set, then we would have 7°(W?3) = 7°(W? — C) (see [9], p.13, Lemma 1.1), which leads to
a contradiction, and the claim follows. O

Notice that in [9, 10] a regularization theorem is obtained: the limit sets associated to some
collapsible representations of W3 x D™ are unions of a tame Cantor set with a codimension 1 stratified
proper sub-manifold. A similar result should hold for ¥ x.

The next result in the paper gives an uniform answer to two questions. On one hand, there is the
guess expressed by Poénaru in ([7], Remark C, p. 432). The author claimed that it might be possible
to have a connection between the simple homotopy type and 7{° in dimension 3. On other hand, one
can ask whether the result presented in [7] can be naturally generalized to the infinite dimensional
case: W3 x @ must have 1-handles unless 7°(W?3) = 0, where @ is the Hilbert cube (see [1]).

In fact both problems can be reduced to the same one. Let us explain first the meaning of without
1-handles in an infinite dimensional context. Recall that any locally finite simplicial (or CW) complex
Y has the property that ¥ x @ is a @-manifold ([1],p. 54). Thus, a @-manifold without 1-handles
is a Q-manifold having a triangulation? Y x Q, where Y is a g.s.c. simplicial complex. Further, the
second question can be reformulated as follows (as was pointed to me by Frank Quinn): if W3 x Q
is homeomorphic to Y x @, where Y is a g.s.c. complex then 7%°(W?3) = 0.

The simple homotopy theory was defined and used firstly by Whitehead ([17]), in the context of
finite complexes, and then it was generalized by Siebenmann ([13]) for infinite complexes as follows:

Definition 1.7 Two locally finite simplicial complexes P and R have the same infinite simple ho-
motopy type if there exists a finite sequence of infinitely many simultaneous and disjoint Whitehead
moves, which allow to pass from P to R. For each element of the sequence, the (simultaneous) moves
are either all expansions, or else all collapses.

Now the so-called stabilization lemma from [1] asserts that the locally finite simplicial complexes P
and R are (infinite) simply homotopy equivalent if and only if the @-manifolds R x @ and P x @
are homeomorphic.

Thus the previous question could be stated differently: if W3 is simple homotopy equivalent to a
g.s.c. simplicial complex P then W? is simply connected at infinity.

We can state now the second result, which answers in the affirmative this question:

Theorem 1.2 The open 3-manifold W3 is simply connected at infinity if and only if there exists an
infinite simple (proper) homotopy equivalence between W3 and a locally finite simplicial complex P
which 1s geometrically simply connected at infinity.

2A triangulation of the Q-manifold Z is defined as a homeomorphism Y x @ — Z, where Y is a locally finite
simplicial complex.



Remark 1.8 The main result is valid in the case when P is a CW-complex, for an appropriate
definition of the simple homotopy equivalence, with essentially the same proof.

Notice that a proper homotopy equivalence is simple if and only if Siebenmann’s obstructions o,
and 7., are vanishing (see [13]).

Observe that one half of the theorem is trivially valid, since W3 can be triangulated and, if
7 (W?) = 0, then the associated simplicial complex is g.s.c.. The difficult part is to prove the con-
verse: if we have an infinite simple homotopy equivalence between a geometrically simply connected
simplicial complex and an open 3-manifold then the manifold is simply connected at infinity.

Acknowledgements: I’'m indebted to Valentin Poénaru which had the patience to introduce me to his theory during my stay at
Orsay between 1990-1994, for his suggestions, remarks and continuous encouragements. I wish to thank Ross Geoghegan, Frank Quinn
and Larry Siebenmann for helpful conversations and advice. Part of this work have been done when the author was visiting the Center

Emile Borel, for the special semester on low dimensional topology, whose hospitality is kindly acknowledged.

2  The plan of the proof

The idea of the proof of theorem 1.1 emerged from the series of papers [7, 8, 9, 10]. In this paper
we fully exploit the technique introduced there. The main arguments are contained in the following
three lemmas. In order to make this paper self-contained we added an appendix on the ®/WU-theory
(developed in [6]) at the end. We will use the following notation: if h : A — B is a map and
n € Z,, we will denote by M, (h) C A the set of x € A which are such that card(f~(f(z)) > n. We
also write M2(h) C A x A for the set of pairs (z,y) € A x A with z # y and h(z) = h(y).

Dehn-type Lemma 2.1 Let X3, M? be two simply-connected manifolds, K be a connected compact
set, such that X? is compact, connected with non-void boundary and M?3 is closed without boundary.
Assume we have a commutative diagram

K < int(x®) c X3
™\ L F
M3
fulfilling the conditions:
1. f and g are embeddings.
2. F is a smooth generic immersion.
3. gK N My(F) =0.
Then fK can be engulfed in a smooth connected and simply connected sub-manifold Y3 of M?3.
For the proof of this Dehn-type lemma see ([7], p.433-439).
Lemma 2.2 There erists a triangulation Ty of W3 and a subdivision Tx of X™ such that:

1. i : 7w — Tx 1S a simplicial embedding, identifying Tw to a sub-complex of Tx.

2. Tx 1S g.S.C.



3. there is some subdivision 6 of the 3-dimensional skeleton of Tx and a map X : 0 — 1w such
that X\ us proper simplicial and non-degenerate, and X o1 = id.

This lemma does not use the strong connectivity of the 3-skeleton, but only the first two conditions
from the definition 1.1. Notice that this lemma implies that @ is a enlargement of 7y, but only when
the natural projection map is replaced by A (so that all the maps become simplicial). The proof will
be given in the next section.

It follows that 6 is g.s.c. from ([7] Lemma 5.1): thus, there exists a sequence of finite simply
connected sub-complexes Zy C Z; C Zy C ... C 6 exhausting 6. Set A = X |5, A = A |z;, and also
U, = U(V), &, = ®(N), j =1,2,...,00. The equivalence relations ® and ¥ were introduced in [6]
and all the definitions are included in the appendix. Recall that for j < co we have ®; = @, |z,
but in general we have only an inclusion ¥; C Wy, |z, .

Lemma 2.3 The equality ®oo(A) = Voo(A) holds.

From now on the proof of the theorem 1.1 is standard. For the sake of completeness we outline it
below. The conclusion of Proposition B from [7] remains true in our situation, so that for any k,
there exists some number N (k) > £ fulfilling:

Unky |2, = Pr.

Fix further a connected compact K C W?3. Then there is some m for which A™Z,, > K holds,
and therefore we can find some (sufficiently large) n satisfying (A*°)"1(A™Z,,) C Z, (both assertions
follow from a compactness argument).

If (x1,22) € M?(A*°) and x; € i(K) then necessarily x5 € Z,. Furthermore we have the following
diagram of maps:

i(K) C Zn)®y = Zn/Un(n) C Zym)/Ungm = WP

Since the map AV is an immersion and no double point of AN(™ can involve Z, (as a consequence
of the relation Wy ) |z, = ®x, which was previously obtained) we derive that

KN My(AV™) = 0.
From Lemma 3.1 of [7] we have 71 (Zn(m)/Yn(@m)) = 0. Therefore the diagram below

K < ZNw)/ YN @)

FNC LAN®
W3

has all the properties required in the Dehn-type lemma except that Zy)/Wnm) is a simplicial
complex. But as already noticed in ([7] p.444), we may replace it by a smooth regular neighborhood
of Znm)/¥n(n), generically immersed in W?. Thus the compact K can be engulfed in a simply
connected compact sub-manifold of W3. Once we know this for any connected compact it follows
automatically for any compact subset of W3. Therefore W? is simply connected at infinity, as claimed
by the theorem. O



3 The proof of lemma 2.2

By a suitable subdivision of the initial triangulations 7%, 73, of X and W we may suppose that

i: Ty <> 7% is a simplicial embedding. Furthermore, we can subdivide again 73 < 7%, 75, < T, in
order to make 7 : 7y — Ty, simplicial. This can be done in a relative context, so that (7%, 7jy) <
(%> 7w ), because 7 |0 = id, if 7y, is identified with its image in 7%. This is a standard argument (see
[12]). Eventually we obtain the simplicial mappings 7 : 75, — T3 and 7 : 73, < Ty. Remark that
Tk is g.s.c. by lemma 5.1. from [7]. It remains to prove that 7 can be replaced by another map f
which is simplicial and whose restriction to the 3-skeleton of some subdivision 7% is non-degenerate.
The image of the latter is some subdivision 73, < T

Before to proceed, we make a simple observation, which will be freely used in the sequel: if
f : 0" — o is a surjective simplicial map between two simplexes of dimension n > k, then for
some k-face 0% of o™, the map f |s: 0y — o* is an isomorphism.

Another remark is that W3 has a non-complete flat Riemannian structure: thus 74, can be realized
as an affine triangulation of W? because the geodesics are unique.

Denote ske*r% by t and 7%, by 7, for simplicity. We have given a simplicial map 7 : t — 7, but
it is possible that some simplexes of ¢ be collapsed via 7. We outline below the method to change
7 into another map which flatien ¢, but it does not collapse 3-dimensional simplexes. Intuitively,
imagine that we have given a specified floor 73}, in a high dimensional building 7%. The 3-dimensional
structure (the union of walls) of the building corresponds to t. We flatten this structure by a generic
compression map onto the specified floor. If this procedure is carefully carried out, we obtain a new
partition of the floor, in terms of which the compression map would be a non-degenerate cellular
map. In fact, once every wall is slightly pushed from the vertical, its horizontal projection cannot
completely disappear, and generically it is 3-dimensional.

The main technical point consists in replacing the simplicial complexes by cellulations in the
sense of Siebenmann [14]. Here the term cellulation corresponds to the term cellulation réguliére of
a polyhedron used in [14]. Let us give first the definition, according to Siebenmann:

Definition 3.1 A cellulation of a metric space X is given by a locally finite covering by compact
cells fulfilling the three conditions below:

1. each cell has a linear structure induced from the identification (by a homeomorphism) with the
convex hull of a finite set of points in an Fuclidean space. In particular, all cells are convex
with respect to this linear structure.

2. the formal interiors® of the convez cells form a partition of the space X.
3. for any convex cell D, its formal boundary 0D is an union of a finite number of cells d; and the

mclusions d; — D are linear.

The natural transformations for cellulations corresponding to subdivisions of triangulations are the
bisections . By definition a bisection replaces one cell D by 3 cells Dy, D, , and D_ where Dy is linear
of codimension 1 in D (a hyperplane section in D) and cuts D into two non-void pieces D_ and D, .

3We recall that the formal interior of a convex compact subset D of a vector space is the set of all z with the
property that for each line [ which pass through z, the segment /N D contains z in interior. Next, the formal boundary
is the complementary of the formal interior.



The inverse operation is called a coupling. The closure of the cell Dy is called the support of the
bisection. We write X << Y if X can be obtained by bisections from Y. The number of bisections
is finite, if the underlying spaces are compact, or it may be an infinite number of bisections whose
union of supports is without accumulation points, in the non-compact case. Such an infinite family
of bisections will be called proper.

There are two reasons to prefer cellulations and bisections to simplicial complexes and subdivi-
sions:

Fact 1 Given a cellulation X and a sub-complexY then any subdivision of Y (by bisections) induces
canonically a subdivision (by bisections) of X which does not touch any other cell of X which is not
a cell of Y.

Fact 2 Let K be a polyhedron (i.e. a metric space with a mazimal family of cellulations) and D,
Dy be two cellulations of K. Then there exists a common refinement of both cellulations using a
proper family of bisections: Dy >> D << D;.

In the compact case these two facts are proved in [14]. The same proof works as well in a non-compact
case, when restricting ourselves to proper family of bisections.

Now, in the context of cellulations we can define the g.s.c. property analogous to the simplicial
complexes case. Specifically a cellulation is g.s.c. if it admits an exhaustion by simple connected,
connected and finite cellular sub-complexes.

The following lemma is the natural extension of Lemma 5.1. from [7] to cellulations:

Lemma 3.1 A cellulation is g.s.c. if and only if its 2-dimensional skeleton is g.s.c.. In particular,
if X is g.s.c. then the 3-dimensional skeleton ske3X is g.s.c.. If Y << X then'Y is g.s.c. if and
only if X is also g.s.c..

The proof is obvious. O

We come back now to the proof of the lemma. It is known that 7 is proper. This means that,
for any (closed) 3-simplex o C 7, the preimage 7~'(0) = U;0; is a finite union of 3-simplexes of .
We choose an arbitrary simplex ¢ at the beginning. Among the preimage simplexes o;’s there is one,
which we denote by i(o), such that the restriction of 7 to i(o) is an isomorphism on the image. Set
V(o) for the union of the set of vertices of all o; which do not appear as vertices of i(0), and order
them arbitrarily V(o) = {v;,7 > 4}. Afterwards we label {vq,...,v4} the vertices of i(o).

Step I: Choose some set of points (in a generic position) A%(o) C int(c) C W3 which are in
one-to-one correspondence with V(o). We denote the points of A%(c) as {z;,7 > 4} and the vertices
of o by {z1, ..., z4}. We suppose that the projection of v; is z; for i = 1,2, 3, 4. Consider now the set
A¥(o) of those k-dimensional simplexes whose vertices are from A°(c), which are realized as affine
simplexes in W3, and are related to the simplexes from 7~'(c) in the following way:

A (o) = {[2iy, iy - 15, ] C 03 such that [vy, iy, ..., v;,] is a simplex in 7 *(0)}.

Here [yo, Y1, ---, yx] denotes the simplex having the vertices y;. Notice that the affine simplex
[Zig, Tiy s ---, T3, | is uniquely determined by its vertices in W3, because W3 has an affine structure.



Example: Consider 0 = [y, T3, 23, 74], 7 *(0) = 0[v1, v, v3, v, v5] and 7 a projection map which
sends v; into z;, for i = 1,2,3,4. Then it is easy to see that:
A%(o) = {x5}, for an arbitrary point z5 in the interior of o.
AYo) = {[zs,z5],i =1, ..., 4}
A% (o) ={[wi, zj,x5],i # = 1,...,4}
AS(O-) = {[$i,$j,$k,x5],’i #i#k=1,..,4}
Remark that A*(o) would be a simplicial complex if some cells hadn’t overlapped.

Example: We give a 2-dimensional picture, since it is easier to draw it. Picture 1 shows A!(0),
where o is a 2-simplex and 7 (o) = ske?A?* (A" being the standard n-simplex). It is clear that
the associated graph of edges is not planar (it is the complete graph Kj), so there are some new
intersection points between edges, like the vertex z¢. Using a transversality argument, in a 3-
dimensional picture we can reduce ourselves to the case where the edges in A'(o) are disjoint, but
we may have new intersection points between the 2-dimensional faces and edges.

We assume now that all simplexes in 7 are sufficiently small to be convex with respect to the
affine structure.

Let Aj (o) be the closure of A*(c)U{c}U® with respect to the intersection operation: this means
that:

1. once oy and oy are in Af(o), their intersection oy N o9 must belong to Aj(o), too.
2. A*(o) U{o} U0 is a subset of A3 (o).
3. Aj(o) is the smallest collection fulfilling the previous two conditions.

Set also A%, (o) for the closure of A}(c) with respect to the face-boundary* operator 9, which is
extended canonically to convex cells. Roughly speaking, this closure is intended to be the smallest
set, X of cells having the property that, once a cell is in X, then all the faces of its boundary belong
to X. The complex A7, (o) is closed with respect to intersection and 0, but generally speaking, it
is not a cellulation of ¢ in the sense of Siebenmann, as we defined above. The reason is that we do
not necessarily obtained a partition of o. In fact we need to refine further this collection of cells to
a new collection A%(o) with the property that the formal interiors of the cells form a partition. This
may be done in a canonical way: set ¢; for a maximal set of open cells (formal interiors) in A7, (o),
all of them being contained inside some other cell ¢. Then remove ¢ and add ¢ — U;¢; as a new cell.
When this procedure cannot be applied anymore, it means that we arrived to a partition of ¢ into
smaller cells. However we introduced this way some cells which are no more convex cells.

Consider now the map f : 77 1(0) — o, which is the extension by linearity of the map defined
on vertices by f(v;) = x; for all i. Set C*(0) = f~1(A%(c)). Then C*(0) is a cellular complex and f
is a non-degenerate cellular map.

Example: Typically f has singularities. Picture 2 shows a folding map f which maps two
triangles, having a common edge, on the plane. In the plane the two triangles overlap on a smaller
triangle which is a doubly covered.

4The face-boundary operator associates to a cell ¢ the collection of faces of the boundary and it should be not
confused with the algebraic sums arising in the chain complexes.
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Figure 1: A*(0)

Figure 2: Pulling back A3
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Step II: We wish to pass now to a global picture, from the simplex ¢ to the whole complex 7.
We choose an enumeration of all 3-simplexes of 7, say o1, 09,03, ...., 0k, ... with the property that,
for each compact K, there exists some integer m = m(K) such that U" 0, D K. We built up now,
inductively, the global complex associated to this exhaustion:

1. at the beginning (for oy) we start with the cell decomposition defined above A%(o1).

2. assume we constructed refinements of 77! (U, 0;) and of U"_, 05, and a cellular map f replacing

the projection 7, between the refined cell complexes. We look now for the new vertices which
appear in 7~ !(0,41). There are some of the vertices of 77!(0,11), namely those which are also
vertices of 7 !(U" ,0;), which have been taken already into account at the previous stages of
the construction. In fact the vertex v has been considered® at the k'* step, where k is the
smallest integer such that v is the vertex of 71(U¥_,0;). Define therefore V°(c,,1) be the set
of vertices of 7~(U*!o;) which have not been considered before. Choose, as in the first step,
a set of points A%, ) inside the simplex 0,1 so that the vertices of i(5,41) are in one-to-one
correspondence with the vertices of 0,,,1 and the other points are lying the interior of o,,,1. We
assume that the vertices in V%(0,,1) — i(0,41) are in bijection with the interior points. The
restriction of f to vertices can be naturally extended now from 7! (UL, ;) to 7~ (UM 0;), say
f(v;) = x;, for all i. Remark that this procedure is highly non canonical but it is well enough

for our purposes.
The global complex B, which depends on the enumeration we chose, is therefore given by:

B§ = {[wig, Tiy, - Ty ); T3, € U A%(o;) such that [vig, v;, , ..., v;,] is & simplex in ¢.}

Here all the simplexes in W? are affine simplexes. Remark we have specified only the first
generation vertices from A% not from AY. Consider now the closure B} of Bj with respect to
the intersection and Bj be the closure of B} with respect to the face-boundary operator. An
easy remark is that Bj is closed also for the intersection. We saw before how to refine B by
adding the complementary of unions of cells (and removing the cells which contain them), in
such a way that the formal interiors form a partition: if z; C y are k-cells in BY then we want
that the complementary cl(y — U;z;) be also an union of cells. In the first step we considered
such maximal families {z;} inside a fixed cell y, added the complementary, as a new cell, and
removed the cell y from our collection. But some of the new cells arising this way, are not
convex. Observe that all of them are polyhedra whose edges are geodesics and the faces are
flats in W3. A polyhedron with geodesic edges, and affine faces in an affine manifold can be
partitioned into convex polyhedra, possibly introducing new vertices, as intersection among flats
spanned by the vertices. These can be lifted upside, and the initial triangulation can be refined
to include the new vertices. In the last situation the downside cells are now convex. Thus we
may suppose, without loss of generality, that there are no vertices to add and the partition has
convex components.

We obtained another complex, say Bj, which is closed to intersection, to the face-boundary
operator and is made of convex cells. Now the map f extends to Bs in the obvious way.

SHere, “has been considered” means that, at an earlier stage, a value z = f(v) € U"_,0; has been associated to v.
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1 points of the first generation
2 points of the second generation

3 points of the third generation

Figure 3: The vertices

T2

A BY

Figure 4: The general picture

This completes the induction step, and so we obtain a cellulation of W3. But this cellulation can
further be refined to a simplicial decomposition B*. According to the Fact 2 stated above 7y, and
B* have a common refinement obtained by bisections. This proves that B* is again g.s.c. by Lemma
3.1. Now the map f gets amap f : D* = f~!(B*) — B* which is simplicial. The pull-back complex
D~ is a cellular complex, finer than ¢, and we will show that it is a simplicial complex.

Example: The vertices we added to our initial triangulations are therefore of 3 generations, as
shown in the picture 3. These corresponds to A%, to A = AY, and BY. An example of how f looks
like is given in picture 4: here 7 is the union of 2 simplexes of dimension 2, and ¢ is the 2-skeleton of
0lv1, ve, T3, V5] UO[vy, Ve, T3, V6] UD|vs, V2, T3, Us]. There are two new vertices of first generation figured
in A* and a new vertex x; when we pass to B*. The preimage cellular complex and the modified
map f corresponds to the cone over the subdivision of the edge [vs, vg].

Lemma 3.2 The map f is non-degenerate and simplicial.

Proof: These features were achieved directly by construction. It suffices to understand how D* is
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Figure 5: The local picture around a singularity

obtained from ¢, and that D* is indeed a simplicial complex. The new vertices in D° — t° come from
intersections points of 2-flats in . For a generic choice of A%(o;) the 2-flats are in general position,
and there are only 1-dimensional intersections. Since f was made cellular the local model around
a singularity of f is exactly the folding from picture 5 (the 3-dimensional analog of picture 2). We
explain it: we have two simplexes o and o5 in D* having a common 2-face which are projected
down by f onto the union of two 3-simplexes fo? and fos. The last two have a common face and
fodn fo3 = o is a simplex with a new vertex which appears o which is the intersection of three
singular lines oz;, 7 = 1,3. The double point o has two preimages, o; € o2 and we have also the
preimages of double lines which are o;v;, 4+ = 1,2 and j = 1,3. We must add to our decomposition
the edge oxy, and this yields a decomposition of fo? into 3 simplexes while fo3 is cut into two
tetrahedra. The preimage decomposition is a decomposition into tetrahedra of o3 U o3, which is the
pull-back of the partition into tetrahedra from downside and it is not necessary to add any other
edges or vertices.

Further f is locally an etale map around a non-singular point. It follows that D* is in fact a
simplicial complex finer than ¢, and f is non-degenerate and simplicial as we wanted. O

Lemma 3.3 The induced map f: X — W3 is proper.

Proof: Observe first that all objects U,sc, C*(0), Uyser A5(0) are locally finite. Therefore the new
vertices of ULU?ET AY(c;) are not accumulating in W? except at infinity. Since everything takes place

in some small convex region we derive that the edges in J,sc, As(c) (which are viewed as geodesics
in W3 ) do not have accumulating points either. Notice that the geodesics are unique in the flat
structure of 3. Since the simplexes are affine we derive that no k-simplexes (from those whose
vertices are in Ujgs¢, AY(0;)) have accumulating points.

It remains to look at the edges introduced at the second step. Assume that in the induction
process, when we pass from the stage n to n + 1 we have to add some new edge. The image by 7
of such an edge e € Bj is either one edge of 7 or else a vertex of 7. The second case corresponds to
the following situation: we have two vertices v; and vy having the same image x by 7w. These two
may appear either at the same stage of the enumeration (so that their perturbed images by f will
belong to the same simplex), or else in different places. But then the images are sitting inside two
simplexes, say o; and oy, having the vertex x in common. The first case leads to the following: the
images are sitting in oy and o5 , such that there exists a 1-dimensional simplex e having one endpoint
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on ¢; and the other one on g5. The other edges in B?} — B% were added inside a convex cell, in order
to complete the partition into a partition with smaller convex cells.

We claim now that the new edges cannot be too long: in fact, by the triangle inequality, the
length of a new edge in a compact ball R is at most 3 times the longest (old) edge in that ball. We
used compacts because all the choices we made were local, and the upper bound on the edge length
is uniform (in [7] the initial triangulation is chosen with simplexes which become smaller and smaller
when the distance from a fixed point goes to infinity). This argument shows that the new edges
have not accumulating points except at infinity. For a generic choice of A%(o;) the affine k-simplexes
are in general position. Since the edges are not accumulating somewhere, the k-simplexes are not
accumulating either. This proves that f is proper. O

4 The proof of lemma 2.3

We consider now the central object in this section, namely the canonical diagram

0 — 0/¥y
RN, [ A®
W3

The map A, which we obtained after factorization, is known to be an immersion from the definition
of W.

Lemma 4.1 The map A\® is a simplicial isomorphism between 0/, and Ty .

Proof: Consider the sub-complex i(my) C 6. There is an induced map ¢ : i(Tw)/ Voo — /¥ and
we have the following commutative diagram

e

i(tw) /¥ — 0/Vy “— 1w
1 T
1 S
™w

Then we have the followin_g:
Claim 1: The map a = A® o : i(mw)/Vo —> Tw is a simplicial isomorphism.
Proof: In fact the map « is

e surjective since a(i(Tw)/ Vo) = A® 0 i(Ty) = A® 0 i(Tyy) = Ty
o simplicial as a composition of simplicial maps.

e an immersion because Wo,(A® 04) C W,; this may be rephrased by saying that, once we kill all
the singularities, then a fortiori the singularities lying in i(7y ) are killed.

e injective because the composition a o § = id, where [ is the vertical map in the diagram going
from 7 to i(Tw)/ VYoo O
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Claim 2: Consider the simplicial complex (or cellulation) 7 which has a strongly connected 3-
skeleton. Assume that we pass from 7 to another complex 7' by using one of the following transfor-
mations:

1. by subdivisions (or respectively, by a proper family of bisections).
2. we replace 7 by sker.
3. assume that f is a non-degenerate simplicial map, and 7" = 7/¥(f).

Then 7' has strongly connected 3-skeleton, too.

Proof: Obvious.O

Claim 3: The map ¢ : i(1w)/¥Yo — 0/¥ is surjective.

Proof: Assume the contrary holds. Then, for some 3-simplex o C 8/¥, we will have int(o)NIm(:) =
(. But we know that 6 is strongly connected henceforth 8/¥ o, is strongly connected, so that any two
3-simplexes can be joined by a continuous chain of 3-simplexes. This follows from the previous claim.
Notice that this is the only place where the third condition in the definition of the enlargement is
used. It follows that there exists some o with int(c) N Im(:) = 0 # o N Im(t). But we have seen
above that A (10i(7y) /%) = Tw, so that any point z € do N Im(t) would be singular for A°. But
this is a contradiction because A*® is an immersion. O

Now ¢ is obviously injective hence A% is injective so that it is an isomorphism. This ends the proof
of the lemma 4.1. O

The final argument is by now standard (see [7]): We have two bijections 0/®,, = 7y (from the
definition the quotient by @, is the image) and 6/¥,, = 7. But we have also an inclusion among
the two relations which induces a map 6/¥,, = 0/®,, hence &, = ¥,. O

5 The proof of theorem 1.2

The simple homotopy type was introduced by Whitehead [17] and represents a refinement of the usual
homotopy theory for finite complexes. Basically two finite simplicial complexes have the same simple
homotopy type if, when they are embedded in an Euclidean space of sufficiently high dimension,
their regular neighborhoods are PL.-homeomorphic. Another way to get the simple homotopy is via
Whitehead moves: we say that Y is obtained from the sub-complex X by an elementary expansion if
int(Y — X)) is one simplex whose closure intersects X along a disk which can be a face, or a connected
union of several faces. We denote this by X Y. The inverse operation, from Y to X, is denoted
Y N\ X and is called an elementary collapse. Now, by definition, X and Y have the same simple
homotopy type if there exists a sequence of elementary moves X = Xg, X1, ...., X =Y, such that for
each j we have either X; " X1 or X; N\, Xj1.

The obstruction for two homotopy equivalent complexes to be simply homotopy equivalent was
formulated by Milnor in algebraic terms, via the Whitehead group associated to the fundamental
group. This notion was extended by Siebenmann [13] to locally finite complexes, as follows: an
elementary collapse of the locally finite complexes Y onto X is a set of an infinite number of disjoint
collapses. This means that we have pairwise disjoint sub-complexes {Z;} of Y such that ¥ =
X U2, Z;, and each Z; N\, Z; N X is a finite sequence of elementary collapses. The inverse move is
called an expansion. Now two locally finite complexes have the same infinite sstmple homotopy type if
there exists a finite sequence of elementary collapses and expansions which transforms one simplicial
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complex into the other. Observe that the infinite simple homotopy equivalence is finer than the
proper homotopy equivalence. The obstructions that two proper homotopy equivalent complexes be
infinite simple homotopy equivalent are algebraic too, and were described in [13].

The theorem 1.2 is a consequence of the following two lemmas:

Lemma 5.1 If X; and X5 are simplicial complexes which are simple homotopy equivalent (if there

are finite, then in the usual sense, if not we use Siebenmann’s infinite proper simple homotopy

equivalence) then there exists a finite dimensional complexr Y such that' Y N\, X;, for i =1,2.
Moreover if X1 1s a manifold then Y may be chosen to be an enlargement of X;.

Lemma 5.2 If Y \ X and X is g.s.c. thenY is a g.s.c.

Proof of the theorem: In fact if W3 is (infinite proper) simply homotopy equivalent to a locally
finite simplicial complex P and P is g.s.c. then there is an enlargement of W? which collapses on
P. By the second lemma this enlargement will be a g.s.c. and, by the theorem 1.1, W3 is simply
connected at infinity. O

Proof of lemma 5.1: The first part of this lemma (for finite complexes) was already formulated as
proposition 5.5. in [4], p. 31. Not only Y is finite dimensional but its dimension is a priori bounded
by max(dim X; + 1,dim X5, 3) + 1. A stronger result of Cohen [2] states that ¥ can be taken as the
product X; x B", for n > dim X; > 3, and n > 7, for 2-dimensional complexes.

In the non-compact case we have to notice that in the family of deformations (elementary collaps-
ings or dilatations), which allow to pass from X; to Xy, everything is proper: only a finite number
of deformations touch a given compact, and its transformations. Therefore we can change the order
of the expansions and contractions, at each finite stage. This implies that we can use first only
dilatations (an infinity of such) and further we realize all the collapsings.

A transfinite recurrence provides us with a simplicial complex Y which is the result of all expan-
sions in the sequence which transforms X; into Xs. The main property of this complex Y is that it
must be properly obtained from X;. This means that, as in the previous case, a fixed compact of
X; is touched by only a finite number of expansion cells. Let Z; = Z(X;) be the first floor added,
i.e. the union of X; with all those cells whose closure touch X;. Consider next Z, = Z(Z;), and
so one. The properness is equivalent to the fact that, for any compact K C Xj, there are only a
finite number of floors which can be reached: for some fixed n = n(K) we have Z;(K) C Z,x), for
all 7. Here K was supposed to be a sub-complex of X, and the tower Z, is built up in the obvious
manner. This follows directly from the definition of the infinite proper simple homotopy.

Therefore we obtain a simplicial complex Y such that ¥ \, X;. Since Y can be obtained by an
infinite number of expansions from X, then X is automatically PL embedded in Y. On the other
hand consider the inverse (projection) map induced by the collapsing. Since every compact K sees
only a finite number of floors Z;, the projection map is proper.

It remains to deal with the third property of the enlargement. First of way we remark that
Y x D" N\, X; x D"\, X;. Then Y x D" has a specific cellulation: one replace each cell D¥ of Y by
DF x D", which is identified to D¥*". Of course we have no more a simplicial complex. Moreover
this cellulation has a refinement as a simplicial complex, by dividing each prism D* x D" (both cells
are simplexes) into simplexes. Each collapsing (coming from a cell ¢) at the Y level is realized by
a sequence of collapsings corresponding to the set of simplexes in which ¢ x D" splits. A simple
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argument shows now that ¥ x D™ has strongly connected 3-skeleton if n > 3. So we can choose
Y x D™ to be the wanted enlargement. Remark also that the result of [2] extends to the non-compact
case, and Y can be chose as a product of X; with a ball of sufficiently high dimension. O

Remark that the third condition from definition 1.1 says that the enlargement is no far from
being a manifold. The trick used above was suggested by the fact that the product of a locally finite
complex with the Hilbert cube is an infinite dimensional manifold (see [1]).

Proof of lemma 5.2: Let e; denotes the composition of the first 7 dilatations from the infinite
family which constructs Y beginning from X;. Let K; be an exhaustion by connected and simple
connected compact sub-complexes of X. Then e;(K;) is an exhaustion of ¥ by connected and simple
connected sub-complexes, which shows that Y is g.s.c.. O

6 Appendix: the ®/W-theory

For the sake of completeness we recall here some of the basic tools of this paper, which were originally
introduced and used by Poénaru in [6, 7].

Let f : P — M?3 be a non-degenerate simplicial map between the locally finite simplicial complex
P and the 3-manifold M. The equivalence relation defined by f is ®(f) C P x P given by

(z,y) € ®(f) iff fz = fy.

It is clear that P/®(f) is just the image fP.

The other relation, ¥(f) is introduced in order to see whether it is possible to exhaust all singu-
larities of fP by folding maps, and it is also called the equivalence relation which is commanded by
the singularities of f. A folding map corresponds to the following situation: if z € o1, and y € o9
are two points of P lying on the simplexes o; of same dimension, if fo = fy and fo; = fo, then we
wish to identify firstly fo; to fo,. When we pass to such a quotient (by a folding) the induced map
remains simplicial.

The equivalence relation U (f) C ®(f) is completely characterized by the following two properties:

e If f denotes the induced map P/¥(f) — M? then, f is an immersion® (i.e. it has no singu-
larities).

e There is no R C ®(f), equivalence relation, smaller than W(f) having the first property. Thus,
W(f) is the smallest equivalence relation compatible with f which kills all the singularities.

Furthermore the projection map 7 : P — P/¥(f) induces a surjection on fundamental groups
Ty 2 1 (P) — w1 (P/¥(f)). In particular if P is simply connected then P/¥(f) is simply connected
too. Remark that also the strongly connectivity of the 3-skeleton is preserved when passing from P
to P/U(f).

Roughly speaking, the construction of P/¥(f) is given by considering the quotients, obtained
recurrently, by all foldings commanded by the singular points of f. In this way all singularities will
disappear, one after the other, and no new others are created. Specifically, let z be a singular point
and o; two simplexes containing z, having the same dimension and the same image by f. Consider

6The point z is singular for f if the restriction of f to the star of z is not immersive. Alternatively, there exist two
distinct simplexes o1 and oy such that z € o1 Noy and f(o1) = f(02).
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the quotient P’ of P, obtained by identifying o; to o3. The map f induces a simplicial non-degenerate
map f': P' — M3. If f'is not an immersion it has a singular point, say 2’ € P’, and therefore
some simplexes o}, as above. We consider next the quotient P"” of P’ commanded by the singular
point 2z’ and so on. If P is a finite simplicial complex this process stops when we get an immersion
f® P — M3. The quotient P™ is in this case P/¥(f). If P is not finite, we need a transfinite
recurrence to construct the analogous immersion.
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