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Abstract

We focus on some connections between classical and quantum stochastic calcu-
lus. It is shown how these calculus can be great sources of ideas and developments
for each other.
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Introduction

It is really a great pleasure for me to be given the opportunity to write a
survey article about the connections between classical and quantum stochastic
calculus throught my work.

It is clear to anyone involved in Quantum Probability, or at least who has
attended one of our meetings, that this field is far from beeing reducible to a simple
non-commutative extension of classical probability theory. Our work does not
consist in finding an exhaustive list of non-commutative analogues of the classical
theorems. If Quantum Probability is very interesting it is because it is a transversal
subject. It finds its fundamental axioms in quantum physics and the connections
with domains such as quantum mechanics, quantum field theory, quantum optics,
scattering theory are very deep. For a large number of my collegues Quantum
Probability is also part of functional analysis (C*-algebras and von Neumann
algebras theory, non-commutative geometry, quantum groups,...). But since I have
started to work in Quantum Probability, 4 years ago, I have so far been mainly
interested in studying the connections between classical and quantum stochastic
calculus 1in both directions. These connections do exist, they have been driving
me all along my work and they have always been a great source of ideas.

Before describing the contents of this article I have to warn the reader that
this article does not pretend to be a state of the art on the subject. It is just a very
personal (and unmodest) point of view on it, based on what I know best that is,
my work. I just hope 1t to make classical and quantum readers beeing convinced
of the use and the interest of both fields.

The article is divided into two main chapters. The first chapter is devoted
to the contributions of classical stochastic calculus to the quantum one. The
second chapter is devoted to the contributions of quantum stochastic calculus to
the classical one.

In the first section of the first chapter we show how the usual Ito calculus can
be translated in an intrinsic way on Fock space. This abstract Ito calculus gives rise
to an extension of Hudson-Parthasarathy’s notion of adaptedness for operators. As
a consequence one can give a new definition of quantum stochastic integrals. This
new definition extends all the previous ones (Hudson-Parthasarathy, Belavkin-
Lindsay, Attal-Meyer); it has all the advantages of the previous ones without any
of the inconvenients. This definition is shown to be maximal and to completely
solve the problem of Attal-Meyer’s equations (which is the most probabilistic point
of view on quantum stochastic integrals).

In the second section, we show some consequences of Attal-Meyer’s point of
view on quantum stochastic integrals. These developments are in the direction of
developing a quantum stochastic calculus which is as easy to manipulate as the
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classical one. We identify an algebra on quantum semimartingales. On this alge-
bra we define quantum square and angle brackets for quantum semimartingales.
Functional quantum Ito formulas are obtained.

In a third section we show how the probabilistic idea of getting the chaotic
expansion of a random variable by iterating infinitely many times its previsible
representation can give an idea for getting the Maassen kernel of an operator.
This idea applies very well to Hilbert-Schmidt operators.

In the fourth and last section of the first chapter, we present Enchev’s Hilber-
tian extension of the concept of quasimartingales. His theorem is they key of many
applications in quantum probability, above all when quantum stop times are in-
volved. We see two applications: one shows that one can stop a large class of
vector and operator processes with quantum stop times, the other one shows that
every minimal Evans-Hudson flows are quantum strong Markov processes.

The second chapter consists into two sections. The first section presents the
quantum stochastic calculus as a natural extension of the classical one. We show
how the concepts developed in the first two sections of chapter I extend and unify
the classical ones in the probabilistic interpretations of the Fock space (that is, in
the case of normal martingales admitting the chaotic representation property).

The second section is devoted to Wiener space endomorphisms. That is,
some transformations of the Wiener space which preserve the Wiener measure.
Such transformations, when lifted to the space of square integrable functionals of
the Brownian motion, can be very naturally studied through quantum stochas-
tic calculus. One obtains an algebraic characterization of these endomorphisms.
These methods apply to more general endomorphisms such as endomorphisms of
the Poisson process, the Azéma martingales,...

Notations

When one writes an article on quantumn stochastic calculus he has to make a
choice. He can either choose the full generality by working on the symmetric Fock
space with initial space and countable multiplicity, or try to make his exposition
as clear as possible, with simple notations, and choose to deal with the multiplicity
one syminetric Fock space. I have made the second choice for this article. There
are two reasons for that. First, this article is an expositary one, it is supposed to
strengthen the links between classical and quantum stochastic calculus; so flooding
the reader with cumbersome notations does not help to understand the ideas.
Secondly, though most of the results presented here already exist in the countable
multiplicity case, this is not true for all of them; some of the most recent ones (such
as [A-L]) are still under work as the finite multiplicity extension is easy but the
infinite one is not. Consequently, I only deal with the multiplicity one symmetric
Fock space.

All vector spaces are on the complex field €. Note that unless it is not clear,
the norm and the scalar product in Hilbert spaces are denoted || - || and <., - >
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respectively, without specifying which space it refers to. The scalar products
(z,y) — <, y> are linear in y and antilinear in z.

Let ® be the boson (or symmetric) Fock space over LQ(R+) that is,

& = N(LH(RM)E Gpen L (RY)O"
where & denotes symmetric tensor products. So elements of & are of the form
f = ®nfn where fy is a scalar, where f, is a symmetric square integrable function
on (R+)" for n > 1 and where

17115 =Y |l Fall72(mtyon-

For any s < t in RY we put Py = T(L*(]0,1])), P = T(L*([s,t])), and Py =
D(L2([t,+oo).

There exists another very useful description of the Fock space: the Guichardet
symmetric space. Let P denote the finite power set of IR that is, the set of finite
subsets of R* (elements of P are denoted with small greek letters o, 7,w,...).
Thus P admits a disjoint partition: P = U,P,, where Py = {0} and, for n > 1,
P,, is the set of n-elements subsets of RT. For n > 1 the set P, can be identified
with the increasing simplex {(t1,...,t,) € R"; 0 < t; < ... < t,} and then the
restriction of the Lebesgue measure on IR" induces a measure on P,. By declaring
the measure on Py to be the unit one, we obtain a o-finite measure on P called
the symmetric measure on RT ([Gui]). The element of volume of this measure is
denoted do,dr, dw,... Elements of L?(P) are thus functions f : o — f(o) such
that [, |f(0)]*do < co. The isomorphism between ® and L*(P) is now clear
by defining fn(t1,...,tn) = f(o) when o = {t1,...,t,} and by noticing that the
norm of each of the spaces ® and L?(P) coincide.

So from now on the Fock space @ is not distinguished from L?(P); elements
of ® are square integrable (class of) functions on P. For a f € ® the family of
values {f(0); o0 € P} is called the chaotic expansion of f.

We need a few more notations in the Guichardet space language. For t € R
define Py to be the set of o € P such that o C [0,1], let P[; be the set of ¢ € P such
that o C [t,00]. For o € P and t € R™ put out to be the set ou{t}; in the same
way o\t is the set o\{t}. If o # ) then vo denotes maxo and o- denotes o\vo;
finally ro denotes mino. For s <tand o € P we put o,y = 0n[0,t[, 054 = 0n]s, ]
and o(; = onlt, +oo[. Finally, for o € P, #0 denotes the cardinal of the set o.

In this context we often use the following combinatoric lemma (cf [L-P]).

f-Lemma-— Let g be a positive (resp. integrable) measurable function from P x P
to €. Then G : oY, g(a,0na) defines a positive (resp. integrable) measur-
able function on P satisfying

/PG(a)do:/?/?g(a,ﬂ)dadﬁ. |
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From this lemma it is easy to check that for all + € R the mapping
U . @t] ® @[t — @

f®g — (U '_>f(0t)>9(0(t)>

extends to a unitary isomorphism between &4 @ ®[; and ®. So from now on we
omit the mapping U, we do not distinguish between the spaces &, ® ®[; and @;
we also identify ®; and ®|; to subspaces of ®. In the same way, for all s <+, the
spaces P, @ ®(, 4 ® @[; and ® are isomorphic.

A family of subpaces of ® is going to be of great interest: the spaces of coherent
vectors. Consider a dense subspace M of LZ(R+); it is said to be admassible if
M is stable under multiplication by 1, 4 for all . For a vector u in an admissible
M one defines the associated coherent vector e(u) in @ by e(u)(o) = [],¢, u(s),
where as usual the empty product equals 1. In this way we obtain a Fock space
element with ||€(u)||2 = exp(||u||2). Onmne can also check that in the tensor product
structure ® = &, @ ®[; we have e(u) = e(uy) @ e(uf;), where uy denotes ullp g
and u; denotes ull; 4. The vector space generated by the ¢(u) when w runs
over M is denoted £(M); it is a dense subspace of ®.

This particular property of coherent vectors with respect to the continuous
tensor product structure of ® is the key point in Hudson-Parthasarthy’s treatment
of quantum stochastic calculus ([H-P]). For a fixed t € R they define an operator
H from ® to ® to be t-adapted if Dom H contains (M) and if it satisfies for all
u e M:

i) He(uyq) belongs to @y

ii) He(u) = [He(ug)] @ e(ug).
An adapted process of operators is a family (Hy),s, of operators from @ to ® such
that H; is t-adapted for all ¢+ and such that the mapping ¢ — Hye(u) is strongly
measurable for all u € M.
Let us recall Hudson-Parthasarathy’s definitions of quantumn stochastic inte-
grals Consider four adapted processes of operators H, K, L, M on ®, defined on
. In [H-P] it is proved that if, for all u € M, all ¢+ > 0 one has

/|u VRN, ()1 ds+/ 1K, 2(uy)|P ds+/ ()| 1L 2| ds

+ [ 1M, e(ug)|ds < oo

0
then there exists a unique adapted process of operators (T3),-, denoted

t t t t
Tt:/ HSdAS-I—/ KSdAZ-I—/ LSdAS-I—/ M, ds
0 0 0 0
satisfying

<e(v), Tee(u)> = /0 o(s)uls) < e(v), Hye(u)> +0(s) < e(v), Kye(u)>
+u(s)<e(v), Lye(u) >+ <e(v), Mye(u)>ds
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for all u,v € M, all t > 0. These integrals are the quantum stochastic integrals
of H,K,L, M with respect to the quantum noises (A¢),q, (AI)DO, (At);>o and
to the time (¢I),,. These integrators are respectively called the conservation,

creation, annihilation and time processes. The definition of A; (resp. AI, Ay tT)
can be recovered by taking Hy (resp. K, Ls, M) to be I for s <t, 0 for s > t and
the other three processes to vanish. For more details on Hudson-Parthasarathy’s
quantum stochastic calculus one can refer to the original article [H-P], to the books

[Mel], [Par], or to the course [Bia].

I From classical to quantum stochastic calculus

I.1 Ito calculus approch to quantum stochastic calculus

This section presents quantum stochastic calculus under a new point of view:
we take the quantum stochastic calculus defined in [A-L] as starting point that is,
as the most general definition. We then recover all the previous definitions and
theorems as consequences.

I.1.1 Ito calculus on Fock space

We here introduce some of the fundamental tools for this article. They consist
into a Fock space transcription of classical probabilistic objects. It 1s well-known
to quantum probabilists that probabilistic operations such as Skorohod integral,
stochastic derivative, Skorohod isometry formula are not only probabilistic, they
can be translated in an intrinsic way in the Fock space. It is less common to them
that Ito integral, predictable representation property and Ito isometry formula can
also be adapted in an intrinsic language to Fock space. This new approch has been
developed in [A-L] and all details can be found there (it has to be noticed that the
intrinsic expression of the Ito integral was already mentionned in [Mal]).

We are going to define operators on ®. First some well-known ones. For all

fed allt € R and all 0 € P define

[Pf](o) = 1p, (o) f(o).
Then o + [P;f](o) is cleary square integrable and P;f defines an element of ®.
The operator P; can be easily seen to be the orthogonal projection from @ onto
@t].
For all fin ®, all t in IR and all o € P define
[Vifl(o) = f(out).
For this mapping to be square integrable in ¢ one needs f to belong to a certain
proper subdomain of ®. There is a useful and natural common domain for all

these operators V; which is Dom v N def {f € ¥; fp #olf(0)|> do < oo}. The

operators V; are often known as Malliavin gradient operators.
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Let . = (x¢);>o be a wvector process in ® that is, a measurable mapping

(0,t) — z(0o,t) on P x IR such that for all ¢ the mapping o — z4(0) def z(o,t) is
square integrable. For such a process define

SEl(e) = 3 ealons)
SEad
where as usual the empty sum is equal to 0. When this mapping is square integrable
in o one says that (z;),-, is Skorohod integrable and the Fock space vector S(z.)
is called the Skorohod integral of (x¢),s-

All these operators are well-known to quantum probabilists as well as classical
ones (see section I1.1.2 for a probabilistic interpretation of these operators). But
the following ones are less common to quantum probabilists whereas they have
well-known probabilistic counterparts.

For every t € RT, f € &, 0 € P define the quantity

[Difl(o) = 1p, (o) f(aut).
From the f-Lemma we easily get the following identity.

Lemma 1.1 - For all f € ® one has

/OOO/p‘[th](U)‘zdadt:||f||2_|f(@>|2- -

Lemma I.1 implies in particular that for all f € ®, almost allt € IRT, the mapping
o +— [D¢f](0) is square integrable. Thus for all f € ®, almost all ¢, D;f is a well-
defined element of ®. Here a short discussion is needed. For each fixed ¢ the linear
application D; cannot be considered as an operator on ®, only what one can say
is that for all f € @, almost all (depending on f) t € RY, the mapping D f is
defined as a vector in ®. It is more rigorous to define the operator
D : L*P) — L*(R* x P)
P (o) o D).

From Lemma 1.1 the operator D is a partial isometry and the almost everywhere
defined operators D; are sections of D). Another important remark is that it can
be seen from the definitions that D; = P,V,, or more rigorously if one defines

P . L*R*xP) — L*R"xP)

()0 — (Pexd) s
V : DomVNcCcd — LZ(R+ x P)
f — (th>t20

we have D = PV that is, D is the closure of PV. This closure property is
fundamental because, though the V,’s are defined on a proper subdomain of @
and D; is equal to P;V; on this domain, we have that the D;’s are defined
everywhere. This property of beeing defined on the whole Fock space for Dy
instead of an arbitrary subdomain for V; is going to be fundamental.

In the following, when dealing with the operators D; we write “for almost
all” without mentioning that this “almost all” depends on a vector f € ®. It may
even happen that we omit to mention the “almost all”.

7
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Note the simple but important property which is an immediate consequence
of the definitions:
0 for almost all v > ¢
D, for almost all u < t.

(1.1)

Let z. = (2¢),5¢ be a vector process in ®. We say that z. is Ito integrable if

DuPt:{

i) 2y € &g forall t,

(o .@]
i) / ||a¢||? dt < oc.
0

If x. is a Ito integrable process on ® we define the following mapping on P

0 if o =0,
[I(z))e) = {:EVO-(O'—> otherwise.
Another application of the f-Lemma gives the following.
Lemma 1.2 - For every Ito integrable process (x1),~, we have

/PHI(:C)](G')‘ daz/o [|lz¢||” dt. |

That is, for any Ito integrable process (z¢),~ the mapping I(x.) defines an element
of @ called the Ito integral of (z),-, and satisfying the isometry formula

)| = [l at

Note that the Ito integral operator coincide with the Skorohod integral operator
restricted to Ito integrable processes.

It is also worth noticing that the Ito integral operator I(+) actually corresponds
to an integration with respect to some curve in ®. Indeed, for all ¢+ € R define
the vector y;: € ® by

o it gost
xt({s}) = Tpoq(s)-
It is clear that x; belongs to ®; for all ¢ € IR™ but one can check that (Xt) >0
is furthermore an “independent increment” vector process that is, for s < ¢ the
increment y¢—x, belongs to @, 4. Let (y¢),5 be a Ito integrable process. Suppose
first that (y¢),o s a step process that is, there exists an increasing sequence
(tn)nEJN in R+_converging to +o0o and such that y; =y, for t, <t < t,41. Then
define a mapping on P by

[/OOO Yyt ® dXt} (o) def Z [ytn @ (Xtngs — th)] (o)

7

(recall that y;, belongs to ®; ; and x¢,_, — xt, belongs to ®; ). It can be easily
computed that

{/Ooo Yyt & d)(t} (o) = [I(y.)](o).
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Thus, for step Ito integrable processes (y;),~ the vector fooo yr @ dy¢ coincides
with the Ito integral I(y.). By the isometry formula we get

%) 2 oo
| wead|| =1mwir = [ il a
0 0

and we can easily extend the integral to all Ito integrable processes (y;),~,. Hence
the Ito integral I(y.) actually corresponds to an integration with respect to the
curve (x¢);> in @. From now on I(y.) is denoted fooo yr dx¢. Note that we have
dropped the ® symbol.

From the definition of the operators Dy and Lemma 1.1 it is clear that for any
f € @ the vector process (D f),s, is Ito integrable. Let us compute fooo Dy f dyy.
We have

> 0 ifo=10
D;fdy:l(c) = i
[/0 Fdx } (o) { [Dysf](c-) otherwise
_Jo ifo=10
- { 1p,, (0-)f(o-uvo) otherwise

0 ifo=10
f(o) otherwise.
Thus noticing that [Pof](c) = 1,—¢f(0) (Pof can then be identified to a complex

number) we easily conclude to the following fundamental property.

Theorem 1.3 (Fock space predictable representation property)— For all f € ® we
have the representation

f:POf‘l‘/ D; f dxs,
0

with IF1I* = |Pof|? +/ || D f||* dt
0
and for all g € ®
<f79>:P0fP09+/ < D:f, Dyg > dt. H
0

1.1.2 Adaptedness revisited

The above Ito calculus on Fock space is the main ingredient for developing a
new definition of adaptedness for operators. The new definition has the advantage
of beeing very simply expressed, of getting freed from the coherent vector spaces
and of applying to a very large class of different domains.

Let us forget Hudson-Parthasarathy’s adaptedness for a while and try to re-
define it. Let ¢ be fixed in IRT. Let D be a domain in ® that is, a subspace of ®.
We say that D is a t-adapted domain if f € D implies P;f € D and D, f € D for
almost all u > ¢.

One can immediatly wonder what kind of spaces are satisfying these stabil-
ity properties. The answer is that all the space usually considered in quantum
stochastic calculus are adapted in this sense:

9
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- the whole Fock space is of course t-adapted for all ¢;
- the coherent vector spaces £(M) are t-adapted domains for all ¢ if and only

if M is admissible;
def

- the so-called “space of finite particles” &p = {f € ®; for some n € IV,
f(o) =0 when #0 > n} is t-adapted for all ¢;
- the space of Maassen-Meyer test vectors that is, the set of f € ® satisfying
1) f(o) =01if o ¢ [0,T] for some T,
ii) | f(o)] < CM#7 for some C, M > 0,
is t-adapted for all ¢;
- the Fock scales ®(a) o {fed [ra a??|f(0)]? do < oo} for a > 1 are all
t-adapted for any t.
So adapted domains constitute a much larger class than the coherent ones;
this class includes all the spaces usually considered in quantum stochastic calculus.
We can now introduce a new definition of adaptedness for operators. Let ¢ be
fixed in RT. Let H be an operator from ® to ® with domain D. The operator H
is t-adapted if
1) D is a t-adapted domain

ii) on D one has

D,H=HD, for a.a. u > t.
Once again let us precise that the last identity has to be understood in the following
way: for all f € D, almost all u >t one has D,Hf = HD,, f.
There are several equivalent ways of defining this new notion of adaptedness.
We here present only one. For a 0 = {t; < ... < t,} € P we denote by D, the
operator Dy, ... Dy and when o = () the operator D, is the identity operator I.

{HH:HH

Proposition 1.4—Let t be fized in RT. An operator H on & with domain D is
t-adapted if and only if

1) D s a t-adapted domain,

i) for all f € ®, a.a.0 € P one has

[H f|(0) = [HP: Doy, f](04))-

Proof
Suppose H is t-adapted. Take o € P. If o, = () then ¢ C [0,#] and

[HP( Do, fl(on) = [HP:f](0) = [P H f](0) = [H[](o).
If o4 is not empty then assume it is of the form oy = {t; < ... <t,}. We have

[H fl(0) = [Dt, H fl(0\tn) = [HDy, fl(07ts)

= [HDy, ... Dy, fl(o\{t1, ... ta})
= [HD,, fl(0n) = [PH Dy, fl(01)) = [HPDs, f](04)).

10
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This proves the proposition in one direction.
Conversly, suppose H satisfies properties i) and ii). Then one has

P (o) = Ty () F1(0) = o (0)[H P D fl(00)) = Ty (o) H L)),
But by (I.1) we also have
(HPf)(o) = [HPDoy Puf)(0) = Ly, <ol HP)(7y) = Ty (o) HP ().
This proves P;Hf = HP,; f. Furthermore, for a.a.u > t we have
DuFH £)(0) = Ty () H flloos) = Tpy(0) HPD oy, (7))
= ]lpu]<0>[HPtD0(tDuf](gt)> = ]17’u] (o)[HD.y f](o).
But we also have, by (I.1),
[HD, f](o) = [HPtDa(tDUf](Ut)) = ]lpu](U)[HPtDG(tDUf](Ut)>

which finally equals 1p (¢)[HD, f](c). We have proved that D, Hf = HD, f for
a.a.u > t. |

Of course this new notion of adaptedness would be of no interest if it were not
coinciding with Hudson-Parthasarathy’s one when restricted to coherent vectors.

Proposition 1.5 Let M be a dense subspace of Lz(R-I_). Let H be an operator

defined on E(M). Then E(M) is a t-adapted domain for all t if and only of M is
admissible. The operator H 1s t-adapted if and only if it 1s t-adapted in Hudson-
Parthasarathy’s sense.

Proof

The adaptedness property of the domain is easy to get since Pye(u) = (uy)
and Dye(u) = u(t)e(uyq). It is also easy to check that in both of the two adapted-
ness definitions we have Py H = H P;. Now, in any case let us compute [He(ugq)] ®
e(upe) for u € M. We have

([He(ug)) @ e(ug)] (o) = [He(ug)l(on) le(up))(0@) = [He(ug)l(on) J] uls)

SEU(t
= H u(s) [HP; e(ung )))(00y) = [HP Dy, e(u)](oy).
SEG'(t

One concludes easily. [

Together with the notion of adaptedness for domains and operators there exist
conditional expectations for domains and operators. Let D be any domain in ®.

Let ¢ be fixed in IRT. Define

E(D) = {f € & PiD,f €D for n.a.0 € Py},

Then IE;(D) is a good candidate for beeing the conditional expectation of the
domain D at time t.

Proposition 1.6 - For all t € RY, and every domain D in & we have that

11
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1) IE(D) is a u-adapted domain for all u > t;
i) E{(Es(D)) = Esn(D) for all s,t;
i) if D is a t-adapted domain then D C IE(D).

The proofs are straightforward from the definitions. |

Let H be any operator on ®, with domain Dom H. Define the operator IE(H)
on ® whose domain is

Dom BEy(H) = {f € E(Dom H); o = [HP, D, fl(0)) € L*(P)}

and whose value on its domain is given by

[E(H)f](0) = [HPtDy, fl(o4)).

We now give a list of the main properties of this operator conditional expectation.
We do not give any proofs as they require nothing else than applying the definitions
and Propositions 1.4, 1.6 (cf [A-L]).

Proposition 1.7 — For any operator H on ®, any t in IRY, we have that

1) E+(H) s a u-adapted operator for all u > t;

i) E{(Es(H)) = Esn(H) for all s,t;

1) H s a t-adapted operator if and only i«f Dom H s t-adapted and H 1s a
restriction of IE+(H);

iv) if H and IE((H) are densely defined then IE(H)* is t-adapted and IE,(H)*
extends IE(H*). [ |

[.1.3 Quantum stochastic integrals revisited

The new definition of adaptedness, the associated conditional expectation of
operators and the extension property iii) of Proposition 1.7 are the key points for
revisiting Hudson-Parthasarthy’s definition of quantum stochastic integrals and
extending them. There are many different ways of presenting these extensions.
For this article I have choosen a new one which is different from the original
approch ([A-L]).

From Hudson-Parthasarathy’s stochastic calculus, or from many other ways,
one can write explicit formulas for the action of the fundamental noises on a vector
f of ®. For example the creation process (AI)DO is given by

[Af (o) = f(ons) (1.2)

and the domain of AI is exactely the set of f such that the above expression is
square integrable in o. In the same way the annihilation, conservation and time
processes are respectively given by

[Atf]((f):/o flous)ds (1.3)
12
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[Aif](o Z f(o (1.4)

#If](o / f(o (1.5)

Note that the expressions (1.4) and (I.5) can be simplified but it is useful to keep
them under this form.

Let (H¢),», be an adapted process of operators. Assume that (H¢),s, is a
step process that is, it is constant on the intervals of a partition {¢;; : € IN} of RT.
Let us consider the annihilation integral case for example. If we want to define
the quantum stochastic integral fooo H,dA; as in [H-P] we look at the Riemann
sums y_. Hy (Ay,, — Ay;). Note that the product Hy (Ay,, — Ay,) is actually
not a composition of operators but a tensor product of operators. Indeed, as our
adaptedness coincides with Hudson-Parthasarathy’s one we have that Hy, is of the
form K ® I in the tensor product & = <I>ti] ® cI)[t,- and Ati+1 — Ay, is of the form
I® K.

Now, as our conditional expectation extends the domain of already adapted
operators we shall better look at

Z Eti(Hti)(Ati+1 - Ati) = Z(Ati+1 - Ati)Eti(Hti>

?

if we want to enlarge the domain of the stochastic integral. We obtain

> [(Avy, — Ai) By (H Z/ [Ey,(Hy, ) f](ous) ds

?

141
— ZZ [HtiPtiD(n-us)(tif]((a'us)ti))db
1 tig1
= Z/; [HtiPti‘DU(tiUSf](o-ti))dS

tit1
= Z/ [HtiPtiDa'(tiJ)DsDa'(sf]((as))ti))ds
i Yt
tit1
— Z[ [Hi;DsD,,, fl(o4)) ds

— ZZ i+1[H5DsDG(sf](Js))dS
:/OO[HSDSDU(Sf](Us))dS

0
The latter expression does no longer depend on the fact that (H;),, is a step pro-

cess and we can keep it as a new definition of the annihilation integral fooo H,dA,.
Let us be more precise. For a given adapted process of operators (Hy),., we

13
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consider the quantity

Ao ™ [ CH.D.Dy, fl(0) ds. (L6)

We define the annihilation integral of (H),s, to be the operator A(H) whose
domain is the set of f € ® such that f belongs to NsIEs(Dom H,), such that
S = [HSDSD,,(sf](US)) is Lebesgue integrable for a.a.o and such that the above
expression [A(H)f](o) is square integrable in o. The value of A(H) on its domain
is then given by (1.6).

The creation, conservation and time integrals of (H¢),~ are defined following
the same procedure. We obtain respectively -

[AT(H) fl(o) € Y [H.P, Dy, fl(oy)) ds (L7)
[ACH) fl(0) € Y [H,D, Dy, fl(0,)) ds (L8)

def

T fo) ™ | CIH.P.D,, fl(0,)ds (19)

with the obvious corresponding definitions for domains and values.

This new definition of quantum stochastic integrals can seem rather compli-
cated and difficult to work with. The main interest of this definition is that it
gives very satisfactory answers to several problems in quantum stochastic calcu-
lus. The first point is that this definition extends all the previous ones (Hudson-
Parthasarathy (denoted H-P), Belavkin-Lindsay (denoted B-L, see [Bel] and [Lin])
and Attal-Meyer (denoted A-M, see [A-M]). It keeps all the advantages of the pre-
vious definitions without any of their inconvenients. Let us first show how our
definition extends B-L’s definition and thus H-P’s one.

For a given adapted process of operators (H;),- define the B-L domains :

DomprA(H)={fe€ F;f € Dom VN, V,f € Dom H, for all s and
s+ H,V,f is Skorohod integrable}
DomprAY(H) = {f € F; f € Dom H, for all s and
s+ H,f is Skorohod integrable}
DomprA(H)={f € F;f € Dom\/N, Vsf € Dom H, for all s and

/ |H, f|| ds < oo}
0

Domp;T(H) ={f € F; f € Dom H; for all s and / ||Hs f]| ds < oo}
0

Theorem 1.8 Let (H;),-, be an adapted process of operators on ®. Then

1) Dompr, A(H) is included in Dom A(H) and on the smallest domain one has
AH)f =S(HV.f);

ii) Dompy, AT(H) 15 tncluded 1 Dom AT(H) and on the smallest domain one
has AT(H)f = S(H.f);

14
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iii) Dompr, A(H) s included in Dom A(H) and on the smallest domain one
has A(H)f = fooo H,V fds;

iv) Dompy, T(H) is included in DomT(H) and on the smallest domain one
has T(H)f = fooo H,fds.

Proof
An element f € F belongs to Dompy AT(H) if and only if f belongs to
Dom H for all s and f?‘zseﬂ[ﬂsf]((f\s)‘z do is finite. But by adaptedness this

is equivalent to

/ N [H.P.D,, fl(oy)| do < .

P sSEo

This clearly proves that Dompgy, AT(H) is included in Dom A(H) and that the
two definitions of the creation integral coincide on the smallest domain.

In the case of the conservation integral, if f € DomV and V,f € Dom H,
for all s, we have [H;V f|(o\s) = [HSPSD,(SVSf](US)). But the operators V, and
D, commute for a.a.u > s; this property can be easily seen from the definitions
of both operators, but it is interesting to note that it i1s a consequence of the fact
that Vg is a s-adapted operator in A-L’s sense. This gives [HSPSDU(SVSf](US)) =
[HSPSVSD,,(S f](as)) = [HstDa(sf](as) ). We conclude in the same way as for the
creation integral.

The case of the annihilation and time integrals are treated almost in the same
way. [

As one knows that B-L’s definition extends H-P’s one (cf [Lin| or also [Bia])
we obtain the following (a direct proof can be found in [A-L] Theorem 7.1).

Corollary 1.9 Let (Hy),~, be an adapted process of operators defined on a co-
herent vector space E(M) for an admaissible M. Then E(M) is included in the
domains of A(H), A"(H),A(H) and T(H). On EM), the quantum stochastic
integrals A(H), AY(H), A(H) and T(H) coincide with the corresponding H-P’s in-
tegrals. [

I.1.4 Complete solution of A-M’s equations

The most satisfactory consequence of A-L’s extension of quantum stochastic
integrals i1s the way it solves all the open problems which were occuring in A-M’s
definition. Let us recall about this latter.

In [A-M] is developped an extension of Hudson-Parthasarathy’s quantum sto-
chastic calculus. This extension has an important probabilistic source of inspira-
tion. The underlying idea is as follows. Let f be an element of @, let (Hy),5,
be an adapted process of operators on ®. Let us consider formally the quantum
stochastic integral T' = fooo H; dXs where dX denotes any of the four basic inte-

grands dAt,dAI,dAt or dt. Forall t € RT let fi = Pif and let Ty = fot H,dX,.

The vector process (ft),~q is a vector martingale in ® (in the sense P;f; = f, for

15



S. Attal

s <t), and one has the representation

ft=P0f+/ D, f dy..
0

The process (T¢),~, is an operator martingale when dX = dA, dA" or dA (in the
sense IEs(T;) = Ts for s < t), it is a time integral when dX; = dt; hence (T}) ;>0 can
be considered as an operator semimartingale on ®. When applying the operator
semimartingale (%), to the vector martingale ( f;),~, we formally ask the result
to be a vector semimartingale in ® which satisfies a Ito-like formula

d(Tife) = (dTy) fo + To(dfs) + (dT,)(dfy)
= (HedXy)fe + Ti(Di f dxy) + (Hy dX¢)(Dy f dxy).
But in the tensor product structure ® = ®,; @ ®(; this gives
d(Tife) = (H@dXy)(fe @ 1) + (Ty @ I)(Def @ dxe) + (He @ dX¢) (Do f @ dxy)
=Hift @dXi 1 +TiDif @ dxe + Hi Dy f @ dX¢ dx:.

We now need a formal table giving the values of dX;1 and dX;dy; in the four
cases. This table can be obtain by computing (X4, — X¢)(xt4+r — x¢) with the
formulas (1.2)-(1.5) and passing to the limit when % tends to 0. We obtain

dAT1=dy, dAldy =0
dA;1=0 dA¢dx; = dy:
dA;1=0 dA; dy, = dt
dt1=dt dt dy, = 0.

This finally gives

HtPtdet let = AI
HD.fdx; if Xy =M\
Htthdt lf Xt - At
H,P fdt if Xy =tI.
Note the following general result. If H is a t-adapted operator on ® and f is a
vector of ® we have, for a.a.u > t, D,H(f — Pif) = HD,(f — Pif) = HD,f
and, for a.a.u < ¢, D,H(f — Pif) = Dy(I — P)Hf = 0. Furthermore we have
PoH(f —Pif) = Po(I — P)Hf = 0. By the Fock space predictable representation
property (Theorem 1.3) we conclude to the identity

A(f-Pf) = [ AD.fdv.
Adding this remark to (1.10) leads to the following equation
Jo HoPof dx,  if X, = Al
Jo HsDsfdys if Xs = Ay
[JH,D,fds if X, = A,
JSH,Pfds  if X, = sl.

d(Tifi) = TyD.f dx: + (I.10)

th :/ Ts/\tDsf dXs + (Ill)
0
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This equation is the basis of A-M’s definition of quantum stochastic integrals. In-
deed, one defines the process (T}),,, to be the stochastic integral process fot H,dX,
on a domain D if for all f € D equation (I.11) is meaningful (from the domain
and integrability point of view) and holds true.

This presentation of the quantum stochastic integrals has many advantages.
First, it is shown in [A-M] that it extends Hudson-Parthasarathy’s definition that
is, an adapted process (%), is solution of equation (I.11) on a coherent vectors
domain if and only if it is the Hudson-Parthasarathy stochastic integral process
fot H,dX;. Secondly, this new definition admits no arbitrary restriction in the
domains of the operators. Indeed, in some good cases, equation (I.11) may be valid
for all f € ®; this is not the case with H-P’s or B-L’s definitions because, even if
all the operators involved are very good, their quantum stochastic integrals have
their domains limitated to £(M) or Dom /N respectively. This means that the
A-M’s integrals are the first one to allow some quantum stochastic integrals to be
defined everywhere on @. As a consequence a large familly of quantum stochastic
integrals are composable and the quantum Ito formula can be obtained for actual
composition of operators. This leads to the identification of an algebra of quantum
semimartingales ([Atl]) and many further developments that are explained in the
next section. Thirdly (and this is a rather personal point of view), A-M’s definition
uses [to integrals and the “derivatives” Dy on @ instead of the Skorohod integrals
and the Malliavin gradient as in B-L; Ito stochastic is more pleasant to use as it
leads to nicer isometry formulas than Skorohod calculus.

But A-M’s definition suffers of one very important defect: 1t is implicit. We
have lost the explicitness of B-L’s definition. Indeed equation (I.11) gives the
process (Tt),~o as a solution of a kind of stochastic differential equation. Thus,
in full generality, if one is given an adapted process (Hy),s, one does not know
neither if (I.11) admits a solution, nor if the solution is unique, nor on which
maximal domain it is valid. Only some sufficient conditions are given in [A-M].

This long discussion has for only target to focus the reader’s attention on
the important contribution of A-L’s integrals to solve the above defects of A-M’s
integrals. Indeed, it appears that A-M’s equations (1.11) always admit a solution
which is unique and we are able to identify the maximal domain of the solution;
this solution is A-L’s corresponding stochastic integral. Let us now express all this
in more rigorous terms.

For a given adapted process of operators (H;),-, we have the A-L’s stochastic

integrals A(H), AT(H),A(H) and T(H) with their maximal domain as defined
in previous subsection. It is useful here to slightly restrict these domains. The
restricted domain of A(H) (resp. AT(H)) is the intersection of its maximal domain
with the set of f € ® satisfying fooo ||H,;,D,;,f||2 ds < oo (resp. fooo ||1T{3]:’3f||2 ds <
o0). The restricted domain of A(H) (resp. T(H)) is the intersection of its maximal

2
domain with the set of f € ® satisfying fp {fooo‘[Hstf](a)‘ ds} do < oo (resp.
2
f’p |:f0 HHS-PSf]<O->‘ dS:| do < OO)

17



S. Attal

In the following theorem we make use of the word mazimal for operator pro-
cesses which satisfy some properties; this maximality has to be understood for the
following partial order on operator processes: two operator processes (S¢),s, and
(T%),>q are such that (S¢),5q C (Tt),5q if S¢ C Ty for all ¢ in the sense of operators
extension. B B

Theorem 1.10-Let (Hy),», be an adapted process of operators on ®. Let L(H)
denote the set of adapted processes of operators (Ty),~o on @ satisfying

1) f € DomTy if and only of 1) Dsf € DomTsnt for a.a. s;
i) Dof € DomH, for a.a.s <t

t
im/HﬂmmﬂummJWM<m;
0

2) for all f € DomT; one has

o0 i
th :/ Ts/\t-Dsf dXs +/ Hstf dXs
0 0

Then L(H) contains one and only one mazimal element which is the A-L stochastic
integral process (Ay(H)),>o with its restricted domain.

Let AT(H) denote the set of adapted processes of operators (Tt),~, on ® sat-
18fying -
1) f€DomTy if and only if 1) Dsf € DomTsp¢ for a.a. s;
i) Psf € Dom Hy for a.a.s <t

1
m/nﬂmmﬁuwwmﬁﬁ<w
0

2) for all f € Dom T} one has

[e%¢] t
th:/ TsMDSdeS-I—/ H,P,f dyxs.
0 0

Then A'(H) contains one and only one mazimal element which is the A-L stochas-

tic integral process (AI(H))DO with its restricted domain.

Let A(H) denote the set of adapted processes of operators (Ty),~, on ® satis-
fying B
1) f € DomTy if and only if 1) Dsf € DomTsp¢ for a.a. s;
ii) Dyf € DomHs for a.a.s <t

t
iif) / | T, D, f||” ds < oo
0

v) (HsDsf),., s Lebesgue integrable;
2) for all f € DomT; one has

[e%¢] t
th:/ TsMDSdeS-I—/ H,D,fds.
0 0

18
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Then A(H) contains one and only one mazimal element which is the A-L stochastic
integral process (A¢(H)),~, with its restricted domain.

Let T(H) denote the set of adapted processes of operators (Ty),~, on ® satis-
fying
1) f € DomTy if and only if 1) Dsf € DomTsa¢ for a.a. s < t;
i) Psf € Dom H, for a.a.s <t

t
iif) / |TsD, f||” ds < oo
0
iv) (HyPsf),., 15 Lebesgue integrable;
2) for all f € Dom T, one has

o0 t
th = / Ts/\tDsf dXs + / HSPSf dS.
0 0

Then T (H) contains one and only one mazimal element which is the A-L stochastic
integral process (Ti(H)),~o with its restricted domain.

Proof

We are going to present the proof in the case of the annihilation integral only
as 1t contains all the difficulties. Let us prove that the A-L stochastic integral
A(L) is an element of A(H). We have

/O Ip, (0) [ H, Dy Doy, fl((0ot).) ds
= /0 1p, (J)]l[oﬂf](s)[HstDC,(s D; fl(og)) + 1p, ()¢, o0 (8)[Hs Ds f](o0t) ds

= /Ooo U0,4(s)[Hs Ds Do, Di f1(04)) + Lyt oo (s)[De Hs Dy f)(0) ds. (1.12)

We have that f belongs to Dom A(H) if and only if the left hand side of (1.12),
which is equal to [D;A(H)f](o), is square integrable in both ¢ and t. Thus f
belongs to the restricted domain of A(H) if and only if each of the two terms of
the right hand side are square integrable in both ¢ and ¢. But the right hand
side is then equal to [A«(H)D:f + ftoo D.H;D,f ds](o) which is actually equal to
[A((H)D.f + D, fooo H,D,f ds](co). Furthermore we have

PoA(H)f = P, /OO H,D,f ds.
0

All this together with the Fock space predictable representation property gives the
annihilation A-M equation for A(H). We have proved that the A-L integral process
(A{(H)),>q on its restricted domain is an element of the set A(H) of solutions to
the annihilation A-M equation.

Now let us prove that any element of A(H) is included in (A¢(H)),5,. Let
(Tt);>, be any element of A(H). Let f be an element of Dom T} then by 2) one
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has, for any o = {t; <ty <...<t,} €P

Tof)(0) = [Tfl(t1, - tn) = [TomiDa f(trs - tn1)+ / (H, D, fl(t1, . 1) ds.

But Dy f is an element of Dom Ty a¢, hence one can apply the same kind of
identity to the term [Ty A¢Dy, f](t1,...,tn—1). Iterating this procedure we get

Tfl(t, ) = [TthDtl...Dtnf](Q)-l—/O? (H,D.D, ... Dy, f](t1) ds

+...+/ [HsDsfl(t1,...,tn)ds.
0

From the equation 2) giving Tt g for a general g € Dom T; we always have [Ty g](0) =
fOt[Hstg](@) ds. Putting to = 0 and ¢,,41 = t we finally get

n tip1 Nt
[Tif](t1s . tn) = Z/ [HsDsDy,,, ... Dy, fl(t1,...1;) ds.
i=0 V0

Note that in the latter identity, because HsDsg is always an element of @), the
integral between 0 and #;11 At is actually an integral between ¢; At and t,44 A £;
this holds for all + € {0,...,n}. Consequently, the integrals appearing in the
previous sum are based on disjoint and complementary intervals. This finally
gives

n tip1 At t
+fllo) = DD, ogy)ds = sDsD, ggy)ds. [ |
T.f](0) g/ [H.D.Dy, fl(7s) /O[HDD(st )

We have proved that A-L’s definition of quantum stochastic integrals is the unique
and maximal solution of A-M’s equations.

I.2 Quantum semimartingales

I.2.1 An algebra of quantum semimartingales

In A-L’s definition (or A-M’s as we know that they are equivalent) of quantum
stochastic integrals there may happen that a process (T}),~ of bounded operators
admits a representation of the form -

4 i i i
Tt:/ HSdAs—}—/ KSdA‘;—}—/ LSdAs—i—/ M, ds
0 0 0 0

on the whole of the Fock space ®. Hence two such processes can be composed and
we obtain the same Ito-like integration by part formula as in [H-P].

Theorem I1.11 - Let

t t t t
Tt:/ HsdAS—i—/ I&’SdAI+/ LSdAs—i—/ M, ds
0

0 0 0
t t t t

T = / H' dA, + / K'dAl + / L' dA, + / M ds
0 0 0 0
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be two processes of bounded operators whose integral representation is valid on all
®. Then the process (TyT}),~o also admaits an integral representation on all ® and
this representation is given by

t t
T = / (H,T! + T.H' + HH'|dA, + / (KT + T.K' + H,K'] dA'
0 0
t t
+/ [LsT! + TsL! + L H!] dAS+/ (M T! + T,M, + LyK!]ds. (1.13)
0 0

Proof

To get this Ito formula it suffices to write the A-M equations satisfied by
T/f for a f € ® and then to develop the A-M equation for TyT/f. It is almost
straightforward and it is not worth developing pages of computations here as this
Ito formula is finally just an extension of the well-known Hudson-Parthasarathy’s

one (cf [A-L)). |

This Tto formula allows to identify a useful class of adapted processes of oper-
ators. Define S to be the space of adapted processes (T}),~, of bounded operators
on ® admitting an integral representation B

t t i i
Tt:/ HSdA5-|-/ KSdAZ—l-/ LSdA5+/ M, ds
0 0 0 0

on a coherent vector space £(M), with all the operators H,, Ky, Ly, My beeing
bounded and satisfying:

s — || Ms]| is locally integrable,

s = ||Ks]| and s — ||Ls|| are locally square integrable,

s = ||Hs|| is locally bounded.

Theorem 1.12—- Every element (T%),~, of S has its integral representation which
can be extended to all ®. The space S is a *-algebra under composition and adjoint

mapping.

Proof

To show that the integral representation of (T3),-, can be extended to all ®
we use the A-M point of view. We know that (T}),., satisfies

o0 t t t
T,f = / ToniDof dys + / H.D.fdy. + / K, P, fdxs + / L,D,fds
0 0

0 0

t
+ / M,P,f ds (1.14)
0

for all f € E(M). It is easy to check that ¢ — ||T;|| has to be locally bounded (in-

deed, this is true for t — || fot M, ds|| and T. — [, M, ds is an operator martingale).
Let us denote by By(f) the right hand side of (I.14). We have

t t
1B < 5[supl TP +sup B + [ IELIP ds+ [ |ILJ s
s<t s<t 0 0
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w [ eia] i (L15)

Let f € ® be fixed. Take a sequence (f,), of elements of £(M) converging to f.
We have that Ty f, converges to Ty f and, from (I.15), that By(fn) converges to
By(f). Thus (I.14) is valid for all f € ®. This means that the integral representa-
tion of (%), is valid on all ®.

Any two elements (T¢);> and (T}),5 of S are thus composable. The quantum
Ito formula (1.13) gives the coefficient of the integral representation of (T3TY}),-
For example the coefficient of ds is TsM! + MT! + LyK'. As ||T.|| and ||T'|| are
locally bounded, as ||M.|| and ||M!|| are locally integrable, as ||L.|| and ||K'|| are
locally square integrable we get that the coefficient of ds is locally integrable. In

the same way for the others coefficients we get that (T3T}), is an element of S.
The stability of S under the adjoint mapping is clear since the adjoint process
(T}),>o admits on £(M) the representation

i i i i
Ti‘:/ H! dAs—l—/ L: dA§+/ K! dAs+/ M; ds. n
0

0 0 0

We dispose of a very usefull algebra of quantum semimartingales § on which a
quantum stochastic calculus can be developed. But defining S as previously leads
to inconvenients. Indeed, this definition is based on the integral representation of
(T%) >0 and the regularity of its coeflicients. These properties are difficult to check
in general; it would be worth having a characterization of § based on the process
(T¢);>( alone. This is achieved in the following way.

An adapted process of bounded operators (T¢) ;>0 18 a regular semimartingale

of operators if there exists an absolutely continuous measure p on R™ such that
for all f € (M) (for some coherent space E(M)), all r < s < t one has

TP f = ToPofIP < 1P 1P a(ls, 1) (1.16)
1T} P f = T2 PoAI? < |IP 1P (s, 4]) (1.17)
IP.TP,f = TP fl] < 1Pl u([s, ). (118)

Theorem 1.13 - An adapted process of bounded operators (Ty),~, is an element
of the algebra S if and only if it is a reqular semartingale of operators.

Proof

If (T}),>( is an element of S, norm estimates such as (I.15) easily give that
(Tt),>¢ is a regular semimartingale. Conversly if (T}),s is a regular semimartin-
gale of operators the inequality (I.18) actually means that the vector process
(TyPrf);>, is a Hilbertian quasimartingale in the sense on Enchev (cf section
1.4). That is, for r < s < t, one has the representation

t
TtPrf_TSPrf:mt_m5+/ §udu
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for a vector martingale (my),~, and an adapted process of vectors (£u>u>r satis-
fying ||€u]| < ||Prfllp'(u), where 1 is the derivative of u. We thus have

PSTtPrf—TSPrf:/ P, du.

If (T}),>o had an integral representation we would have from A-M’s equation

t
PsTtPrf—TsPrf:/ P, M, P, f du.

Hence we can identify the time coefficients M; of (Ty),5,. The norm of M is
dominated by p'(t) so it is integrable. Subtracting fot M ds to T; we obtain a
martingale of operators satisfying the first two inequalities (I1.16) and (1.17). That
is, we obtain a regular martingale in the sense of Parthasarathy-Sinha ([PS1]).
Combining their result and Meyer’s treatment of it ([Me2]) we get the complete
integral representation of (T}),~, with the good estimates for the coefficients. The
process (T}),5, is an element of S. [

[.2.2 Quantum square and angle brackets

The algebra § is a good departure point for developing a quantum stochastic
calculus close to the classical one. For any elements T, 7" of § one can define two
new adapted processes, the integrals of T with respect to T' :

t t t i i
/ T, dT! < / T, H! dA, + / T,K' dAT + / T,L' dA, + / T, M! ds
0 0 0 0 0

t t !
[ [ [ xmass [ pnaas [ annas
0 0 0 y

These processes are not in general elements of S. Indeed, they admit an integral
representation with coefficients satlsfymtg the same norm conditions as elements
of &, but the operators fo TsdT! and f dT! T, themselves have no reason to be
bounded So, in general, the integrals deT’ and [dT'T are defined only on
E(M). But note that, because of the norm properties of their coefficients, their
integral representation can always be extended to the whole of their domain.

We define &’ to be the space of adapted processes (T%),5, on ®, admitting an
integral representation on £(M) such that the coefficients of the representation
satisfy the same conditions as in the definition of §. The only difference between
the definitions of S’ and S is that in S’ the process (T}),sq is not necessarily made
of bounded operators. Thus S is a subspace of &’ (actually, surprising as it may
be, there exists a very simple and natural bijection between S and S’, cf [At2]).

We have seen that if (Tt)t>0 and (T )t>0 are element of S we have that f TdT1’
and [ dT' T are element of §'. Tt also appears that S’ is a natural space for defining
the quantum square and angle brackets operator processes.

Let (T,«)t>0 and (T,«)t>0 be two elements of §’. Define the square bracket of T
and T" to be the operator process

t
[T, T'] tdﬁf/HH’dA —|—/HI dAT + /LSH;dAS—l—/LIx ds.
0
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Define the angle bracket of T and T' to be the operator process
t
(T, 7", & / L,K!ds.
0

It is clear that [T,T’] and (T,T") are both elements of S’.

In chapter IT we relate these quantum brackets to the usual brackets of clas-
sical stochastic calculus. But from the definitions one can immediatly check that
the quantum brackets satisfy the usual properties of the classical square and angle
brackets. This is expressed in the following proposition. Note that any element of
S’ is the sum of an operator martingale (the sum of the dA, dA" and dA terms)
and a “finite variation” part (the time integral).

Proposition 1.14— Let S, S’, S be elements of S', let T be an element of S. We
have the following properties for their non-commutative brackets.

1) [S,5'] and (S,S") depend only on the martingale part of S and S'.

i) If S and S" are (operator) martingales in S, then SS"—(S,S") and S5’ —
[S, 5] are also martingales.

iii) The quantum brackets are associative that is, for ezample [S, [S’,S”]] =
S, 5, 5"].

iv) We have [[TdS,S'] = [Td[S,S'] and [S', [dST] = [d[S",S]T. The
same identities hold for the angle bracket.

v) We have the following adjoint relations
5,57 =[S, 5]
(8,8 = (8", 5%). |

There 1s one more important point to be discussed. In classical stochastic
calculus the square bracket of two semimartingales is the limit of the associated
quadratic variations, the angle bracket is also the limit of the quadratic varia-
tion but conditionned at proper times. One can wonder if the same properties
hold for the quantum brackets. Furthermore, the algebra & admits an intrinsic
characterization (Theorem I.13) that is, a characterization which depends on the
processes (T}),5, themselves and not on their integral representation. It is thus
disappointing to have a definition of the quantum brackets which is based on the
integral representation. Getting a characterization of the brackets through limits
of quadratic variations makes the connection with the classical theorems and at
the same time gives an intrinsic characterization of the quantum brackets.

Theorem I.15-Let (St),~o and (Tt),s, be two elements of S. Let t be fized in
RY, let {0 =10 <7 < ... <t" =1t} be a sequence of subdivisions of [0,t] whose
diameter tends to 0 when n tends to +o0o. Let M be any admuissible subspace of
L%b(R-I_), the space of locally bounded square integrable functions on R™.
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Then, on E(M), the square bracket [T, S], is the weak limit when n tends to
+o00 of the quadratic variations

>_(Tiy, = Ty)(Styy, = Siy)

2

and, on ®, the angle bracket (T, S), is the weak limit of the conditioned quadratic
variations

> P (Tiy,, = Te)(Sy,, = Suz) Py

The proof for the angle bracket is straightforward, whereas there are rather
long and complicated estimates to be developed in order to prove the convergence
of the quadratic variations to the square bracket. It is not interesting to develop
them here and we refer to the original reference [At1]. |

1.2.3 Functional quantum Ito formulas

With the development of the bracket language the integration by part formula
(I.13) can be written in a simple way. Indeed, for all S and T elements of S we
have

t i
StTt:/ SsdeJr/ s, T, +[S, T, (L.19)
0 0

As § is an algebra we can first consider polynomial functionals of elements of S.
Working by induction on (I.19) we obtain the following result.

Proposition 1.16 - Let (T}),., be an element of S. Let n € IN be fized. Then
one has -

t t t t
Tn = / Ho(s) dA, + / Ko (s)dAT + / Lo(s) dA, + / Mo(s)ds  (L20)
0 0 0 0
where
Hu(s) = (Ts + Hy)" = T
Ku(s)= Y TPE(T, +H,)"

ptg=n—1

Lo(s)= Y (Te+H)'L,T!
ptg=n—1

Ma(s)= Y T’M.T!+ Y — TPL(T.+H.)'K.T). u
ptg=n—1 ptgtr=n—2

We thus dispose of a quantum Ito formula for polynomial functions. The
natural question now is whether the algebra & is stable under analytic functions.
The answer is positive and this result is due to G. Vincent-Smith [ViS]. For getting
this result he uses the functional calculus on operators for analytic functions. Let
us recall it.

Let T be a bounded operator on a Hilbert space. For all A in the resolvent
set of T, let Ry(T) denote the resolvent of T at the point A. Let f be an analytic
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function on the disc D(0, R) where R > ||T||. Then the operator f(T') is defined
by

A(T) = 74 FVRA(T) dA

where v is the circle C(0,r) with R > r > ||T|| and fv is 7= times the contour
integral round ~.

Theorem 1.17 - Let (Ty),5, be an element of S. Let T € R" be fized. Let
p = max{||Ty||, ||Tt + H¢||;t < T}. Let f be an analytic function of D(0, R) for
some R > p. Then (f(Tt)),>q s an element of S and its integral representation
for t < T 1is qiven by -

f(Tt):f(0)+/0 Hf(s)dAs-l—/o Kf(s)dAZ-l—/o Lf(s)dA5+/0 Mj(s)ds (121)
where

Hy(s) = f(Ts + Hs) — f(T5)
Ky(s) = j[ FO(RA(T) Ky RA(Ts + Hy)) dX

L(s) =  FOV(RA(T. + H.) L RA(T.)) )
M) = f FONRAT.) M. BA(T.) i

+ f FO(RA(Ty) Ly RA(T, + Hy) Ky RA(Ty)) dA
.
and 7y 1s the circle C(0,r) with R > r > p.

Proof

Let us describe in few words Vincent-Smith’s proof. One observes that formula
(I.21) coincides with (1.20) for f beeing a polynomial function. One obtains the
general formula by passing to the limit on polynomial approximation of analytic
functions. Using the usual norm estimates on the resolvants we get that the
coefficients of (1.21) satisfy the condition for (f(T%)),so to be an element of S. W

When operators are self-adjoint it is known that functional calculus can be
developed further. Let T' be a self-adjoint bounded operator on a Hilbert space.
Let f : IR — IR be a Lebesgue integrable function whose Fourier transform f is
also Lebesgue integrable. Then one defines f(T') by

F(T) = /IR F(p)e®T dp.

Define the space C2T def {f € Ll(R);pzj?(p) € L'(IR)}. Then for function f in

loc

C2T Vincent-Smith also obtain a very satisfactory result about the algebra S. We

loc
give the result without proof.
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Theorem 1.18 - Let (T}),~q be an element of S made of self-adjoint operators.
Let B

i
T, = / H,dA, + L,dA, + L* dAl + M, ds
0

be its integral representation (the operators Hy and M, have to be self-adjoint).
Let f be an element of Cl%)t' Then the process (f(Tt>>t20 1s an element of S made
of self-adjoint operators and whose integral representation is given by

t
T, = / Hy(s)dAs(s) + Ly(s)dAs + L3(s) dA + My(s) ds
0

Hy(s) = f(T, + H,) — f(T.)

Lils) = /R
/R

I.3 Chaotic expansion of operators

ﬁ

zp(l u)TSL ipu(Ts+Hy) du} dp

—
g
@

5\

/ 1p(1—u)T M, e1pu’T' du}dp

o

+

)
nfio)
)

/ / uezp(l u)Ty L,e tpu(1—v)(Ts+H, )L* ipuvTy du d’U} dp [
0

This section is almost independent from the rest of the article. Some parts
are rather technical and can be skiped at first reading.

I.3.1 Maassen kernels as iterated integral representations

The second kind of probabilistic contribution to quantum stochastic calculus
we want to present concerns Maassen kernel representation of operators on Fock
space.

Maassen kernels are an alternative to integral representation of operator on
Fock space. They have been defined under their first form with two arguments
by Maassen [Ma2] and under their definitive form with three arguments by Meyer
[Me3]. Maassen kernels are to the quantum stochastic calculus as what chaotic
expansions are to the classical one. That is, a Maassen kernel is formally an oper-
ator T on ® which admits a representation as a series of iterated non-commutative
stochastic integrals of scalar operators with respect to the creation, annihilation
and conservation processes. Using the same kind of Guichardet notation as before,
this can be written

T:/ T(a,3,~) dAL dAg dA,
’])3

where for X = A", A or A and for 7 = {t;,...,t,} the notation dX, means
dXy, ...dXy,.

This has no rigourous meaning, in particular this form does no longer respect
the adaptedness of the integrated processes and the convergence of the series has
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to be studied. But one can formally describe how such an operator acts on a vector
of the Fock space. It suffices to determine formally the action of an operator of
the form dA, dAg dA. on an element f of the Fock space of the form dxy, ... dxx, -
One obtains (cf [Me3]) that the image T'f of a vector f € ® under T has the

following chaotic expansion

T = [ S Fapn o+ 5 4+) d 122)
P atptr=c

Although this is not rigourous, the latter identity is for some “good” operators
and some “good” vectors. This is the rigourous definition of Maassen and Meyer.
An operator T' from Fock space ® to itself is said to have a Maassen kernel if
there exists a set-function T on P? (in fact T needs only to be defined on pairwise
disjoint a, 3,4 in P?) such that for a dense subset of vectors f of ® one has (1.22)
to be well-defined and to hold.

In his article Maassen develops the theory of such kernels. It is very satis-
factory as under some conditions they form a #-algebra of operators (which are
not all bounded operators). The formulas for composition and adjoint are sim-
ple. Computations with such operators are very simple and explicit. But this
theory suffers from an important defect: one does not know any general criterion
for a given operator T on ® to admit such a kernel representation. One knows
only a list of examples (operators of multiplication by a random variable in some
probabilistic interpretation of ®, some solutions of quantum stochastic differential
equations,...). This lake of criterion makes the theories of quantum stochastic inte-
grals and Maassen kernels beeing disconected, whereas they should not be. What
we want to present here is an idea which is hoped to give a satisfactory criterion
for an operator to admit a kernel. For the moment this idea applies only to a class
of operators, the Hilbert-Schmidt operators on @, but there is some hope that the
A-L point of view on quantum stochastic integral may make the idea apply to a
larger class of operators. Let us explain the idea and its probabilistic inspiration.

Consider for example the Wiener space (£, F, P) and its canonical Brownian
motion (Wt)t>0. One knows that square integrable functionals of (Wt)t>0 admit
a chaotic exp;nsion. That is, any random variable f in L?(Q) can be reﬁresented
as a series of iterated stochastic integral of deterministic functions with respect to
(Wi),5>0- That is, a representation of the form

- [ee]
f:E[f]+Z/ Faltt, .o tn)dWy, ... dWy,.
o1 /0<t <<ty
One way for proving the chaotic expansion property of square integrable Wiener
functionals is to iterate the predictable representation property of (W),~,. Indeed,
the Brownian motion has the predictable representation property that is, every
element f of L*(Q) can be written

f = Bl +/0 v, div,,

where ¥ is a predictable process in L*(Q2, F, P). So, for almost all s, ¥, is an ele-
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ment of L?(Q, F, P). Then one can apply the predictable representation property
again and get

U, = E[T,] +/ v AW,
0

for a predictable process (\I/g’u)u<s. Inserting this identity in the representation

of f, one obtains

leE[fH/Ooo E[Y,] dWs+/Ooo /Osq/;udwu dW,.

Repeating the procedure we obtain

+/ E[\I/s]dW3+/ /]E[\I/;’u]qudWs
0 0 0
+/ //\Ilg’deUqudWS.

0 0 0

One can iterate this operation arbitrarily many times. One then obtains two terms
in the representation of f: a sum of iterated stochastic integrals of deterministic
functions and an iterated stochastic integral of some predictable process. The first
term constitutes the beginning of the chaotic expansion of f, the second term
tends to 0 when one iterates the procedure. In this way we obtain the chaotic
representation of f.

We want to apply the same idea to the non-commutative case. For this
section we shall change our notations in order to simplify the equations. The
conservation process (A, )t>0 shall be denoted (A°)t>0, the annihilation process

(At)t>0 is denoted (A} ),~, the creation process remains unchanged. Suppose that
there exists a family 7 of operators T on ® which admit an integral representation

T=MN+ / H; dAS
E€{°7Ta

on a certain domain D and such that all the coefficients H; belong to the same
family Z. Then one can represent each of the operators H in the same way:

HE =M1+ ) / He: dAs .
€ 6{071-1
Coming back to the representation of T we get

T=M+ Y / NTAAS+ ) / / HES dAS dAS.
e€{o,t,— e, e’ €{o,t,—}
One can iterate this procedure infinitely many times. We see that at step n the
representation of T' can be decomposed into two parts: the first part consists in
a sum of iterated integrals of scalar operators with respect to the three quantum
noises, the second part is a sum of order n iterated integrals of some operator
processes. Mimicking the probabilistic case, our hope is that the second term
should tend to 0 when n goes to +o0o0. What would remain is the expression of
T as a series of iterated quantumn stochastic integrals of scalar operators; that is,
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the non-commutative chaotic expansion of T. But from this expression it is not
difficult to recover the Maassen kernel of the operator, it is just a question of
reordering and of some analysis to make the series converging (cf [A-H]).

1.3.2 The case of Hilbert-Schmidt operators

The idea developed above applies very well to Hilbert-Schmidt operators. It is
not very difficult to show that Hilbert-Schmidt operators admit a Maassen kernel,
independently of our procedure. This result was already proved in [HLP]. Let us
show a simple proof.

Theorem 1.19 - Let H be an Hilbert-Schmudt operator from @ into ®. Then there
exists a mapping H from P? into € such that for all f € ®, all o € P we have

Ao = [ Y B+ 5+ dn

a+fB+y=0

Proof

As @ is isomorphic to the space L?(P), where P is endowed with the o-finite
measure described previously, H is then a Hilbert-Schmidt operator from L?(P)
to L?(P). Therefore, H admits a kernel representation that is, there exists a
mapping ¢ from P? into IR such that fpg o(a,3)*dadB < oo and such that for
all f e L*(P)

HA(0) = [ oo ) dn

P
Or else

Hf)(o) = /P S™ Lpaca) ela 1) fu + ova) dp

aco
The Mobius inversion formula gives ZﬂC7 (—1)|ﬂ| = l{y=py for all y € P. So if
one puts H(a, 3,7) = (=1)/"l ¢(a,7) we get

H (o) = /? SO () e, fl + ora) dp

aCco Bco\a

= [ 3 % Alesansnt o)

ocCca Bco\a

=/ Y H(a,Bop)f(u+B+7)dp. L
P a+B+vy=0o

So Hilbert-Schmidt operators do admit a Maassen kernel. In [At3] it is proved that
the integral representation iteration procedure works perfectly well in this context;
that is, one can prove that every Hilbert-Schmidt operator admits a Maassen kernel
by iterating its integral representation. We recover the kernel described above, but
this latter can be completely described from the operator itself. Let us resume the
main results of this article.
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A martingale (H;),~ of operators from ® to ® is an Hilbert-Schmidt martin-

gale if, for all t € R™, the operator Hy, restricted to ®;, is an Hilbert-Schmidt
operator. We denote by || - the Hilbert-Schmidt norm of operators.

s

Proposition 1.20- Let t € [0, +oc] be fized, let Hy be a Hilbert-Schmadt operator
from @4 to ®4. Then Hy admits a non-commutative stochastic integral represen-
tation, in the extended sense on all ®, of the form

H; = Py[H 1] /HOdAO /H dA7 —|—/HTdA

where (HY), ., is the martingale associated to Hy and where, for ¢ = — 1, for
almost all s < t the operator HE is Hilbert-Schmidt from P, to @y and satisfies

t 2 2
Jo WHZI g ds < ([ Hqll;

Proof

This proposition is taken from [PS1]. It is an application of their integral
representation theorem for regular martingale of operators. Note that Hilbert-
Schmidt martingales are elements of the algebra S of regular semimartingales.

From this proposition one sees that the family Z of Hilbert-Schmidt operators
on P is a family which satisfies the properties described in previous subsection
that is, it is a family of representable operators such that the coefficients of the

representation all belong to Z. So one can apply our iteration procedure.
Let E, = {t,0,—}". For an element E = (ey,...,¢,) of E, we denote by

L( R

no(E) the number of elemenf@ ¢; which are equal to . In the following we use

families of operators H; "', indexed by E, x P,. We use the following notation:

3 / P dAl < Z / / / Hirwf dAT . dAS.

E€E, e1yeen €4F,0,—

By iteration of Proposition [.20 one easﬂy obtains the following.

Proposition 1.21 - Let H be a Hilbert-Schmaudt operator from ® to ®. For all
N € ]N* H admats on all @ an integral representation of the form

n=0 FEF, FeEN
Furthermore, for all p = (t4 < ... < tn) € Pn, all E € Ey, the opera-
tor Hf is a Hilbert-Schmidt operator from @ to ®). We have the estimate
.[PNm[o,T]NHHEH ,u<TN||H|| forall E € En, all 0 < T < oo. [

In this representation we immediatly distinguish the begining of the non-
commutative chaotic expansion of H (the first term of the right hand side) from
the remainder (the second term). Let & denote the coherent space (M) where
M is the space of locally bounded, compact supported elements of LZ(IR+).
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Proposition 1.22 - Let H be a Hilbert-Schmadt operator from ® to ®. Let N €

IN* | let
Ry= Y / (1) Y aal
EeEy VPN
be the remainder of the integral representation (iterated N times) of H given by
Proposition 1.21. Then for all f,g € &} the quantity < g, Rnf > converges to 0
when N tends to +oo.
Thus, wn the sense of this weak convergence, one has

H:i >y /P E[HF11dAL.

n=0 FeF,,

The proof is easy from the estimates at the end of Proposition 1.21. [
We have finally written the non-commutative chaotic expansion of H.

But the article [At3] does not end at this result. Indeed, the above weak
convergence is not sufficient for proving that a Hilbert-Schmidt operator H admits
a Maassen kernel on all ®. Actually one has to go back to Proposition 1.20, take a
fin @ and compute H f with A-M’s equations. We get an integral representation
of any Hilbert-Schmidt operator applied to any vectors. As the coefficients of the
representation are also made of Hilbert-Schmidt operators applied to vectors of
®, one can iterate the procedure. While we iterate we see the chaotic expansion
of Hf appearing and a remainder. The most difficult and tiresome part consists
in proving that the remainder converges to 0. We thus get the complete chaotic
expansion of H f. A combinatoric rearrangement allows to prove that it is of the
form of a Maassen kernel applied to f. Anyway, it i1s not worth developing that
here; T just wanted to illustrate how this probabilistic inspiration could work and
help to find some new operators admitting a Maassen kernel.

I.4 Hilbertian quasimartingales and quantum stop times

I.4.1 Enchev’s Hilbertian quasimartingales

In [Enc|, O. Enchev extends to the Hilbertian context the usual notion of
quasimartingales. One can find a nice exposition of his article in [Me4]. Let us
recall the main result.

Theorem 1.23 - Let (H, (Py),~,) be a filtered Hilbert space that is, a Hilbert space
H together with a right continuous increasing family (Py),s, of orthogonal projec-
tions in H. Let H, be the range of P, for allt € R™. Let (%¢);50 be an adapted
process of vectors (1.e. x; € Hy for all t € R"’) such that zo = 0. If one has
supg 54| Pr; 24, < +oo, where R = {t;;1 = 1,...,n} runs over all the
partitions of a fized bounded interval [0, T, then (z¢),~, admits a unique decom-
position as a sum of a martingale (my),5, (i.e. Psmy = ms, s <t) and a finite

— T4,

2
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variation process (at)ysq (i.e. supg 3i|ag,,, —ay,

to (Hi—)yso = (Ns<tHs) 5o Such a (x4),5 15 called a Hilbertian quasimartingale.

< 00), vanishing at 0, adapted

If (2¢),5¢ s an adapted process which satisfies ||Psxy — 24| < f:g(u) du for
s <t and a locally integrable g, then (x¢),~q is a Hilbertian quasimartingale whose

finite variation part is of the form ay = fot hy du with ||hy|| < g(u). [

Applied to the Fock space context this theorem gives the following.

Corollary 1.24-Let (2),5, be a vector process in ® such that x; € ®y for all
t € RT and such that zo = 0. The following assertions are then equivalent.

1) There ezists a locally integrable function g on RY such that for all s <t
one has ||Psxy — zs|| < f:g(u) du.

ii) The vector process ('It)tZO admits a unique representation as

t t
xt=/ fsts+/ heds
0 0

for adapted vector processes (ft)t>0 and (he),>o satisfying fot ||£’3||2 ds < oo and
fot ||hs||ds < oo for all t.

Proof

The Hilbert space ® together with the family of projections (P;),,, is a filtered
Hilbert space, with a continuous filtration. From Theorem 1.23, every adapted
vector process (x¢),, in ® which satisfies i) admits a unique representation as
Ty = gy + fot hsds where (h¢),s is such as described in ii) and where (my),s,
is a vector martingale with mg = 0. The Fock space predictable representation
property implies that for all ¢ we have m; = fot Dymy;dyxs. But note that for
a.a.s <t and r > 0 we have Dgm; = DsPimyy, = Dsmyq,. So the mapping
r +— Dgmgy, is constant and its value can be denoted Dymgy. We finally have

the representation m; = fot Dymgy dxs. This gives the corollary in one direction.
The converse direction is trivial from the Ito isometry formula and the usual norm
estimate on time integrals. |

Corollary 1.25-Let (Ty),~, be any adapted process of operators on ® which ad-
mits an integral representation

t t t t
Tt:/ HSdAs—}—/ KSdA;f—}—/ LSdAs—i—/ M, ds
0

0 0 0

on a domain D. For any f € D define fy = Pif, t € RT. Then the vector process
(Ty ft);>0 s a Enchev quasimartingale on ®.

Proof
From A-M’s equations we have that for all f € D

i i
T fe = / [TsDsf + HiDsf + K P f]dxs + / [LsDsf + M,P,f]ds.
0 0
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We conclude by Corollary 1.24. |

This Hilbertian generalization of the classical notion of quasimartingale is
clearly interesting by itself, but it is also of great interest in the problems of
stopping vector or operator processes with quantum stop times.

[.4.2 Quantum stop times and quasimartingales

The classical notion of stop time on a filtered probability space admits a
natural non-commutative extension. On Fock space for example they have been
first studied by R.L. Hudson in [Hud] then by K.R. Parthasarathy and K.B. Sinha
in [PS2]. Their idea for extending the notion of stop time is the following. A
classical stop time 7 on a probability space (2, F, (F¢),>q, P) is determined by the

family of indicator fuctions lr<¢, t € IR, These indicator functions form a right
continuous increasing family of projection operators on the Hilbert space L*(£2)
that is, a spectral measure; they furthermore satisfy an adaptation property. The
non-comiutative generalization of the notion of stop times is thus as follows.

A (quantum) stop time 7 on @ is a spectral measure on RT U {+oc} with
values in the space of orthogonal projections on ® and such that for all ¢ the
operator 7([0,1]) is a t-adapted operator.

In the following we adopt a probabilistic-like notation: for any Borel subset
A C RT U {4oc}, the operator 7(4) is denoted ¢ 4; in the same way 7({t}) is
denoted 1.—, the operator 7([0,1]) is denoted by 1., etc...

A stop time 7 1s finite if D=y~ = 0. It is bounded by T € R*if lr<r =1
A point ¢ in RT is a continuity point for 7 if 1,—; = 0. Note that, unless 7 = 0,
the point 0 1s always a continuity point for 7. It is also easy to check that the set
of points t € R which are not continuity points for 7 is at most countable.

If 7 and 7' are two stop times on ®, one says that 7 < 7/ if for all t € R™ one
has lr<¢y > Tr <y (in the usual sense of comparison of two projections).

A stop time 7 is discrete if there exists a finite set E = {0 <t} <ty < -+ <
tn, < +oo} such that 1.cg = I.

A sequence of stop times (7,), is said to converge to a stop time 7 if, for all
continuity point ¢ for 7, the operators 1., <; converge strongly to <.

A sequence of refining T-partitions is a sequence (E,), of partitions E, =
{0 <P <ty <o <t} < 400} of R such that

1) all the t;- are continuity points for 7;

ii) E, C E, 41 for all n;

iii) the diameter, max {t}', | —¢
to 4-00;

iv) t tends to +00 when n tends to +oc.

Pi1=1,...,in}, of E, tends to 0 when n tends
The following result is taken from [PS2], Proposition 3.3 and from [Me5].

Proposition 1.26 - Let 7 be any stop time. Then there exists a sequence (1), of
discrete stop times such that 7y > 7 > --- > 7 and (Tn>n converges to T.
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Proof
Let E = {0 <t <ty < -+ <t, < +oc} be a partition of R". Define a
spectral measure 7 by
] i <t le — 1,
e({ti}) = { Leepr,_ . f1<i<n—1,

re({ta}) = Lrsr,_,.

The spectral measure 7 clearly defines a discrete stop time on ® and 7 > 7.
Taking a sequence (E,), of refining r-partitions of IR gives the required sequence

(Tn)p = (7B, ) - u

The theory of quantum stop times admits many interesting developments that
can not be discussed here. We just present results where Enchev’s quasimartingales
appear to be helpful.

One of the main problem with quantum stop times is to identify the class of
vector and operator processes that can be stopped. That is, for a given stop time
7, on what kind of vector process (z¢),~, (resp. operator process (Xy),s) can we

reasonably define the value z, (resp. X,) of the process at time 77
When 7 is a discrete stop time there is a natural definition for x, obtained
by mimicking the classical definition:

Tr = E ﬂT:tixti
7

where the t;’s constitute the support of the discrete spectral measure 7. For a
general quantum stop time 7, one can think of Proposition 1.26 and approximate
7 by a sequence of discrete stop times. We are led to consider the convergence of

Tr, = E :]lTE[tiyti+1['rti+1
i

when the diameter of the partition {¢;;¢ = 1,....n} tends to 0. This problem
has been studied in details in [PS2] and they obtain the convergence for all vector
processes of the form x4 = my @ yy, where (my),-, is a complete vector martingale
on @ (that is, m; = Pym for a m € ®) and where (y;),5, is a process in the future
(that is, y; € @ for all ¢). This result is extended in [A-S] to the case where
(%¢),50 is of the form z; = z; @ yy, where (z¢),5, is a Enchev quasimartingale on
®. But before proving this extension and describing its application to stopping
operator processes, let us show that Enchev’s quasimartingales on ® are easy to
stop. Let z; = fot Esdys + fot heds, t € R, be a Enchev quasimartingale.

Let 7 be a finite stop time. The vector process (z;),s, is said to be T-integrable
if it satisfies B

|l ds+ [l ds < oo
0 0

Proposition 1.27 - Let z; = fot Esdxs + fot hyds, t € RT, be a Enchev quasi-
martingale. Let T be a finite quantum stop time such that (2¢),~, is T-integrable.
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Let (E,)n be a sequence of refining 7-partitions of R™. Put T, = TR, , for all
n € IN. Then the sequence (zr,), converges in ® to a vector z, which is given by

Zr = / ]17'>s 55 dXs + / ]17'>s hsds.
0 0

Proof
Suppose first that 7 is bounded by T € IRT. We have

Zr, = Z ]17'n=ti 2t = Z]lrnzti |:/tl 55 dXS + /ti hs d3:|
? i 0 0
= Z Z ]lrn=ti {/tj-}_l Ss dXs + /tj-l_1 hs ds}
i t

v §<t J

tj41 tj41
=3 1,5 [/ ’ gsts+/ ’ hsds}
j t t

ti41 tjt1
Y[ tsnteavt [ o]

(by boundedness and t;-adaptedness of 1. ;)

T T
== / ]lrn>s£s dXs + / ]lrn>shs ds.
0 0

When n tends to 400 the right hand side of the above identity converges to

T T
/ ]]-T>8§S dXs + / ]]-T>shs ds.
0 0

This proves the proposition for bounded stop times. To conclude for any finite
stop times one approximates such stop times by a sequence of bounded stop times.

Note that as 7 defines a spectral measure we have, from the above proposition,
Zr = f 1;cas 25 in the sense of spectral measure integrals. We can now state [A-S]’s
main result.

Theorem 1.28— Let 2y = fot Esdys + fot heds, t € RT, be a Enchev quasimartin-
gale. Let (y¢),~o be a vector process, adapted to the future and bounded in norm.
Let 7 be a finite stop time such that (z;),s, is T-integrable. Let w; = z4 ® yy,

t € RT. Let (En)n be a sequence of refining T-partitions of RY. Putrt, = 7g,,
n € IN. Then the sequence (wy, )n converges in ® to a vector w, which is given

by
Wr = / ]lreds [Pszr] X Ys-
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Proof

The complete proof of this theorem, given in [A-S], is rather long but one
can easily give, at least formally, the main idea of it. As we have said be-
fore, Parthasarathy and Sinha have proved in [PS2] that integrals of the form
[ 1;cas[Psm] @y, always converge. Thus so does [ 1rc4s[Pszr] ®ys which is equal
to [ Lreas[Ps [ Lredau zu] ® ys. As it is s-adapted (or not far) the operator 1,eqs
commutes with Py, so the latter integral equals f[Ps]lreds f Nrequ zu] @ ys. As
lrcgslrequ is equal to 1,=,1,c45 we obtain f[Ps]lredsZs] ® ys that is,

/ ]lreds Zs @ Ys- |

This result 1s an extension of Parthasarathy-Sinha’s one but it also has an
application to the problem of stopping operator processes. Indeed, for a given
quantum stop time 7 we which to define X, for an operator process (Xy),5,. Of
course, as in the case of vector processes the definition of X, is clear when 7 is a
discrete stop time. But one has to pay attention to the fact that in this case there
are three natural ways of defining X:

the left-stopping : 70X = . 1=, Xy,

the right-stopping : X o7 =Y. Xy, L=y,

the two-sided-stopping: 7o X o7 =Y M=y, Xy, Loy,

As previously we approximate 7 by a sequence of discrete stop times and
wonder 1f one can pass to the limit. The point with Theorem [.28 is that 1t gives
a good answer for left-stopping and right-stopping.

Theorem 1.29- Let (X;)¢>0 be an adapted process of operators on ®. Suppose
that for all u € M the process (Xqe(uq))

1s a Enchev quasimartingale on ®.

>0
Let 7 be a finite stop time such that, for all w € M, the process (Xie(uy)) s, 18
T-integrable. Then the left stopping 7 0 X converges strongly on E(M). -
Proof

By Theorem 1.28 we have that the quantity
Z]ITE[ti7ti+1](Xti+1€(uti+1])) ® €<u[ti+1>
?
admits a limit when the diameter of the T-partition {¢;; : = 1,...,n} tends to 0.
But this quantity is also equal to
Z ]lTE[ti,ti+1](Xti+1€(u)> = |:Z]1T€[ti7ti+1]Xti+1} g(u).
? ?

Thus, the Riemann sums associated to the left-stopping of X converge. [

The class of operator processes which satisfy the conditions of Theorem 1.29
is very large, as proves the following.
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Corollary 1.30- Let

t i t t
X; = / H,dA, + / K,dA + / L,dA, + / M, ds
0 0

0 0
be any adapted process of operators which admits an integral representation on a
coherent space E(M). Let T be any finite stop time on ® such that

/ ]17>5H5dA8+/ ]17>5K5(1A1+/ ]IT>5L5(],A5+/ TssM,ds (1.23)
0 0 0 0

is well-defined on E(M). Then the left-stopping T 0 X converges strongly on E(M)
and 70 X s gwen by (1.23). Furthermore, if the adjoint process (X[),~q also
admits an integral representation we get the analogous result for the right-stopping

Xor.

Proof

Because of Corollary 1.25 we know that if (X;),y, admits an integral repre-
sentation on £(M) then (X e(uq)),s, s
that (1.23) defines a quantum stochastic integral on £(M) is the same as saying
that the quasimartingale (X e(uq)),., is 7-integrable. We conclude easily for the

is a Enchev quasimartingale. The condition

>0
left-stopping.
For the right-stopping problem, it suffices to note that (1o X)* = X*or. B

I.4.3 Quantum strong Markov process

In this last subsection we quickly introduce the notion of quantum Markov
process as developed in [B-P], and the notion of quantum strong Markov process
as developed in [A-P]. We are again going to see the importance of Enchev’s
quasimartingales for stopping processes with quantum stop times.

Let A be a unital C*-algebra of bounded operators on a complex Hilbert space
Hy. Let (T}),~q be a semigroup of contractive, unital and completely positive maps
from A into itself. Recall that complete positivity means Zi,j XIT(Y;*Y;)X; >0
for all X; € B(Hop), ;€ A, i =1,...,n.

Theorem 1.31 ([B-P|)- There exzists a Hilbert space H, an increasing family
(Ft);>q of projection operators on H, a family of *-homomorphisms j, : A —
B(H),t > 0 and a unitary isomorphism V from Hy onto the range of Fy satisfying
the following properties :

1) j¢(I) = Fy, for allt > 0;

i) Fsji(X)Fs = js(Ti—s(X)) for any s <t, X € A;

i) jo(X)V =VX for all X € A;

iv) the set {ji, (X1)..ge, (Xn)Vusty > t3 > - > t, > 0,X; € A1 €
{1,...,n},n>1,u € Hy} s total in H. [

This theorem is the quantum analogue of Kolmogorov’s construction of a
Markov process for given semigroup and initial measure. Indeed, the C*-algebra
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A is the quantum extension of the algebra of bounded functions on the state space,
the projections F; play the role of conditional expectations IE|-|F;] and j; is the
extension of the algebra morphism (z4),5, : f + f(z¢) o [E]-|F;] made from the
Markov process (z¢),5, acting on the algebra of bounded functions A. Identity ii)
is just the Markov property.

This theorem gives a notion of quantum Markov processes. Such a quantum
Markov process is said to be minimal when it satisfies condition iv). The next
interesting step is to try to define quantum strong Markov processes. We need a
notion of quantum stop time in this context. As in previous section a stop time T
on H is a spectral measure on R U {+0c} with values in the set of orthogonal
projection operators on H and such that

Dr<iju(X) = 7u(X)1r<cy forallu>t, X € A (1.24)

The commutation relation (1.24) replaces the adaptedness condition in our context.
It expresses that l.<; does not interfere with the future “trajectories” of the
Markov process. In other words “knowing that the event of stopping at time 7
has occured before time ¢ does not affect the Markov process after time ¢”. In the
language of physicists this is called the non-demolition property. Note that in the
context of commutative Markov processes the condition (1.24) exactly expresses
the fact that (7 <t) is a Fy-measurable event.

If one wants to deal with the notion of strong Markov property one needs to
be able to define j, for stop times 7. As in previous subsection, the problem lies
in passing to the limit on expressions like

Z ]]'Te[ti i jti+1 (X)

Note that for ¥ € H the vector processes j¢(X)U are always adapted to the
filtration (F}),~q, thus the same idea as in previous subsection applies: when the
vector processes (j¢(X)¥),s, are Enchev’s quasimartingales on H it is proved in
[A-P] that j- can be defined and that (j¢),5, is a quantum strong Markov process
in the sense that it satisfies the quantum strong Markov property

Frjr-i-t(X)FT = JT(Tt(X))

In [E-H] have been considered the so-called Evans-Hudson flows; that is, solu-
tions of some quantum stochastic differential equations on the Fock space ®. It is
known that such flows give rise to quantum Markov processes. But as such flows
are made of quantum stochastic integrals on @, because of the above criterion for

the quantum strong Markov property, and because of Corollary 1.25 we have that
every minimal Evans-Hudson flow is a quantum strong Markov process.

II From quantum to classical stochastic calculus

This chapter is devoted to the contributions of quantum stochastic calcu-
lus to classical stochastic calculus. We first present the so-called “probabilistic
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interpretations of the Fock space”. We see that quantum stochastic calculus is
an extension and a unification of classical stochastic calculus in several different
contexts such as Brownian motion, Poisson process, Azema martingales,... The
second section is devoted to showing that quantum stochastic calculus is a natu-
ral language for studying Wiener space endomorphisms, and also other “chaotic
spaces” endomorphisms.

I1.1 Extension and unification of classical stochastic calculus

I1.1.1 Probabilistic interpretations of Fock space

Consider a (classical) martingale (z¢),-, on its canonical probability space

(Q, F,(Ft) >0, P). This martingale is said to be normal if the process (z7 —t),5,
is also a martingale; in other words, if the angle bracket process ((x,z),),s, is such
that (z,z), =t for all ¢. B

A normal martingale (z¢),5, is said to have the predictable representation
property if every random variable f in L?(Q) admits a representation as the sum
of its expectation and stochastic integral of some predictable process with respect

to (l't>t>0:
f=1If sdTs.
[ ] +/0 ¢

For a normal martingale (z¢),5, it is possible to define iterated stochastic
integrals such as

/ fn(tl,...,tn)dlﬂtl dl‘tn
0<t1 <..<t, <0

for some square integrable (deterministic) functions f,, on the increasing simplex
pI def {(t1,...,tn) € R";0 <ty < ... < ty} (cf [Me6]). We define the chaotic

space of (x4),54, denoted C'S(x), to be the space of random variables f in L?(€2)
which can be written as series of such iterated integrals:

>0

f:E[f]+Z/ Falti, .. stn)dey, ... de, . (I1.1)
=1/ 0<t <. <ty <00

The decomposition of f as such a series is called the chaotic expansion of f. Recall

that two iterated integrals that are not of the same order of iteration are orthogonal

for the L%(Q) scalar product; so the norm of f in L?(Q) is

oo

IFII” = |E[f]]* + Z/O fn(t1, ..o tn) 2 dty ... diy.
<6 <. <t, <o

n=1
When CS(z) is the whole of L?(2) one says that (z¢),5, has the chaotic repre-
sentation property. -

Let (2¢),5o be a normal martingale with the predictable representation prop-
erty. The difference [z, z], — (z, ), between the square bracket of z and its angle
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bracket is always a martingale. Thus, from the predictable representation prop-
erty, there exists a predictable process (¥¢),s, in L?(Q) such that

i
[, 2], — (z,z), = / U, das.
0

In other words
dlz,z], = dt + ¥y day.
This equation is called the structure equation of (x¢),5, (cf [Eml]). These equa-

tions appear to be very useful for identifying properties of the process (z¢),s-
Depending on the form of (¥¢),5, we recover several well-known cases (cf [EmI]):

if ¥, =0 for all ¢ then (lUt)t>0 is the Brownian motion,
if ¥y = —1 for all t then (2¢),5, is the compensated Poisson process,
if ¥y = Bas_ then (x¢),5, is the Azema martingale with coefficient f3.

Each of the two first cases together with the third one when 3 € [—2,0] have
the chaotic representation property ([Em1]).

Whatever is the case we consider, there is a strong relation between nor-
mal martingales with the predictable representation property and the Fock space.
Indeed, note that a square integrable function f, on the increasing simplex ¥,
can be seen as a square integrable symmetric function on (R+)" that is, an
element of L2(IRT)®". Thus the chaotic space C'S(x) of z is isomorphic to
EBnLZ(R+)®” that is, the symmetric Fock space & = F(LZ(R+)). The isomor-
phism J : CS(z) — ® = L?(P) is given by

[Tfl(0) = faltr,-.. tn)  ([JFI(0) = E[f])
where ¢ = {t; < ... < t,} € P and where f has his chaotic expansion given by
(I1.1). Note that the isomorphism J depends on the martingale (z),+-
This is the reason why (Q,}—, (Ft)i>0: Py (%4) 500 CS(:E)) (or sim_ply (%) ;50)

is called a probabilistic interpretation of the Fock space ®.

I1.1.2 Interpretation of the Ito calculus

Let (Q,F, (F1) 1505 Py (24) 50, CS(x)) be a probabilistic interpretation of the
Fock space ®. All the operators Py, Dy, Vy, the Skorohod and the Ito integrals on
® such as described in section 1.1 admits an interpretation on L%(2) as well-known
probabilistic operators. Let J : C'S(z) — @ be the isomorphism between CS(z)
and P.

First of all, one has Py = J o E; o J~! where E; is the operator of condi-
tional expectation IE[-|F;]; by the way the space ®y = ImP; is isomorphic to
L*(Q, Fi, P)N CS(z).

Let f be a random variable in C'S(z). We know that there exists a predictable
process (£,(f)),>q in L2(Q) such that f = E[f] + fooo &(f)dzy. One can see & as
an a.e. defined operator on L2(Q). From this point of view &; is nothing but the
probabilistic interpretation of the operator Dy; that is, D; = Jo & 0 J 1.
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By analogy, one can wonder what is the probabilistic interpretation of the
operator V. It is the Malliavin’s gradient, or stochastic derivative along the
element f(s) = s At of the Cameron-Martin space (see [N-Z] for example).

Thus the operator S, which is the adjoint of (V;),5, (cf [A-L] for example), is
interpreted on L%(2) as the operator of Skorohod integral with respect to ()10
(in the probabilistic context, see [G-T] for the adjoint relation between S and V,
see [Sko] for the definition of the Skorohod integral).

The operator of Ito integration, which is the Skorohod integral restricted
to adapted processes, thus corresponds to the usual Ito integral with respect to
(xt)tZO'

The vector process (x¢);5o in ®, with respect to which the Fock space Ito
integral is an actual integral, interprets on L?() as the normal martingale (),
itself that is, Jxy = x;.

Theorem 1.3, when interpreted in L?(Q), only expresses the predictable rep-
resentation property of (x¢),5, and the isometry formula for the Ito integral.

The property Dy = P;V, for a.a. t is interpreted as a Fock space extension of
Clark’s formula ([Cla]).

In this way all the operators introduced in section 1.1 can be interpreted as
well-known operators coming from the stochastic calculus when the Fock space 1s
interpreted as the chaotic space of some normal martingales. In fact, one should
think the other way round. Probabilistic operations such as Ito integration, Sko-
rohod integration, Malliavin gradient, predictable representation, etc... can be
expressed in terms of the chaotic expansion of the random variables only. In their
definition they do not use any specific property of the normal martingale involved
except the chaotic representation property and the Ito isometry formula (which
is the same for all the probabilistic interpretation for < z,z >, = t, Vt). Hence
they can be translated into intrinsic operators on the Fock space which is a kind
of abstract chaotic space in the sense that it contains only the abstract structure
of the chaotic representation property and of the Ito isometry formula.

11.1.3 Extension of classical stochastic calculus

In sections 1.1 and 1.2 we have developed a non-commutative stochastic cal-
culus on the Fock space ®. Indeed, we have developed the notions of adapted
processes, stochastic integrals, semimartingales, square and angle brackets, Ito
formula, etc... in the Fock space context. We are going to see that these notion
are the non-commutative extensions of the corresponding classical ones and that
they unify the different probabilistic interpretations of ®.

There are two ingredients that are linking classical and quantum stochastic

calculus. The first one is that random variables in a probabilistic interpretation
of ® are particular operators on ®. Indeed, let (z¢),5, be a probabilistic interpre-

tation of ®. Let f be a random variable in C'S(z). Then f defines a self-adjoint
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operator My on CS(z), the operator of multiplication by f defined by

My : DomMy C CS(z) — CS(x)
g —  fg

with DomMy = {g € CS(z);fg € CS(x)}. Throught the isomorphism .J
CS(z) — ® the operator My translates into an operator on @ : for all f € @
define the operator

Mr; : DomMyC @ — P
g — J(TTH (T )]

where Dom My = {g € ®;(J'f)(J'g) € CS(x)}. In other words, we translate
the Fock space vectors f and g in the probabilistic interpretation, we multiply them
together in the probabilistic interpretation (when the product stays in C'S(z)) and
then we translate the result back to the Fock space.

Another crucial way of understanding this is that each probabilistic inter-
pretation = of ® defines a product on ®. Indeed for f,g € ® define fg to be
J[(J71f)(J1g)]. Each probabilistic interpretation defines its own product on
® for the classical integration by part formula makes use of the square brackets.
Indeed, two different probabilistic interpretations of @ have their angle brackets
in common, but not their square brackets: the coefficients ¥ of the structure
equations make the difference.

The second ingredient 1s A-M’s point of view on quantum stochastic calculus.
Indeed, we are going to see that this point of view on quantum stochastic calculus
1s the one which is the closest to classical stochastic calculus.

Theorem II.1-Let (24),5, be a probabilistic interpretation of ®. Let d[x,z], =
dt + Uy dzs be the associated structure equation. Let f be an element of ®. Then
the operator My on @ admats an integral representation on Dom M. This integral
representation s given by

M :]E[f][+/ imDsf(dAZ+dAs)+/ Mp, § My, dAs. (11.2)
0 0
Proof
Let g be an element of ® such that (J™'f)(J~'g) € CS(z). Let J~'f =
E[f]l+ fooo &s(f)dxs and J~'g = Elg] + fooo €s(g) dzs be their predictable repre-

sentation. Let (fy),~o and (g¢),~o be respectively the martingales (P f),s, and
(Ptg);>o- By the classical integration by part formula we have -

(T g) = BLf)Elg] + / (o day + / " e(g) fo_ des
+ T 6(Pealg) i 2],
— E[f|Elg + /0 e (F)gs_ diy + /O " eulg) fo_ da,
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+Am@uwxm%du+lw@uxxmw. (IL3)

Here we have to discuss an important technical point. Let (y;),5, be a Ito inte-

grable vector process in ®. As (y;),5 is strongly measurable, the family (J 7 y;),5
of random variables admits a measurable version. Because of the Ito integrability
conditions on (y¢),», we easily check that the predictable projection of the pro-

cess (J7yy)5q 18 a modification of it. So when we have said that the Ito integral
operator on @ interprets as the Ito integral with respect to (z),5, in L*(Q) we

J_1</Oooytht) :/OOOJ_lytdCCt

where the process (J 7 'y¢),5, in the latter integral is actually the predictable
projection of it (for simplicity we keep the same notation for both of the two

meant

process). In our example above, as (§(f)),so is a predictable process and as
(g¢)¢>0 18 a martingale, we have that the process (&(f)gi—),> is the predictable
projection of the process (£:(f)gt);>o- Thus, we have B

/Ooo (g dey = T (/Ooo J(&(F)gr) dxt).

So, applying the isomorphism J to (II.3), we get
fo= BB+ [ Je(Pa)du+ [ Iif ey
0 0

+/ ﬂuﬁum%wm+/ T((F)Eulg)) ds
0 0
mm=EMEM+Afmuhmm+A M, ; TEu(g) ds
—{—/ Mp, s My, st(g) dxs +/ Mp, 5 st(g) ds
0 0
M g = IE[f|E][g] +/0 Mp, 5 Pegdxs +/0 Mp, f Dsgdyxs

+/ mpsff)ﬁqjs Dsgdxs+/ gﬁDstsgds.
0 0

It is easy to check that Mp, s = IE[My] in the sense of operator conditional
expectations. So if we denote by T the operator My and by (T}),,, its associated
operator martingale (that is, T, = IE,[T]) we then have B

Tg:JE[f]JE[gH/ Tstngs+/ Mp, f My, Dsg dxs
0 0

-I-/ mDsfPS.qus‘l‘/ Mp, ¢ Dsgds.
0 0

That is exactely the same as saying that
T = JE[f]I+/ Mp, s (dAT + dA,) +/ Mp, My, dA,
0 0
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in the sense of A-M’s equations. [

In particular we have that if (24),5, is a probabilistic interpretation of ®, with
coefficient (¥¢),, in its structure equation, then

dM,, = dAT + dA, + My, dA,.

Hence we recover that the Brownian motion is represented in & by AI + Ay; the
compensated Poisson process is AI + Ay + Ay; the coefficient 3 Azéma martingale
is the unique solution of dX; = alA;r + dA; + X dAy.

In this way, we see that quantum stochastic calculus on Fock space is at
the same time an extension of classical stochastic calculus (as classical random
variables are particular quantum stochastic integrals), but it also unifies it in the
sense that Fock space stochastic calculus includes all the probabilistic interpre-
tations of ® (Brownian motion, Poisson process, Azéma martingales,...) in one
single context, in one single calculus.

With the same kind of computations and the same technical remark as in
Theorem II.1, we obtain the following result (cf [Atl], Proposition 9).

Proposition I1.2 - Let (24),+, be a probabilistic interpretation of ®. Let (2¢),~,
and (yt),> be semimartingales in this interpretation. Suppose that the operator
processes (M., ),~o and (My,),5, are elements of the space S" defined in section
L.2. Then the quantum square bracket (resp. quantum angle bracket) of M. and
M, s the multiplication operator by the classical angle bracket (resp. classical
angle bracket) of z and y; that s,

[, My ], = M.y, and (M=, My), =My, - u

We end this subsection on an interesting remark which relates some natu-
ral operators coming from classical stochastic calculus to the quantum stochastic
integrals. This exemple is treated in details in [A-M].

Consider a given probabilistic interpretation (z;),», of ®. Let A € IR. Let
(ht) ;>0 be a bounded predictable process. Let (ki) be a process of the form

ke = fot psds, t € R U {+00}. Let (my),~q and (n¢),~q be complete martingales
with predictable representation m; = ¢ + fot,us dry and ny = ¢ + fot vedrs with
the random variables s an v beeing bounded.

Let L2(Q) be the subspace of bounded random variables in L?(€). Under all

these conditions one can define on L?(2) the following five basic operators:

Ex + f — XE[f]

L o f [y hadfs

Jn fo—f fedns

Ty fo— [ fodky

Crm fo— (f.m),
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where (f),¢ 18 the process (P;f),~o- As an easy consequence of A-M’s equations
we obtain.

Proposition 11.3 - The adapted operator T' = Ey + I, + J, + T + C,,, admits an

integral representation on Li(). This representation is given by

T=M + / (M4, — Ts) dAs —}—/ Mm,. dAT + / Mm,, dA; + / My, ds
0 0 0 0
where (Tt),~q is the operator martingale associated to T [

This result is interesting because it gives a one to one correspondance between
four basic operators on a probabilistic intepretation and the four types of quantum
stochastic integrals on ®. This gives an idea of what kind of classical operators
each of the quantum stochastic integrals is supposed to extend.

11.1.4 Extension of the classical Ito formula

As we have seen in section 1.2, the quantum integration by part formula for
elements of the algebra S is

t t
XY, = / X, dY, + / dX,Y, +[X, Y], (IL4)
0 0
The classical one is

t 1
Tt Yt = / Ts— dys + / Ys— d-rs + [xa y]t' (II5>
0 0

The only difference lies in the fact that in the classical case z4_ and y,_ are ap-
pearing instead of X and Y in the quantum one. But the same technical remark
as in Theorem II.1 applies here. That is, when X and Y are taken to be multi-
plication operators by some classical semimartingales, applying the isomorphism
J1 to (I11.4) gives (IL1.5) (cf [At1]).

But one can wonder if functional Ito formulas such as in Theorem [.18 coincide
with the classical Ito formula. This was already known for polynomial functions in
[At1], but in [ViS] the complete result for C;; functions is obtained. We reproduce
here his theorem and his nice proof.

Theorem I1.4 - In every probabilistic interpretation of the Fock space the quantum
Ito formula (Theorem I1.17) for self-adjoint reqular quantum semimartingales and
fe C'IQO-IC_ wmplies the classical Ito formula:

fe = fo)+ [ Fleyde+g [ o),

+ 3 () = F(zom) = F/(25-)A2)

0<s<t
where z¢ denotes the continuous part of z.

Proof
Let 2z = fot Esdxs + fot ksds, t > 0, be a semimartingale in the probabilistic
interpretation (x¢),-,. Recall that zf = fot Tiw,—0}u{e, =0} &s dos (cf [ViS]). Assume
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that 9, = fot Me, (dAs + dAl + My, dAs) + fot My, ds, t > 0, 1s an element of
the algebra S. Note that for f € C21, for x,h € IR we have

loc?

N L flz+h)—f(z)
def . (ot £h 40

A h) = plztub) gy dp = { h !
Flw.h) /_OO pr(p),/o ‘ wap (=) ifh=0

[e°] 1 1
B [~ fo) [ [ et dudody
—00 0 0

_ f(l"+h)—1;z(f)—hf'(f) if h 0
%f”(;c) if h =0.
As in our case all the coefficients of the integral representation of 9., commute
with each other, the coeflicients of the integral representation of f(9,,) given by
Theorem 1.18 are:

Hy(s) = f(M., + M, Mw,) — (M-, )
Ly(s) = Af(M.,, Me, My, )M,
My (s) = M, /(M=) + Mg, Mg, BN, , Me, My, ).
Applying the integral representation of f(9M.,) to the vector 1 with the help of

A-M'’s equations, applying the isomorphism J ! to the result, using the same kind
of technical remark as in Theorem II.1 (cf [Atl], p.319), we get

f(zﬂ:f(z@—}—[) Af(zs_,fs@s)gsdxs+A f’(zs)ksds+/() Bf(zs_,fs\IlS)fg ds

:f(zo)-l-/o f’(zs_)fsd;vs—l—/o Fl(zs)ks ds

+ / ]I{WSZO}U{é'S:O}Bf(Zs—a55\:[]5)53\:[/5 d-'L's
0
t

T / Lie,u, 501 B (e s £,0)E2T, de, + / Bf(0, £0,)E ds
0 0
1 1 1
= f(z "zo_ Vs dzg + = "zg_)d(z°, 2°
fleo)+ [ Fleatedet s [ £yt o),

T / Lie, v, 20) B (20, £40,) (€27, du, + €2 ds).
0

Since z¢ (the purely discontinuous part of z) is equal to gy, 4oyz (cf [Eml]) it
follows that [z, z] is constant between jumps and ¥y dzs + ds = 0 on {¥, # 0}.
Therefore the final integral becomes

3 Flzee + £,0,) —gs(éss_) + &V f () 3 (flzo) = Flzem) = F (2 )A2).

0<s<t
|

0<s<t

I1.2 Representation of Wiener space endomorphisms

In this section we present the results of [At4] and their extension in [At5] and
[AE1l]. The problem consists in looking at transformations of the Wiener space
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which transform the canonical Brownian motion into another Brownian motion.
For some of them we are able to give a complete algebraic characterization of such
transformations. This is obtained with the help of quantum stochastic calculus.

I1.2.1 The martingale preserving endomorphisms

Let (2, F, P) be the Wiener space, let (W;),-, be the canonical Brownian mo-
tion, let (Fy),sq be its natural filtration, let E; denote the conditional expectation

operator [E[-|F;], t € R™.
A measurable mapping T' : Q@ — Q is an endomorphism if it_preserves the
Wiener measure P. In this case one defines the random variables W; by Wi(w) =

Wt(va). The process (T/ff/i)po 1s then a Brownian motion.

The endomorphism T is martingale-preserving if W is a Brownian motion
for the filtration (F;),5o. In this case W is a martingale for (F;),s,, with angle

bracket <W, W}t = t. Thus, from the Brownian motion predictable representation

property, the process (T/ff/i)wo admits a representation

t
W:/ ks dW,
0

where (k¢),s, is a predictable process satisfying k7(w) = 1 for almost all (w,?).
It is clear that there exists a bijection between the set of martingale-preserving
endomorphism T and the set of predictable process (k¢),s, satisfying k7 (w) = 1
for almost all (w, ). -

Let T be an endomorphism of 2. One can associate to T an operator T on

L*(Q,F,P) by Tf def fo T. This operator satisfies:

1) T is an isometry (7' is unitary if and only if T is invertible),
i) T(fg) = (Tf)(Tg) for all f,g € L*(Q) such that fg € L*(Q).
It is easy to check that T is martingale preserving if and only if T satisfies

iii) TE; = E;T for all t € RY.

The Brownian motion possesses the chaotic representation property, so the
space L*(Q, F, P) is isomorphic to the Fock space ®. In this section we omit the
isomorphism J between L*(Q, F, P) and ® and we make no difference between the
two spaces. The only point to be precised is that when we speak of multiplication
of two vectors f, g of ® we mean the multiplication of the corresponding random
variables in the Brownian interpretation of ®. This is the only operation here
which is not intrinsic to ®.

So we dispose of an operator T on ® which is an isometry, which respects
Wiener multiplication and which commutes with all the operators Py (recall that E;

interprets as Py on @). We can form the operator martingale associated to T that is,

T; def IET),t € R", in the sense of section 1.1 operator conditional expectations.
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It is easy to check that T; is the operator associated to the martingale-preserving
endomorphism 7} defined by

k, ifu<t

T,W, = / k! dW., where k! = { :
o 1 ifu>t.

In other words, T; is the same endomorphism as T up to time ¢ and it is the
identity endomorphism after time ¢.

Note that property i) for the operator T is a simple consequence of properties
ii) and iii). Indeed, if T satisfies ii) and iii) we have Py(T1) = TPy1 = T1 so T1
is an element of ®; = €. Furthermore T(1) = T(11) = (T1)(T1) thus T1 equals
either 0 or 1. But as for all f € & we have T'f = T(1f) = (T1)(Tf) we must have
T1 = 1 if the operator T is not identically 0. Now, because the scalar product in
® identifies as the L%(Q) usual scalar product we have

<Tf,Tg>=PR[(Tf)(Tg)] = R[T(fg)] = TPo[fg]
= PolfgIT1 = Rolfgl = <f, 9>
This proves that T is an isometry. Consequently we have to consider operators on
® which satisfy properties ii) and iii).

Note the following important remark. Every operator associated to a martin-
gale-preserving endomorphism satisfies properties ii) and iii). But the converse is
not a priori true. Indeed, if the operator T' were furthermore unitary then together
with property ii) this would imply (cf [Chol) that T is the operator associated to
an endomorphism T of Q; the condition iii) would then imply that T is martingale-
preserving. But in our case the fact that T satisfying ii) and iii) is only an isometry
does not allow to say that it is associated to an endomorphism of 2. Actually, the
characterization we are going to get through quantum stochastic calculus is going
to prove that conditions ii) and iii) are not only necessary but also sufficient for
a Fock space operator T' to be the operator associated to a martingale-preserving
endomorphism. This conclusion is obtained with the help of quantum stochastic
calculus.

We first focus on operators satisfying the commutation property iii).

Theorem I1.5— Let T be a bounded operator on ®. The following assertions are
equivalent.

i) TP, =PT, forallt € RT.
ii) There exists an adapted process (Hy),so of bounded operators on ® and a
A € € such that we have on all ® B

T=/\I+/ H, dA,.
0

Proof

This theorem is proved in [At6]. It is a consequence of Parthasarathy-Sinha’s
representation theorem on regular martingales. Or better, in the context of this
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article, let T' be an operator satisfying i). Consider the operator martingale (7}),,
associated to T. This process can be seen to be an element of the algebra S of
section 1.2 as the commutation relations with the P;’s imply that (7}),., satisfy
(I.16) and (1.17) (of course it satisfies (I.18) as it is an operator martingale) for the
null measure . The fact that the measure p is the null one implies that the dA
and dAT coefficients of the representation of T vanish. This gives ii). The converse
is immediate from A-M’s equation. [

We can now look at the multiplication-preserving property.

Theorem I1.6 - Let T' be a bounded operator on ® which commutes with the Py,
t € RY and such that T1 = 1. Let T = I—{—fooo H, dAg be its integral representation
on all ® (Theorem I1.5). Let (Ty),5, be the associated operator martingale. The
following assertions are equivalent.

1) T(fg) =(Tf)(Tg) for all f,g € ® such that fg € ®.

ii) For almost all t, we have Hy = Mp,1 o Ty and H1 is valued in {0, —2}.

iii) For almost all t, for all f,g € ® such that fg € ®, we have

Ht(fg) = —%(Htf)(Htg)a

and, for almost all s <,

HtWS:(Htl)/ (14 Ho1)dW,.
0

Proof

The complete proof of this theorem is given in [At4], Theorem 4. It is rather
long and we present here a shortened version.

Suppose that T satisfies 1). Let n; denote T}y + Hy;. Let f € ®. From A-M’s

equation we have
Tf = 730f + / 77tth Cth
0

Suppose f? belongs to ®, the Ito formula (either the quantum or the classical one,
this has no importance anymore) gives

(PP = (Pof 42 [ (DHP AW+ [(Duf s
Thus we easily get
T(PP) = (Pof +2 [ n((DAPH) AW+ [ T(D.Pds (TL6)

4

(TPif)" = (Pof)* +2/0 (nsDs f) (TP, f) AW, +/0 (neDsf)?ds.  (IL7)

If T satisfies i) one has T((P.f)?) = (TPtf)2 so identifying (II.6) and (IL.7)
— T

gives in particular (n,Df)? ((D¢f)?) for almost all t. Polarising we get
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(mDef)(neDyg) = Ty((Dyf)(Dyg)). Putting f = Wiy so that Dif = 1 we get
(n:1)(neDtg) = T(D:g). If one also puts g to be Wyp1 we get (n:1)? = Ty1 = 1.
Thus n;Dyg = (n:1)(T(Dyg)). It is not difficult to conclude that n,g = (ntl)Ttg
for all g € ®, thus H; = My, 10T;. The condition (n:1)? = 1 implies that H;1 is
valued in {—2,0}. This proves that i) implies ii).

Assume 1i) is satisfied. It is clear then that n, = 9, 10T} and that (ntl)z = 1.
Putting this in (I1.6) and (I1.7), polarizing, we get

T(fg) = Pof Pog + / " D)T((Duf)(Prg)) AW+
T / (DT (Deg)(Pf)) AW + / T T((Duf)(Deg)) i
(TH(Tg) = Pof Pag + | " (WDI(TD. )(TPig)| AW,

+ [ waepgergaw s [T @Dg)TD)

Let us call P(n,m) the property “T(fg) = (Tf)(Tg) holds for all f € L%(P,)
and all ¢ € L%(P,,)”. We see from the previous two identities that P(n,m) is
true if P(n,m —1),P(n —1,m) and P(n — 1,m — 1) are (for if f € L?*(P,) then
Dif € L*(Py—1)). As P(0,m) and P(n,0) are obviously true one concludes easily.
We have proved that 1) is equivalent to ii).

Assume that ii) is satisfied. We have
(H.f)(Hig) = (HO)TA(H)Tig) = [(1+ Hil - DT A1+ Hl - 1)Tig]
= [(1+ H: )T f][(1 + Hi1)Tig] — (T f)[(1 + Hi1)Tig]
— (L + H )T f[(Teg) + (T f)(Trg)
=2(Tf)(Tig) — 2 (1 + H (T2 f)(Teg)]
= —=2(H,1)Ti(fg) = —2H(fg).

This gives the first condition of iii) on H;. The second one is an easy consequence
of A-M’s equation. We have that ii) implies iii).

Finally, assume iii) is satisfied. We have (Htl)2 = —2H,;1 thus H;1 is valued
in {—2,0}. Let us prove that H,f = (H;1)T,f for all f. This is true for f = ¢ € C.
Now, let f € ® be such that H,D,f = (H,1)T; D, f for s <t. We formally have

HtPt :Ht Ds dWe: Ht Ds dW@
f / f / (D.f W)
1/ I
— 5 [ D W) = =5 [(HDL) (H+ E .
1 t
—§(Ht1)2/0 (T.D,f)(1 + H,1)dW,
:(Htl)/ (1+ H,1)(T,D,f)dW.
0
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:(Htl)/o (Ts + Hs)Ds f dW,

t
= (Htl)Tt/ D,fdW, (by A-M’s equation)
0

= (H{1)T; P, f.
We conclude by induction on n by taking f € L?(P,). [

We can now state the final characterization of martingale-preserving endo-
morphisms of the Wiener space.

Theorem I1.7—Let T be a non null, bounded operator on ®. The following as-
sertions are equivalent.

1) T us the operator associated to a martingale-preserving endomorphism T of
the Wiener space.

ii) The operator T commutes with the operators Py, t € R*, and it satisfies
T(fg) =(Tf)(Tq) for all f,g € ® such that fg € d.

When these conditions are satisfied the image (T/ff/i)po of the Brownian motion

(Wt)t>0 under T is given by ﬁ//} = fot ks dW, where ks = 1+ Hyl and (Ht)t>0 18
the dA-coefficient in the representation of T. B

Proof

We know that i) implies ii). Suppose ii) is satisfied. Thus condition iii) of
Theorem I1.6 is satisfied. Consequently, one has (1 + H,1)2 = 1. Let us put
ks =14 H,1 for all s. We are then given a predictable process (k¢),~ satisfying

k2 =1 for all . Let T be the martingale preserving endomorphism associated to
(kt);>o- Let T’ be the operator on @ associated to T. From Theorems II.5 and
I1.6 we know that there exists an adapted process of bounded operators (H;),s

such that 7" = I + _fooo H! dAs on all ® and (Hé)t>0 satisfies the conditions iii)
of Theorem I1.6. By A-M’s equation we have T'W; = fot(l + H!1)dW, but it
is also equal to fot ks dWy, thus 1 + H!1 = k, for almost all s. This means that
H,1 and H!1 coincide for a.a.s. Because both H and H' satisty Theorem I1.6 iii)
we have that H,W, and H;W, coincide for a.a.s < t. As they both respect the

Wiener multiplication H and H' coincide on polynomial functions of the Brownian
motion. As they are both bounded operators they coincide on all ®. [

In conclusion, with the help of quantum stochatic calculus we have obtained
an algebraic characterization of martingale-preserving endomorphisms. This char-
acterization does not seem obvious to be obtained without the help of quantum
stochastic calculus.

I1.2.2 The kernel mystery

We have seen that martingale-preserving endomorphisms when lifted to the
Fock space always admit an integral representation. One can wonder if they admit
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a Maassen kernel representation. The problem appears still open to me, even if T
have the strong feeling that they do admit one. Indeed, there do formally exists
such a kernel but it is very complicated and analytic problems are thus rather
difficult to overcome.

Anyway, we can look at Maassen kernels which satisfy the commutation and
the multiplication property. The following result is a combinaison of results from
[At6] and [At5]. They are given without proof here.

Theorem 11.8—Let T be a non-vanishing bounded operator from ® to ® which
admits a Maassen kernel T. The following assertions are equivalent.

1) The operator T is the operator associated to a martingale-preserving endo-
morphism of the Wiener space.

1) The kernel of T satisfies the following two properties :

a) f(a,ﬁ,’y) =0 unless V(o + 3 + ) s an element of j3,
b) for a dense set of vectors f, for all o, 3,y € P?, one has

/ Z f(Oq,042-H3a’71+M)f<,u+a2+a3+’73)d,u=
P

a)tagtag=a
Y1+v3=v

:/p Yoo T+ +ve+u)T(p+as, B+92, 75 ) du.

a]tag=a
Y1+v2+v3=>

In any case the chaotic expansion of the predictable process (k¢),~, associated to

the endomorphism 1is given by ];\t(oz) = 14=p + f(a, {t},0), a € P. [

It is the combinaison of the previous section theorems that gives this result.
But this results contains a mystery. Indeed, properties a) and b) are sufficient for
the kernel to be a martingale-preserving endomorphism. Furthermore the chaotic
expansion of the associated predictable process (k¢), o depends only on the family

of values f(oz, {t},0). As this predictable process determines the endomorphism,
this means that the kernel values f(a,ﬂ,’y) are completely determined by those
of f(a, {t},0). This means that there exists an algebraic relation, which has to
be deduced from identities a) and b), which gives the values f(a,ﬁ,fy) in terms

of the f(a,{t},@)’s. Finding this formula is still an open problem and seems
rather complicated, but we know that this formula exists. Describing it would
be of great interest. Indeed, given the chaotic expansions of the ki’s we would
be able to describe completely the associated endomorphism 7. This should en-
able us to answer to several questions such as characterizing when on (k)5 the

endomorphism T is invertible.

I1.2.3 Some more general endomorphisms

The technics developed in subsection I1.2.1 allow to consider much more gen-
eral types of endomorphisms. In [At5] some more general endomorphisms of the
Wiener space are characterized.
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Let T be an endomorphism of the Wiener space. Let (Wt)»o be the Brownian
motion, image of (Wy),5, under T. One says that the endomorphism T is adapted
if the process (Wt>t>0 is adapted to the natural filtration (Fy),~, of (Wy),5o- An

adapted endomorphism is regular the process (Wt)t>0 admits a representation of
the form B

t t
Wy =TW, = / ks dW, +/ hsds.
0 0

Note that in the case where (hy),-, is the null process one recovers martingale-
preserving endomorphisms. -

_ Let T be the operator from ® to @ associated to an adapted endomorphism
T that is, the operator defined by Tf = foT, f € ®. This operator T has the

following properties:
1) it is an isometry (it is unitary if and only if T is invertible)
i) T(fg) = (Tf)(Tg), for f,g € ® such that fg € ®

iii) it preserves the spaces Im Py, for all ¢ € R (or equivalently TP, =
P, TP, tcRY).

The results and the techniques for characterizing regular endomorphisms are
almost the same as for the martingale-preserving ones. The differences are that
the isometry property is not a consequence of ii) and iii) anymore, and that an
operator satisfying iii) is not always representable as quantum stochastic integrals
(a counter example is given in [At5]). We obtain the following characterization.

Theorem I1.9 - Let T be a non null bounded operator from ® to ®. The following

assertions are equivalent.
1) T is the operator associated to a regular endomorphism of the Wiener space.

ii) The operator T admits an integral representation on all ®, it preserves the
spaces Im By, t € RY, it is an isometry of ® and it satisfies T(fg) = (Tf)(Tg)
for all f,g € ® such that fg € ®.

i) The operator T admaits an integral representation on all ® of the form
T:I+/ HfdAﬁ—/ H; dA,
0 0

where:

¢ Hf =Mpy:1 0 Ty, for almost all t, all ¢ € {o, -},
o HP1 is valued in {0, —2} for almost all t,
o (H)* Ty =0 for almost all t.

When any of these conditions s satisfied, the regular endomorphism T associated
to T 1s qiven by

t t
TW; :/ kdeS—l—/ hyds
0 0
where ky =14+ H21 and I, = H 1. [ |
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Note two important remarks. The new type of condition (H,; )* Ty = 0 is the
same as saying (in the probabilistic point of view) that the random variable [; is
orthogonal to ImT;. It is also the condition which gives the isometry property
of T. Another consequence of this theorem is that all the operators associated
to regular endomorphisms are again representable on all & as quantum stochastic
integrals.

In [AE1] the same kind of regular endomorphisms are considered but in dif-
ferent probabilistic interpretations than the Wiener space. If = is a probabilistic
interpretation of ® with coefficient ¥ in its structure equation we say that ¥ is
in the first chaios of x if U; is of the form C' + fot h(s)dzs for some ¢ € € and
some deterministic function h on IRT. One says that a structure equation has the
property of uniqueness in law of its solutions if all solutions of this equation have
the same law. There are four examples of normal martingales whose coefficient ¥
is in the first chaos and which possess the uniqueness in law property: the Brow-
nian motion, the compensated Poisson process, the Azéma martingales and the
case where U is a deterministic function of time.

Theorem I1.10— Let (x4),5, be a probabilistic interpretation of ® with structure
equation d[z, x|, = dt + U, dxy with U beeing in the first chaos of x. Assume that
this structure equation has the property of uniqueness in law of its solutions. Let
T be a non-vanishing bounded operator from ® to ®. The following assertions are
equivalent.

1) T s the operator associated to a regular endomorphism of the probabilistic
interpretation (x¢),5q-

ii) The operator T admits an integral representation on all ®, it preserves the
spaces Im By, t € RT, it is an isometry of ® and it satisfies T(fg) = (Tf)(Tg)
for all f,g € ® such that fg € ® (and where the products are products in the
(x¢) ;>0 -interpretation).

iii) The operator T admits an integral representation on all ® of the form
(oo} 0
T:I—I—/ H? dAS—I—/ H_ dA,
0 0

where:

o Hi =My Ty, for almost all t, all e € {o, 1},

o HP1 is valued in {0, —2}, for almost all t,
o ifk 14+ HOL and 1, & H1 then k20, = kb, TU, and k2 = 1 + 1, TT,,
o (H)*T, =0, for almost all t.

When any of these conditions s satisfied, the regular endomorphism T associated
to T is qiven by

t t
TW,; = / ks dWs + / hsds. |
0 0
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Note the new type of conditions, depending on the coefficient ¥ of the struc-
ture equation: th\Ilt = k;T¥,; and k‘f =1+01,TY,.

When we are in the Brownian case that is, ¥; = 0 we recover Theorem II.9.

When we are in the compensated Poisson case that is, ¥; = —1 we have
k? = ky and k} = 1 —[;. Thus k; is valued in {0,1} and [; is valued in {—1,0}
respectively. But as /4 is orthogonal to ImmT; we have in particular IE[l;] = 0. This
is impossible for a {—1,0}-valued random variable unless I is the null random
variable. In this case k; is identically 1 and T has to be the identity operator. In
conclusion the only regular endomorphism of the compensated Poisson process is
the identity. This is actually not a surprising result.

In the case where ¥ is made of deterministic functions we get in the same
way that: k; has to be 1 and Iy has to be 0 for those ¢ such that Uy # 0; k¢ is any
random variable such that k7 = 1 for those t such that ¥; = 0.

The most difficult case is the case of Azéma martingales. It is proved in [AE]]
that if x 1s an Azéma martingale with coefficient 3, the only possibility for the

t t
:v;:/ ksdxs—l—/ lyds
0 0

to be an Azéma martingales with coefficient 3 is that [; = 0 for a.a.t, k? =1
for a.a.t and t — k¢ 1s constant during the excursions of . The proof for this

process

result 1s purely probabilistic and uses fine properties of Azéma martingales. As
the properties iii) in Theorem II.10 completely characterise such endomorphisms,
I think there should exist a purely algebraic proof of the previous property by
applying properties iii) to the case ¥; = fx;. For the moment I have not been
able to perform this algebraic proof.

I1.2.4 Levy transform as a counter-example to Q.S.D.E.

In [At7] are considered quantum stochastic differential equations with adapted
coefficients. That 1s, equations of the form

dU; = HiUy dAy + KUy dAI + LU dAy + MU, dt

where all the coefficients H, K, L, M are made of adapted processes of bounded
operators. In [At7] sufficient conditions are given for such an equation to admit
a solution and for the solution to be unique. This kind of quantum stochastic
differential equations differs from the kind of equations that are usually considered.
Indeed, usually the coefficient are not time-dependent and above all they are not
adapted. That is, they act trivially on some “initial space” (cf [H-P], [Par] or
[Mel]). I do not intend to detail this theory here but I just want to point out,
for those who are aware about this subject, an interesting example coming from
classical stochastic calculus.
Let us considered much simpler equations:

dUt - (Y—t - I)Ut dAt

It is well-know, in the usual case (that is when (Y%),, is made of operators acting
on some initial space only) that the solution (U;),,, of such an equation is a process
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of unitary operators if and only if (Y;),5o is. This property fails in the adapted
case. Let us show a counter-example coming from Wiener space endomorphisms.

Counsider the martingale-preserving endomorphism, known as the “Levy trans-
form”, given by

t
Wt:/ sgn(Wy) dW,
0

where sgn(Ws) denotes the sign of W,. From Tanaka’s formula we have that
Wy = |Wi| — Ly where (L), is the local time at 0 of the Brownian motion

(Wi)4>0- Thus the natural filtration of (T/AT/i)DO 1s included in the natural filtration
of (|[Wi),>q which is itself strictly included in (Fy),s,. Hence this endomorphism
is not invertible. The associated operator T' on ® is an isometry but it is not
unitary. Let (7%),5, be the operator martingale associated to T'. This martingale
is also made of non-unitary operators. But from previous results such as Theorem

I1.7 we have .
Tt:I+/(Kt—I)TtdAS
0

where for each t € R+, K, is the operator My, for k; = sgn(W;). Thus the Ky’s
are unitary operators (as K = K; and K2 = I). We have indeed an equation
of the form dU, = (Y; — I)Uy dA,; with the Y}’s beeing unitary and the solution
(U¢),>o beeing made of non-unitary operators.

Conclusion

My hope is that 1t is clear from all the results developed along this article that
the connections between classical and quantum stochastic are very deep. Each one
cannot be developed if the other one is ignored.

We have seen that the key points that are linking the two calculus are the Ito
calculus on Fock space, the A-M point of view on quantum stochastic integrals
and the structure equations. About structure equations, it should be mentionned
here that in [AE2], structure equations for multidimensional normal martingales
are studied. In this case it appears that the multidimensional coefficient ¥ cannot
be of any kind. Indeed, before asking for some analytical conditions that makes
the structure equation admitting a solution, the coordinates of the coefficient ¥
must satisfy some algebraic relations. It is worth mentioning that the discovery of
the necessity of these algebraic relations comes from quantum stochastic calculus;
even though the article [AE2] is a purely probabilistic one.

In order to conclude I want to point out that the link between Fock space
and classical stochastic calculus is the chaotic representation property. But M.
Emery proves in [Em2| that there exists a normal martingale which has the pre-
dictable representation property without having the chaotic one. That’s the first
known counter-example which shows that predictable and the chaotic representa-
tion properties are not equivalent.
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We know that the Fock stochastic calculus needs the chaotic representa-
tion property. But it appears through A-L’s characterization of adaptedness and
through A-M’s equations that the only important operators are the P;’s and the
D;’s; that is, operators that are involved only in the predictable representation
property. So a natural question is: is it possible to develop a quantum stochastic
calculus in the predictable representation property context?
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