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Abstract

We define the value, at any non-commutative finite stop time, of some vector
semimartingales in Fock space. We apply it to stop a large class of operator pro-
cesses, including all processes given by Hudson-Parthasarathy quantum stochastic
integrals.

1. Introduction and notations

The theory of non-commutative stop times, as an extension of the classical
theory of stop times on a probability space, has been initiated in [Hud] and mainly
developed in [P-S] (revisited in [Mel]) and [B-W]. In [P-S] the value at any stop
time 7 of some Weyl processes in the Fock space is computed. It gives rise to a
factorization of the Fock space into a part “before 7”7 tensor a part “after 7”7. In
this way they generalize the strong Markov property of the quantum Brownian
motion proved in [Hud].

In [Mel] it is emphasised that the work of [P-S] gives the value at a quantum
stop time of processes of vectors which are constituted of the tensor product of a
complete martingale and a process in the future.

The aim of this article is to extend this latter result to processes of vectors
which are constituted of the tensor product of a regular vector semimartingale
and a process in the future. As a byproduct we obtain a method of stopping a
large class of operator-valued processes, which contains all the non-commutative
stochastic integrals. We recover in this latter case a definition given in [P-S].
This work differs from Barnett-Wilde’s work in the sense that they deal with the
general context of finite von Neumann algebras which does not contain the Fock
space case. Here our study makes strong use of the Fock space structure.

Let us now examine the context in which we work. Let ® be the boson Fock
space over LQ(JR-I_). Let @4, resp. @4, be the Fock space over L*([0,4]), resp.
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L([t, +o0[), for t € RT. One then has the continuous tensor product structure:
¢~ &y @ P forall t € R™. Recall that the Fock space ® is isomorphic to
the Guichardet space L*(P) ([Gui]). Indeed, let P be the set of finite subsets of
R™ that is, P = U, P, where P, is the set of subsets of R with cardinal n and
Po = {¢}. Each P, is equipped with the restriction of the corresponding Lebesgue
measure on IR" and Py is equipped with the unit mass. Thus P is equipped with
a o-finite measure, denoted do, and @ is isomorphic to L?(P). Consequently for

f € ® we have
2= f(o)|? do.

For all element u € L2(R+) define the associated coherent vector e(u) € @ by
[e(u)](0) = Il,equls), for o € P (with the usual convention that the empty
product equals 1). For all s <t define ug = ullp g, us, g = ullps g up = vl oo
define oy = {r € o;r <t} and oy = {r € o;r > t} (note that it makes no
difference whether we take strict inequalities in the latter definitions or not, as the
set of o € P with ¢ € o is of null measure for every fixed t).

The tensor product structure ® ~ &, @ ®; can be seen to correspond to the
following :

(i) f € @ if and only if f(o) = Ounlessa C [0, 1]

(ii) h € @[ if and only if k(o) = Ounless o C [t, +-o0]

(iii) g = f @ h if and only if g(o) = f(oq)h(op).

In this way we observe that e(u) = e(uy) ® E(U[t) for all u and all ¢.

Following [H-P] an adapted operator process in @ is a family (Hy);>o of op-
erators on @, defined on the dense subspace € = span {e(u); v € L*(R +)} such
that ¢t — H; 6(u) is strongly measurable and

{Ht €(ut]) S CI)t]
Hyelu) = B, e(ug)] @ (u,)

for all u € Lz(ﬂi’,-l_), t € R, In this case we say that Hy is adapted at time t.

2. Calculus on the Guichardet space

The results of this section can be found in great details in [A-L]. For all
t € RT, define the operator E; on ® by

[Et.ﬂ(g) = f(g)]lUC[O,t]a S P.
The operator E; is actually the orthogonal projection from @ onto ®;. The oper-
ator Ejy, also denoted [F, is given by

E[fl(e) = f(D)1o=p, o € P.
For all f € ®, all t € R, define
[Difl(o) = flo U{t})ocpo,q, 0 € P.
It can be easily seen ([A-L]), from the f-Lemma ([L-P]) that

/ /\th] )| do dt < oc.
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Thus, for almost all ¢, D; f defines an element of ® and

‘/|WJWﬁ<m.
0

From these definitions one can easily check the following properties :

0 fora.a. u >t

(i) forall f € @, DuEif = {Duf for a.a. u <t

(ii) for all w € L2(R"), Dy e(u) = u(t)e(uy) for a.a. t
(iii) if g = f ® h in the structure ® ~ &y @ @y, then for almost all u > ¢
D,g=f®D,h.

For a strongly measurable family g. = (g¢)¢>0 of elements of ® such that g; € &y
for all ¢+ and fooo || g¢||?dt is finite, define

[I(g.)](a):{o ifo=1(

gvo(o—) otherwise
where Vo = max {s € o} and o— = o\{Vo}. It can be easily seen ([A-L]) that
I(g.) defines an element of L?(P), thus an element of ®. From now on I(g.) is
denoted fooo gt dxry. This notation is justified by the following. Let f € ®, we can

compute fooo D, f dx; and observe that

> {0 ifo =0
[/0 Dif dzi(e) = {f(a) otherwise

Thus, we have the following Fock space predictable representation.

Theorem 1—For all f € ® one has the representation

f=Ef]+ / D.f da,

and

(f. 9) = Elg| E[f] + / (Du g, Def) dt
for all g € ®. [ |

This result is an analogue of the probabilistic predictable representation prop-
erty of Brownian motion, compensated Poisson process, Azéma’s martingales...
(for which the notation z; stands), but here it is purely intrinsic to the Fock space
structure and has nothing to do with probabilistic interpretations of ®.

A wector process is a strongly measurable family (2;)¢>0 of elements of ®. A
vector process z is adapted if z; € @y for all . An adapted process (my)i>o is a
martingale if Esmy = m, for all s <t. A martingale (my);>0 is complete if there
exists a m € ® such that my = Eym for all ¢ (or equivalently, if m; converges in
® to a vector m when t tends to —I—oo).
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If (g¢)i>0 is an adapted vector process such that fab ||lg¢||>dt < oo for every
0 <a<b< 400, then define

b 0o
/ grdr; = / gt ]l[a,b](t) dzy.
a 0

Lemma 2 - Let (my);>0 be a martingale in ®. Then there exists a unique adapted
process (£;)i>o0 in @ such that for all t € R™ one has fot |1€u|*du < oo and

t
my = myg —I—/ Ey dxy.
0
The process (&)i>0 15 gwen by & = Dymyy = Dymyyy for almost all t,h > 0.
Proof

From Theorem 1 one has m; = mg + fooo D,msdz,. But we have seen that
for all f € ®, almost all u > ¢t one has D, E;f = 0. Thus one has actually
my = mg + fot D,m;dx,. Furthermore, as D,E; = D, for almost all u < ¢, we
have for all t < ¢, almost all w < ¢, Dymy = D, Eymy = D,m;. Consequently the
vector D, my 4 does not depend on h > 0, one can choose &, to be Dymy .y, for
any h > 0. [ |

Lemma 3 Let H be a bounded operator on ®, adapted at time t. Let (gs)s>¢ be
an adapted vector process in ® such that ftoo |lgs||*ds < oo. Then one has

H/ gsdxsz/ Hgsdzs.
t t
Proof

First of all notice that the boundedness and adaptedness of H implies that
(Hgt),>o s strongly measurable and ftoo Hgsdxs is well-defined. For all u €

L*(IR™), one has
) B [ e =
= (e, [ gedey = [TDH ). 00)ds
= [T w2 (), gahds = [ elug) © Ducta 00 ds
:/tw<u(s)ﬂ*5(ut])@5(%5]),gs>ds:f@(s)ﬂ*g(us]),gsms
=/too<u(s>e(u5]), Hy,) ds =/too<Dse(u),Hgs>ds = (e(u), /too Hg, dz,).
-

One concludes by density of the space £ in ®.

3. Non-commutative stop times on Fock space

Let us recall the main definitions of [P-S].
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A stop time T on ® is a spectral measure on IR U {+oc} with values in the
space of orthogonal projections on & and such that, for all ¢, the operator 7([0, t])
is adapted at time ¢.

In the following we adopt a probabilistic-like notation: for any Borel subset
A C RT U {+0oc}, the operator 7(A) is denoted I,¢4; in the same way 7({t}) is
denoted 1.—¢, 7([0,¢]) is denoted by 1<, etc. ..

A stop time 7 is finite if 1.— 1 = 0. It is bounded by T'if 1.<7 = I for some
TeR".

A point ¢ in R™ is a continuity point for 7 if 1,—; = 0. Note that, unless
7 = 0, the point 0 is always a continuity point for 7. It is also easy to check that
the set of points t € IR which are not continuity points for 7 is at most countable.

If 7 and 7/ are two stop times on ®, one says that 7 < 7/ if, for all t € R™T
one has 1;<; > 1<, (in the usual sense of comparison of two projections).

A stop time 7 is discrete if there exists a finite set £ = {0 <t <t < -+ <
tn < +oo} such that 1,cp = I.

A sequence of stop times (7,), is said to converge to a stop time 7 if, for all
continuity point ¢ for 7, the operators 1., <; converge strongly to <.

A sequence of refining T-partitions is a sequence (E,), of partitions E, =
{0 <P <ty < -+ <t} < 4oo} of partitions of R" such that

(i) all the t;- are continuity points for 7;

(ii) E,, € E,4; for all n;

(iii) the diameter, max {t7 ; —t
to +o0;

(iv) tlnn tends to +o0o when n tends to +oo.

The following result is taken from [P-S], Proposition 3.3 and [Mel].

" =1,...,1,}, of E, tends to 0 as n tends

[

Proposition 4—Let 7 be any stop time. Then there ezists a sequence (7y), of
discrete stop times such that 7y > 1 > -+ > 7 and (1), converges to T.

Proof
Let E={0 <t <ty < -+ < t, < +oo} be a partition of R". Define a
spectral measure 7 by
) = {47 i Tien o,
TE({tn}) = Lr>t, ;.
The spectral measure 7g clearly defines a discrete stop time on ® and 75 > 7.

Taking a sequence (E,, )y of refining 7-partitions of IR gives the required sequence
(Ta)n = (7B, )n- u

4. Stopping vector processes

Our aim is to define the value z, at a finite stop time 7 of a large class of
vector processes (z¢);>0 in @.
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An adapted vector process (z¢)¢>0 in @ is a regular vector semimartingale if
(2¢)¢>0 admits a decomposition (always unique) as zy = my + a; where my is a
martingale and a; = f(; hsds with hy € ®4 and fot |hs||ds < oo for all t. The
integral fot hs ds is understood in the usual hilbertian sense that is, (f, fot hsds) =

fot<f, hs)ds which defines a vector in @ for

w%hmﬂslwwmhgwéuwm.

It is interesting to recall a characterisation of the regular semimartingales of
vectors in .

Theorem 5-An adapted vector process (z¢)i>o0 in ® is a reqular vector semi-
martingale if and only if there ezists a locally integrable function g on IR such
that, for all s <t, one has

t
Buz— 2l < [ gl

Proof

If (Zt)tZO is a regular vector semimartingale the estimate is trivial. The con-
verse is a simple consequence of Enchev’s characterization of Hilbertian quasi-
martingales in [Enc] (see also [Me2]). |

A vector process (y;)i>0 in @ is said to be adapted to the future if y; € @ for
all ¢.

For any vector process (wy);>0 in ® and for any discrete stop time 7 one can
obviously define, following the case of classical stop times, w, by

Wy = Z Lr—y;wy,. (1)

But when 7 1s any finite stop time we wish to pass to the limit on the expression
(1) for a sequence (74, )y of discrete stop times converging to 7 (Proposition 4).

In [P-S] and [Mel] it is shown that this convergence can be obtained when
(wy)s>o is of the form (m; @ y;)i>0 where (my);>0 is a complete martingale and
(y¢)i>0 1s a vector process adapted to the future. We are going to extend this
result to processes (w¢)i>o of the form (z; ® y;)i>0 where (z¢);>0 is a regular
vector semimartingale and (yt)tzo is adapted to the future and bounded in norm.
We first need some preliminary results.

Remark : If ¢ is an element of &5 ~ €'1 we have

E 1=y, c=c.
1

Thus, in the following we assume that all our martingales (mt)tzo are such that
mgo = 0. Consequently, by Lemma 2, every regular semimartingale is of the form

o= [ &dug+ [ hods, t>0.
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t t
Zt:/ fsdxs—{—/ hsds, t>0
0 0

be a regular vector semimartingale. Let T be a bounded stop time with bound T
Let (Eyn)n be a sequence of refining 7-partitions of RY. Put 7n = 7, for all
n € IN. Then the sequence (zr, ), converges to a vector z, in ® which is giwen by

T T
z,.:/ ]1,.>S§Sd:vs—}—/ Irsshsds.
0 0

Proposition 6 — Let

Proof
One has

Zryp — Z ]]-Tnzti 2t = Z ]lrn=ti {/tz és dx,s + /ti hs ds}
i i 0 0
e Z Z ]]'Tn:ti |:/tj+1 53 d-f,q + /tj-l-l hs dS:|
t

ij<i L i
i1 tj41
-y Y1, {/ ¢, du, +/ By ds|
Joi>j L j
tit1 tit1
— Z I, > {/ Esdag —I—/ he ds}
j t; t;
i1 i1
= Z |:/ ]]-Tn>tj 55 dl‘s + / ]]-Tn>tj hs d‘;:|
j t; t;

by boundedness and ¢ ;-adaptedness of 1, <;., and by Lemma 3
J n >t

i+ tj+1
= Z [/ ]]'Tn>8 53 d:ES + / ]17-">3 hs ds]
j tj t

J

T T
= / 1, ss€sdeg + / 1, >shsds.
0 0

Now, one has

T T
2 |:/ ]1T>s 53 d:ES + / ]17->3 ]’LS de|
0 0

< 2/0T (L7, 55 — Lrss)és|Pds + 2{/0

The quantities inside the integrals converge to 0 when n tends to +oc and are
respectively dominated by 4||¢,||? and 2||h4|| which are integrable on [0, T]. Thus,
one concludes by the dominated convergence Theorem. ]

2

T

2
1L, 5 = Losa)hallds]

7
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For any finite stop time 7 and n € IN one can define the stop time 7 A n by
1 _J0 ifn>t
TANSET | 1< ifn <t
It is clear that 7 A n is a bounded stop time with bound n and that (7 A n),
converges to 7. Thus, we easily deduce the following result.

Proposition 7- Let z; = fof Esdrg + fof hsds, t € R , be a reqular vector semi-
martingale. Let T be a finite stop time such that

/ |1y s SSHst < oo and / |1rss hs||ds < oo
0 0

then the sequence (zran)n converges to a vector z, in ® given by
>0 >0
z,-:/ ]l,->5§sd.rs+/ Irsshsds. [ ]
0 0

If 7 is a finite stop time, the mapping A — ||1-c4f]|* defines a measure on
(JR+,B(JR+)) for any f € ®. We denote this measure by ||1-cas f]|?.

The following result is an improvement of [P-S]’s results, together with a
shortening of their proofs as we are dealing with a slightly simpler case.

Proposition 8—Let (my)i>0 be a complete martingale. Let (y;)¢>0 be a wector
process adapted to the future. Put w, = m; @ vy, t € IRT. Let 7 be a finite stop
time such that

o0 «
/ lys[* [T eas m|* < oo
0

where m = limy_, o my. Let (Ey)n be a sequence of refining 7-partitions. Put
Tn = TE,, I € IN. Then the sequence (w,, ) converges in ® to a vector w, which

Proof

Consider p < ¢ € IN. As E;, D E, we can assume that E, is of the form
{0 <ty <+ <t,} and E, is of the form {0 < --- < ¢t; =t <t <<l =
tit1 < ---}. So it is sufficient to prove that the expression

Hz]lre[tz,tm Wiy — Zﬂre[tﬂ 1+ “’tﬂ+1”

converges to 0 when the diameter § of E, tends to 0.
As the space € is dense in ® there exists a m € € such that |m —m|| is small.

K
n = E /\k5 uk
k_

In [P-S], Proposition 4.9, it is proved that there exists a sequence (y"), of vector
processes adapted to the future such that, for all n, the mapping t — y;* is strongly
continuous, fooo ||y;‘|‘2||]1,.ed5m”2 < oo and

Suppose m is of the form

>0
/ lys — .U?HQ H]lTEdsm“2 —+0, n— +oo.
0

8
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To simplify the notation choose a (g¢);>0 strongly continuous vector process ada-
pted to the future such that

(oo}
[ Il e < o
0

and such that fooo lys — Us|I*||1reasm]|® is small.
Finally, notice that an operator H which is adapted at time t always satisfies
HE, = E,H for all u > t. One has

HZHTE [titipr] Wtig Z]lre[tJ 9+ t”‘lH
= “Z 1 e[t et wtz+1 - fwti"'l)HZ
k2

= Z “]lre[tjf,t{f“](mtiH O Ytigs — Mg+ ® ytjf“)Hz
0J
< 32 "ﬂre[tf,tf:+1]("’5ti+1 @ Ytipr — Mgy @ gti+1>H2
0]
+ 32 |‘]lre[t§,tg+1](mt{+l O Ygi+r — My @ gtg+1)’|2
0]
+ 32 I‘]]'TE[t'Z:,t'::-I—l](mti‘l'l © Ytigr — Myt @ gt5+1)’|2- (2)
Y
We now concentrate on the la]st term of the right hand side of (2). For any fixed
b > 0, it is equal to

3 Z ’lﬂre[tg7tg+1]<mti+1 ® :‘jti+1 - mti,'*'l ® gti:‘*‘l)HQ
i,g; 3+ <b
+6 Z I‘]lre[t‘::,ti:"'l] Mty @ Ytiga I
i,; 9T >b
+60Y 1 6,641 g+ @ G 7. (3)
i\3; ti+1>b

We now concentrate on the first term of (3). It is dominated by

9 Z H]lre[tjf,tjf“](mtiH — Mty ) @ Gty H2

i, 1T <b

+9 Z ’lﬂre[ti,t4+1](mti+l - mﬂ"'l) ® gﬂ"'l H2
i,5; 6171 <b

+9 Z H]lre[t{,tjf"‘l](mtiﬂ @ Ytigr — mtf:-l'l ® gt{‘*l)“Z
2,],t£+1<b

S 9 Z ’l]lre[tg7ti:+1]Eti+1 (m - ﬁ’L)”Q Hgti+1 H2
z,],ti.‘+1<b
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193 Mg e B (= i) P50 |

is 1 <
K
+ 91{2/% Z “]11-6[7:J t‘]+1](€(ufi+1]) D Ytia — €(ufi+1]) ® gtj:+1>||2
k=1 ivj§tf:+1ﬁb ‘
< 18maxfgall” Y L g i+ (m— )|
- i,g; 4T <b
K
FOKY A Y g prelu Plle(ufonn ) @ ity = 1@ Gy
=1 gt <

< ~ (2 a2
< 18 max[|ga|"lm — |

K
FISEY N 3 g el P eCenn ) = 1 e )P
k=

- 1
75 171 <b
.
+ 18K Z /\i Z “]lre[tf.' ,t{"'l]g(ufﬁf“])”z Hgti+1 - gt{"'l H2
k=1 i,j;tf.-'HSb '

< ~ 02 a2
< 18 maux|[gs[|"[m — |

K
+ 18K Z /\k maXHySH Z H]lre[t{,tjf“]g(ufi"'l])’ﬁ><
= < |
ti41 9
x</ WPty )I%ds)
it
K
FIBEY A sup g =il D Mg enelugeIP
k=1 2 6,55 1T <b

< 18 maxlgal*fm — |l

K t
+ 18K Z A7 maXHySH ZH]]Te é t3+1]5( k)2 sup Ju*(v)[>dv
k=1 ,J |s— : 5TS5 *

+ 18K Z/\k sup “ys _yt” Z”]lre[ﬁ tJ+1] ( k)Hz

k 1 | —t|<¢5 1]
Inserting this in (3) and then in (2) we get
erp - qu H2
<3 ZH]lre[tz:,tg+1]m|‘2|‘yti+1 = Ytits H2 +3 ZH]lre[t{,tg+1]m|‘2l|ytg+l - gt{"'l H2

0] 0]

10
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+ 18maXH:&sH2Hm — mml|?

4

-|—18Ixz/\Hs P gl sup /|uk(v)|2dv
5,0<b
[s—t]<s
1SKS A2 2 il
+18 &Z 9l sup [5, — i

s~ <5
+ 12 Z H]lre[t{,tj.""l]mHZHgtiﬂHz'
i,5;t0 71 >b

When ¢ tends to 0 the fourth and the fifth terms converge to 0 and the expression
above converges to

oo

>0
6 [ e = 6P + 18 gl Pl =l 412 [ 1 o]
0 >

This latter expression converges to Gfboo lys||?|1rcasm||* when § tends to y and
m tends to m. This finally tends to 0 when b tends to +00. We have thus proved
the convergence of (w, ), to a limit w, € ®.
If (E,)n and (F,), are two sequences of refining r-partitions, denote by E,, V
F, the T-partition made of E,, U F,,. We then have
HwTEn - Wrp, H2 < 2||wTEn — Wrg,vrF, H2 + 2||wTEnan - Wrp, H2

From the estimate obtained above we see that, as F, V F, C E,, and E, V F,, C
F, that ||wr, — wry . ||? (vespectively ||wry ,n — wr, ||?) is dominated by
an expression which depends only on the diameter of E, (respectively F,) and
converges to 0 with it. Thus, the limit w, does not depend on the choice of the
sequence (Ey,)p. [ ]

Remark : The vector w, obtained from this proposition is denoted
/ ]]-TEdS(ESm> ® Ys-

Let w; = my @ y¢ and w; = m} ® y; with integrability condition:

o0 ) ) o0
| Ml treaml? < oo and [Pl ream'|P < oc.
0 0

Then it follows from the above that
<w.,.,w;_> = / <yeay ><IE Nregsm, m>
0

Theorem 9 - Let z; = ! AT + ths ds, t > 0 be a reqular vector semimartin-
0 0 ) )

gale. Let (y¢)i>0 be a vector process, adapted to the future and bounded in norm.

Let 7 be a finite stop time such that

/ 1> fSHQdS < oo and / 1> hs||ds < oc.
0 0

11
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Let wy = 24 @ yg, t > 0. Let (E,), be a sequence of refining 7-partitions of R™.
Put 7, = 7g,,n € IN. Then the sequence (wr, )n converges to a vector w, which
18 given by

Wwr = / ]]-TEdS[ESZT] @ Ys-

Proof
One has

tip1 tip1
Zr, = Z ]lTE[ti,ti+1] [/() {sdrs + /0 hs d5:| @ Yti4.

ti+1 tjta

- Z Z ]lre[thti-}-l] / 55 dl‘s + / hS ds ® yti+1

iog<i g t

ti+1 tit+1

~ 2 etz | [ G [ | S

i g i i

I ti4a tit1 1

= Z Z ]ITE[ti,ti+1]Eti+1]1T2tj / {sdrs + / heds| & Ytiga

i j<i L/t i _

[ZES tj+1
/ §5 d.Is + / hs ds| & Ytiga
t t

J J

- Z Z ]lre[tiyti+1]Eti+1 ﬂthj
i

(as for 7 > 1 4 1 the terms inside the sum vanish)

[ ptia ti+1
- ZZHTE[%UH]EHH / Lr>e; & das +/ Lr>ihesds| @y,
i g LV 4 tj
[ ptiaa tjt1
~ Y Y cwinBon | [ Losebedant [ Losauds| S,
i LV 4 tj

- Z ]lTE[ti,ti+1]Eti+1 |:/ ]]-Tn>s fs dxs + / ]]-Tn>s hs d5:| ® Ytipa
: 0 0

= Z]lre[ti,ti+1]Eti+1 (ZTH> @ Yt 44

= Zﬂre[ti,ti+1]Eti+1 (ZT) & Y40

+ Z]]'TE[ti7ti+1]Eti+1 (ZT - ZTn) ® Ytigq-
The first term of the right hand side converges to
/ ]lreds ES(ZT> & Ys

by Proposition 8 (as the condition fooo HystH]lredSZrHZ < oo is trivial since s —

12
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|lys|| is bounded). The second term has the square of its norm dominated by
Y M regii i Bros (20 = 20,17 supllys|[* < supllys|[*[|=r = =, ||
. S S
2

which converges to 0 by Proposition 7. [ |

5. Stopping operator processes

We now consider a process (X;);>o of adapted operators on ®. As for vectors
in the previous section, we want to define the value X, of (X¢);>0 at a finite stop
time 7. In the case of discrete stop times, three non-equivalent definitions appear:

left-stopping : 7o X = . =4 Xy,

right-stopping : X o7 =" Xy, 1=,

two-sided-stopping : To X o7 =" My, Xy, Loy,

As previously we wish to pass to the limit of discrete stop times converging
to a finite stop time, for a large class of processes of operators (X¢)i>o.

Let 7 be a finite stop time. A regular vector semimartingale zy = fot Eodrg +

fot hsds 1s said to be T-integrable if

/ |‘]1,.>3§3H2ds < oo and / 1> shs||ds < oo.
0 0

Proposition 10-Let (Xy);>0 be an adapted operator process on ®. Let u €
Lz(ﬂi’,+) be such that (X, €(ut]))t20 18 a reqular vector semimartingale. Let T be a
finite stop time such that (X;e(ug))i>o is T-integrable. Let (E,), be a sequence of

refining T-partitions of RY. Then the sequence (Xrp, e(u))n converges to a vector

Xre(u).
Proof

As (X{)¢>0 is an adapted process of operators, one has
Xie(u) = Xie(ug) @ e(u).
The vector process (e(up))i>o0 is clearly adapted to the future and bounded in

norm. By hypothesis the process (Xie(uyg))i>o0 is a 7-integrable regular vec-
tor semimartingale . Thus we can apply Theorem 9 to the process (w¢)i>0 =

(Xt 5(“))7?20- |

Theorem 11— Let (Xy);>0 be an adapted operator process on ®. Suppose that for
all w € L*(IR™) the process (X e(ug))i>o 1s a reqular vector semimartingale. Let
7 be a finite stop time such that, for all u € LZ(R+), the process (X¢e(ug))e>o s
T-integrable.

Then the left stopping T 0 X converges strongly on £.

Proof
By Proposition 10 we have that the quantity

Z]ITE[ti7ti+1](Xti+16(uti+1])) ® €<u[ti+1 )

13
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admits a limit when the diameter § of the 7-partition {t;; : = 1,...,n} tends to 0.
But this quantity is also equal to

ZHTE[tiﬂfH-l](Xti+1€<u>) = [Zﬂre[ti7ti+1]xti+1] e(u).
This proves that the Riemann sums associated to the left stopping of X converge.
|

One can wonder what is this class of operator processes such that (Xte(ut] ))tZO
1s a regular vector semimartingale, and what are the stop time 7 such that the
process (Xté?(ut]))tzo is T-integrable.

We now recall the definitions of the non-commutative stochastic integrals
([H-P]) of adapted processes of operators with respect to the creation (A;I')tzo,
annihilation (At>t20, conservation (At)tZO and time (tf)tzo processes, and also
their extension as defined in [A-M].

Let H,K,L, M be adapted processes of operators defined on a domain D
containing €. Assume that the following integrals are meaningful (from the point
of view of domains) and finite for all f € D, t € R*:

t t i t
/HHSDSfH?ds,/ HKSESfH‘st,/ HLSDSfHds,/ | M, E,f||ds.  (4)
0 0 0 0

According to [A-M], we say that an adapted operator process (T})¢>o defined on
D has the integral representation

t 1 t t
th/ HSdAS+/ stAj'+/ LsdAer/ M,ds
0 0

0 0

on the domain D if for all f € D one has that fot |TsDs f|?ds is well-defined

meaningful and finite, and

t t t t
TtEtf:/ Tstfd:cs-l—/ Hstfdxs-l—/ KsEsfd:cs-l—/ L,D,fds
0 0 0 0

t
+ / M,E,f ds. (5)

0
Theorem 12 ([A-M], Theorem 1, and [Me3] p. 123)— On the domain D = &, this

definition is equivalent to Hudson-Parthasarathy’s definition of non-commutative
stochastic integrals. [ |

A consequence of Theorem 12 is that if (X;);>0 is any process of the form (in
[H-P]’s sense)

t t i t
Xt:/ HSdAS+/ Ix’sdAj'+/ LSdAS+/ M, ds
0 0 0 0

then for all f € &, the process (X;E;f);>0 is a regular vector semimartingale.
Now, if 7 is a finite stop time such that the integral

X, :/ 1,5, H, dAS—I—/ ]17>8K5dAj+/ ]lr>5L5dA5-|—/ 1,5, M.ds (6)
0 0 0 0

14
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is well-defined in [H-P]’s sense we have by Theorem 12 and (4) that (X:e(uyg))i>o
is a T-integrable regular semimartingale of vectors. The left stopping 7 0o X given
by Theorem 11 is then the operator X, given by (6). By this way we have seen

that the set of processes of operators concerned by Theorem 11 at least contains
all the Hudson-Parthasarathy stochastic integrals.

Note that, since (7 0 X)* = X* o 7 for discrete stop times, we get obvious
extensions of the results of this section in the case of right-stopping.
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