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Abstract

From Bhat and Parthasarathy (Proc. Indian Acad. Sciences, 104 (1994)) it is known that a
one-parameter semigroup of completely positive maps on a C*-algebra can be dilated to a family
of *-homomorphisms. This provides a non-commutative analogue of Kolmogorov’s construction of
a canonical Markov process starting from an initial distribution and a one-parameter semigroup of
transition probability functions.

Here we formulate the notions of stop time and strong Markov property for quantum Markov
processes. Sufficient conditions on the process as well as its generator are obtained for the strong
Markov property to hold. We define a quantum analogue of the exit time from a domain and show
that the expectation value of an observable at the exit time satisfies a harmonicity property. This
leads to a formulation of the Dirichlet problem on a non-commutative algebra and its solution.

Perturbations of Markov semigroups by multiplicative functionals are investigated and a quantum
analogue of Feymann-Kac’s formula is established. Finally, we study an example of an additive func-
tional of the process and obtain, by a random time change, an analogue of the classical perturbation

of the Laplacian by multiplication by a strictly positive function.

1. Introduction

Let us recall some basic results from the classical theory of Markov processes
(see for example [Dyn]).

Let (X¢),5q be a homogeneous Markov process on the measurable state space
(E,E). Let (F),5 be its natural filtration, (T}),, its associated semigroup and
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L its infinitesimal generator. Denote by IF, the expectation value conditioned by
the event (X = z). The Markov property of (X¢),5, can be expressed as

Er[f(‘Xe-l-f)/}_e] = th(XS> (1'1>

for all bounded measurable functions f on (E,£).
If furthermore (Xy),5, is a strong Markov process we have

E.[f(Xet1)/Fr] = Tif(X7) (1.2)

for every (Fy),~o-stop time 7.
The property that (X;),5, solves the martingale problem associated to the
generator £ can be written as

ELlf(X,)] = F(z) + Ea / " LX) ds). (1.3)

It is also well-known that in ”"good cases” the strong Markov process (X¢),+,
solves the Dirichlet problem associated to £. Indeed, let D be a ”good domain”
in E, let 7(D) be the first exit time of (X;),5, from D (that is 7(D) = inf{¢; X; ¢

D}). Then the harmonicity property for two such domains D C D canbe expressed
as

E | Ex_ 5 f(Xrp)l] = Ee[f(Xe(p))l, (1.4)
which together with (1.3), implies that the Dirichlet problem
Lg(z) = 0, z€D
’ 1.5
s s e -

can be solved by taking g(z) = E.[f(X,(p))].

But all these classical properties can be expressed in terms of some operator
relations. Let (Q,F,(F;),5q. P) be the canonical space of the Markov process
(X¢),>0 given by Kolmogorov’s existence theorem, with some initial distribution.
Let H be the Hilbert space L*(Q,F,P). Let A be the *-algebra of all bounded
measurable functions on (E, ). Then the process (X¢),s, determines a family of
*-homomorphisms j; : A — B(H) by -

Le(F)p](x) = F(x(t) Elh(2)/ Fi].

Here z is the whole path and z(¢) is its value at time t. Let H; = L*(Q,F;, P)
and F; be the orthogonal projection from H onto H;. The Markov property (1.1)

becomes
{ je(1) = Fy (1.1)
Fe jt-l—s(f)Fe = ]q(T‘[‘f) .
For a stop time 7, if F, denotes the projection determined by the conditional
expectation given F, then the strong Markov property becomes

Frjr+t(f)Fr :jT(th)- (1'2I)
The martingale property (1.3) becomes :
Foirlf)Fo=f 4 Fo [ Lesuiu(f)ds Fo (1.3)
0
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Denoting by T'p(f) the expression Fy j-(p)(f)Fo, the relations (1.4) and (1.5)
respectively become

T5(Tp(f) =Tp(f), for DC D (1.4")

and
1p L = 0 /
{<ﬂ3ﬂ(§§g — (A-1p)f (159

with ¢ = T'p(f).

Under this form the properties (1.1') — (1.5) can be meaningful for a general
C*-algebra A which is not necessarily commutative. Furthermore, a stop time
7, when identified with the family (1.<¢),s,, is a particular spectral measure on

R* U {+00} with values in the space of orthogonal projections on H.

When A is a general unital C*-algebra of bounded operators on a Hilbert
space Hy and (T}),-, is a semigroup of contractive, unital and completely positive
maps from A into itself, it is proved in [B-P] that there exists a Hilbert space H,
an injection Ho — H and a family of *-homomorphisms j, : 4 — B(H) satisfying
(1.1"). In that way, one gets a non-commutative extension of the notion of a
Markov process.

In this article we consider the same non-commutative context. When one is
able to give a meaning to the expression j, for all quantum stop times 7 (that is,
spectral measures of projections on H satisfying some adaptedness condition), we
get that the Markov process (ji),5 1s a strong Markov process in the sense that
it satisfies (1.27). B

We give two kind of sufficient conditions for the process to be strong Markov.
The first one is a Hilbertian quasimartingale-like condition, inspired from Enchev’s
characterization ([Enc]). As quantum stochastic integral processes on Fock space
([H-P]), when applied to vectors, always give rise to such quasimartingales ([A-M]),
this sufficient condition is valid for example in the case of any minimal Evans-
Hudson flows on Fock space ([E-H]). The second sufficient condition is actually
stronger than the first one but has the advantage to be expressed as a regularity
assumption on the semigroup and the generator of the quantum Markov process.
It applies for example in the case where the generator £ is bounded.

We then prove that the martingale property (1.3%) is obtained for any quantum
strong Markov process.

We define the notion of “exit time from a domain” for a quantum strong
Markov process. What we call a domain here is actually a central projection in A,
and the exit time we obtain so is a quantum stop time. We then get the harmonicity
property (1.47), which together with (1.3") allows to show that the general non-
commutative Dirichlet problem (1.5") can be solved by taking the “expectation”
of the Markov process “killed when it hits the boundary of the domain”.

We then pursue the analogy with the classical theory by investigating several
examples of perturbations of the semigroup by multiplicative functionals. In one
particular example we obtain a quantum generalization of Feynman-Kac’s formula;

3



S. Attal & K.R. Parthasarathy

that is, a perturbation of the generator by addition of the multiplication operator
by a negative central element of 4. Finally we study one example of perturbation
of the semigroup by additive functionals and obtain, with the help of the quantum
Feynman-Kac’s formula, a multiplicative perturbation of the generator by a change
of the time scale.

2. The basic construction

The results presented here are proved in [B-P] in a more general context.

Let A be a unital C*-algebra of bounded operators on a complex Hilbert space
Hy. Let (T}),~q be a semigroup of contractive, unital and completely positive maps
from A into itself. Recall that complete positivity means

Y XIT(Y!Y)X; > 0
i)
for all X; € B(Hyp), Vi€ A, i =1,....n. Let
D={(r,Y,u);u € Hy,r=(r1,---,rn) € (R, 11 > > 1y,
Y=(Y,...,.Y,) € A", n > 1}.
If(r,Y,u) € Dands = {s1 > +++ > s, > O} issuch that {ry,...,rn} C {s1,...,8m},
we define (s,Y,u) € D by
?j _ {YZ if s =i for some 1
I  otherwise
where I denotes the identity operator on Hy.
The semigroup (Tt>t20 defines a map L7 : D x D — € by
Lr((r,X,u),(r,Y,v))

= <, T (X3 Ty (X0 X5 T (XTV)Y Yoy Yoo >

and L7((r,X,u),(s,Y,v)) = Lr((rUs, X, u),(rUs, Y, v)) where rUs is obtained
by arranging {r1,...,7n} U {S1, ..., $n } in the decreasing order.

The complete positivity of (T}),s, implies easily (see [B-P]) that Lt is a
positive definite kernel on D x D. With the help of G.N.S. principle (see [Par],
Proposition 15.4, for example) the following result is proved in [B-P].

Theorem 2.1- There exists a Hilbert space H, an increasing family (Fy),~, of
projection operators on H, a family of *-homomorphisms j; : A — B(H),t > 0
and a unitary isomorphism V' from Hg onto the range of Fy satisfying the following
properties :

(1) 7¢(I) = Fy, for allt > 0;

(i) Foje(X)Fs = js(Ty—s(X)) for anys<t, X € A

(iil) Jo(X)V = VX for all X € A;

(iv) the set {jy, (X1)..ge, (Xn)Vu;ty > t2 > - > t, > 0,X; € A1 €
{1,...n},n>1,u € Hyo} is fm‘al i H;
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(v) for any u,v € Hyr = {ry > - > r, >0}, s = {s1 > -+ > s
0}, X,,Y; € Ai €{1,...,n},5 € {1,...,m} one has

<Jr (X1)edrn (Xn)Vu, 45, (Y1)eods,, (Y )Vo> = Lo((r, X, u),(s,Y,v)). N

v

As explained in the introduction such a quadruple {H, (F),sq, (J¢);>0, V' }
may be considered as the non-commutative Markov process with contraction semi-
group (Ty),~q- Following [B-P], a quadruple {H, (F}),~ . (Jt);50V } satisfying con-
ditions (i), (i) and (iii) of Theorem 2.1 is called a conservative Markov process. The
process is sald to be minimal if, in addition, it satisfies condition (iv). Two such
minimal Markov processes {H,(F}),50, (Jt)i>0, V) and {H', (F)),;>0: (1) ;>0 V'}
are said to be equivalent if there exists a unitary isomorphism W : H — H' such
that WFEW* = F], Wi, (X)W* = j)(X) and WV = V' for all t > 0,X € A.
In [B-P] it is proved that the minimal Markov process given by Theorem 2.1 is
unique upto equivalence.

Let Z be the center of the C'*-algebra A. It is possible that T} may not map
Z into itself, thus the family {j(Z); Z € Z,¢t > 0} may not be a commutative
family. But, noticing that j7,(X) = 5,(XI) = j«(X)j:(I) = 7:(X)F;, the operator
J#(X) is determined by its restriction to the range of Fy, for all X € A. Hereafter
the range of Fy is denoted Hy, for all ¢ > 0. In [B-P] it is proved that if Z belongs
to Z, the operator j;(Z) can be lifted into an operator k(Z) € B(H) such that
Ji1(Z) = ky(Z)F; and such that the family {k(Z); Z € Z, t > 0} is commutative.
In other words, the minimal Markov process (j¢)¢>0 when restricted to the center
of A can be obtained as a conditional expectation of a purely commutative process.
This 1s expressed by the following result.

Theorem 2.2- There ezists a unique *-unital homomorphism k; : Z — B(H)
such that

(1) ke(Z) g, (X1) - Je, (X)) Vu

= g6, (X1) - gt (Xim1)7e(2) g1, (Xa) - - g0, (X )Vu where ti_q >t > t;;
(ii) the family {ki(Z); Z € Z,t > 0} is commutative;
(1) j¢(Z) = ke(Z)Fy for allt >0, z € 2. [ |

From now on we make the following assumptions on (T}),5, :

(1) (Tt>t20 1s strongly continuous that is, EE,% |T5(X) — i(X)H = 0 for all
X e A alt>0;

(i) To(X) = X for all X € A.

Furthermore, recall an important property: as j; and k; are homomorphisms
from a C*-algebra to a Banach algebra we have, from a well-known theorem of
functional analysis (see [Dix] for example), that

17X < I X|| and |[k(Z)]| < || Z]]
foralltc RV, X € A, Z € Z.
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3. Preliminaries

Let N = {(r,X);r = (r1,...,7n) € (RT)", X = (X1,..,Xn) € A", n > 1}.
For all (r,X) € N let j(r,X) = j, (X1) - Jr, (Xn). For all (r,X,u) € D let
Ar, X, u) = j(r, X)Vu.

The following proposition is a consequence of [B-P] Proposition 2.6 and some
remarks in [Bhl]; these results can be easily recovered by several applications of

Theorem 2.1 (1) and (ii).

Proposition 3.1 -
(a) For all (r,X) € N the expression j(r,X) can be reduced to an expression
of the form j(s,Y ) where s; > -+ > sp < $gp41 < -+ < sy for some k € {1,...,m}.
(b) There exists a map € : N — A, independent of the Markov process and
satisfying

Fo j(r, X)Fy = jo(e(r, X)). (3.1)

Furthermore the map ¢ satisfies the following properties :
Foj(r,X)" Fy = jo(E(r*, X")) (3.2)
E(r+5,X)=Ts(E(r, X)) (3.3)
Foj(r+s,X)Fs = js(E(r, X)) (3.4)
where v* = (rp,ro—1,..,7m), X' = (X2, X ..., X{) andr+s = (r1 +s,72 +
Sy T+ 8). [ |

Lemma 3.2 For all (r,X,u) € D, all s = {s1 > --- > sm > 0}, one has
Ar, X u) = AMruUs, X, u).

Proof
One has
[A(r, X, u) — A(r U s, X, u)]|?
= || A, X, ) |2 + A rUs, X, u) || =2 R <A\, X, u), MrUs, X, u)>.
By Theorem 2.1 (v) we have
<Ar, X, u), AMrUs, X, u)>= Ly((r,X,u), (rUs, X, u))
which is equal to Lo((r, X, u), (r, X, u)) by definition. [ |

For all X € A, let Rx denote the mapping

RX A = A
Y —YX.

Lemma 3.3 For allt € R™, all (v,X,u) € D one has

Ar, X, u) if t2>r
F; /\(I‘, Xa u) = jt<T7‘i—1 —i RXi—1 T”‘i—z—?‘i—1 RXi—z e RXQTT1 —7r2 (X1 ))
X]rz(X1)]rn(Xn>Vu if ricy >t >,
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Proof

The case t > 1y is obvious from Theorem 2.1 (i) and Lemma 3.2. Sup-
pose ri—y > t > ry. Notice that if ry > ry > ¢ one has Fyj,, (X1)j,(X2) =
Fi Frzjﬁ(Xl)FTz jT2<X2> = thrz(Trl—W(Xl))sz(XZ) = thrz(‘RXzTTl—Tz(Xl))'

Thus the result is obtained by repeating this procedure to the expression
FiMr, X, u) = Fijr (X1) - griy (Xiz1)gre (X3) -+ 3 (X)) Vi u

Lemma 3.4 For all s <t <u, X € A,Z € Z, one has the following properties :
) ks(Z)Fy = Fi ko(2)

i) ks(2)j(X) = ju(X)ks(Z)

i) 1 2)F = D

iv) Fuka(Z) = Fujul2)

v) k ( )J(X) = ju(2)ju(X)

vi) jl(X)ku(Z) = je(X)ju(Z).

Proof

From Lemma 3.3 (resp. Theorem 2.2 (1)) one sees that when F; (respectively
ki(Z)) is applied to A(r,X,u) all the j,,(X;) in Ar,X,u) with r; < t (resp.
ri # t) remain unchanged. Thus, for all s < t one has ks (Z)F; AM(r, X, u) =
Fiks(Z)M(r, X, u). One gets (i) by totality of the vectors A(r, X, u) in H. Property
(ii) is clear from Theorem 2.2 (i) and the previous result. If u > ¢ then F; =
F,F, = F, F,, thus k,(Z)F; = k,(Z)F, F; = ju(Z)F;. Furthermore F; k,(Z)
FiF,ky(Z) = Fyky(Z)F, = Fyj,(Z). This proves (iii) and (iv). Properties (v
and (vi) are easily deduced.

(i
(
(
(
(
(

—r

Let By be the *-algebra generated by {j:(X),ks(Z);s,t € RT,X € A, Z €
Z}. Let N = {(r,Z) € N;Z; € Z for all i}. Let M = {(s,r,X,Z); s =
(51, 80) € (RT)" v = (r1,.00yrp) € 8,X = (X1,.., X)) € AP Z = (Zy,...
 Zy) € 2P, n>1, p<n}. For(r,Z) € /\7, k(r,Z) denotes

ke (Z1) Ky, (Zy).

For (Syryx-yz) E -/My h(syr7X7Z> denOteS the element h51(Yl> t hS"(lfn> E BO
such that
he (Vi) = {]Sl(Xl) otherwise.

Lemma 3.5 Let (s,r,X,Z) € M. Then there exists (t,2Z') € N and (u,X") e N
such that t Uu = s and

h(s,r,Z,X) = k(t,Z")j(u,X’).
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Proof

From Lemma 3.4 (ii) and (v) one sees that in hy, (Y1) - hs, (Y;) every term
of the form ks, (Y;) either commutes with a j,, (Y%) on its left (if s > s;) or is
transformed into a j,(Y;). Thus one can always write h(s,r,X,Z) as

ki (Z1) -+ ke, (Z3) gy (XT) -+ i (X7). u

Lemma 3.6 — There exists a mapping € : M — A, independent of the Markouv
process, satisfying

Foh(s,r,X,Z)Fy = jo(E(s,r, X, Z)). (3.5)
Furthermore, the mapping £ satisfies the following properties :
E(s+t,r+t,X,Z)=Ti(E(s,r, X, Z)); (3.6)
Fih(s+t, v +t,X,Z)F; = j;(E(s,r, X, Z)). (3.7)
Proof
By Lemma 3.5, the element h(s,r,X,Z) can be written k(t,Z')j(u,X’). As
the k¢, (Z]) are pairwise commuting one can assume that t; < --- < t,. Thus

by Lemma 3.4 (iv) and (vi) we have Fy h(s,r,X,Z)Fy = Fy j(t,Z")j(u, X"\ Fy =
Fo j((t,u),(Z',X"))Fo = jo(&((t, u),(Z",X"))). Thus the mapping

E(s,r,X,Z) = &((t,u),(Z', X))
satisfies (35)

Furthermore, if one considers t and u as functions of s and r, it is clear,
since t and u form simply a partition of s, that t(s + h,r+ k) = t(s,r) + h and
u(s + h,r + h) = u(s,r) + h. Properties (3.6) and (3.7) are then easily deduced
from (3.3) and (3.4). [ |

4. The time-shift

Let B be the C*-algebra generated by By. The aim of this section is to
construct a time-shift that is a semigroup (Ht)tzo of *-endomorphisms of a *-
algebra P containing B, satisfying 6;(js(X)) = js4+(X) and 0,(ks(Z)) = ksy4(Z).

The proof of the following proposition is an extension of the proof of [Bhl]
where the time shift is constructed on the C'*-algebra generated by the j,(X) only.

Proposition 4.1 - There ezists a unique semigroup (8¢)i>0 of *~endomorphisms of
B such that 0¢(7s(X)) = js+¢(X) and 04(ks(Z)) = kst(Z) for all s,t € R+,X €
A Z e Z.

Proof

Define 6;(j5(X)) to be jo4+(X) and 64(ks(Z)) to be koi4(Z) for all s,t €
RY, X € A, Z € Z. The proposition will be true if we prove that 6; extends
to a well-defined contractive semigroup of *-endomorphisms of By as then we can
extend 6; to B by taking norm-limits.



Strong Markov processes on C*-algebras

Let A=), h(sp,ry, Xy, Z,) be an element of By, for some (s,,1,, X, Z,)
belonging to M, n =1,...,N. For all (v, Y, w;) € D, all k € {1,..., K} we have

Z <Aj(vi, Yi)Vwr, Aj(ve, Yo)Vwe >
k(

<JlA? Z <J(Vr, Yi)Vwr, j(ve, Yo)Vwe >, (4.1)
k¢
But the left hand side of (4.1) is equal to
D <h(sprp, Xy, Zp)i(vi, Yi) Vg, h(sq vy, X, Zg)j(ve, Yo) Ve >
k.tp,q
= Y <k(ty, Z)j(0p, X}) i (i, Yi) Vi, k(tg, Z0)j(ug, X})j(ve, Y o) Vg >
k.tp,q

(by Lemma 3.5)
= Y <V, j(vi, Yi)i(up, X )k(t), Zy k(tg, Z))

kl.p.q
Gy, X)) (ve, Yo) Ve >. (4.2)
Let Ak f.p,q — Vz U ll;; U t; U tq Uuy U Vy, let bk,f,]hq = t; U tq, let Jk’47p7q =
(Yz, X;*, X;,Yg) and let Ki ¢ pq = (Z;*, Z;). Then, as the range of V' 1s included
in the range of Fp, by Lemma 3.6 one has that (4.2) is equal to

Z < Vwk Y jo(é(ak,ZJLq; bk7£7p1q7 Jk7£1p7q7 Kk1£7p7q>)vujk > (43>
k.t,p,q
The right hand side of (4.1) is equal to

IAI2Y " < Vwk, jo(E((VE, ve), (Y7, Y0))) Ve >,
k¢

As jo(X) = VXV* for all X € A we finally get

: : < Wk g<ak7£1p7q’ bk‘,ﬂ,p,qa Jk:£7p7q’ Kk’Lp’q)wﬂ >

k.t,p,q
< HAHZZ< wi s E((VEsve), (Y, Ye)Jwe >.
k.0
That is,
()" €@k tpabripa Tnipa Kerpa) < NAIP(E((VE, Vo), (Yi. Y0)  (44)
Pyq

as operators on B Hy .
Now let By = 6,(A) =, h(sp+t, v, +t, Xy, Zy,). Let n =Y, j(vi+t, Yi)&
for arbitrary & in Hy, for k = 1,...., K. Then we have
<Bwm, Bin>= Y <&, j(vi+t,Y0)i(up+t, X )k(t) +1,2))
k.tp.q
k(ty+1,Z)j(ug +,X0)j(ve+1,Ye)Er >

9
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= Z < fk ? h(ak7[’p’q + t7 bk7£7p1q + t’ Jk1[7p7q7 Kk7£7p7q>§£ >

k.t,p,q

= Z < Ek ? j‘t(é(ak,f,p’qa bkvlvpaq’ Jk7£7p7q7 Kk‘,f,p,q)g[ > by (37)

k.tp,q

From (4.4) and the complete positivity of the endomorphism j; we finally obtain

<Bin, Bin>=||AIPY <& (v, ve), (Y5, Y0)))6e >
k0

= |A|I’<n, n>.

As vectors of the form of 7 are dense in H we have ||6,(A4)|| < ||A||. Hence (Gt)t>0
is a semigroup of contractive *-endomorphisms of By. It extends to a semigroup
of contractive *-endomorphisms of B. [ |

We now introduce a non-commutative analogue of the classical “intrinsic
topology” associated to a Markov process.

For every t € RY,¢) € H, define on By the seminorm ||Y|;y = ||6:(Y)9|.
The family fo seminorms {|| - ||¢,4,t € RY,) € H} is separating. Let 7 be the
topology induced by this family of seminorms. Notice that a sequence (Y5,), in Bo
is convergent for the topology 7 if and only if the sequence (64(Y},)), is strongly
convergent for all ¢ > 0. Let P be the closure of By under the topology 7.

Lemma 4.2 The space P 1s a *-algebra containing B.

Proof

If (Yy), is a norm-convergent sequence in By then so is (64(Y},)),, for 6; is
contractive; hence (04(Y},)), is strongly convergent. As B is the norm-closure of
By we get B C P.

The space P is clearly stable under the adjoint mapping Y — Y*. Now, recall
that if (A,,), (resp. (By),) is a sequence of bounded operators converging strongly
to A (resp. B), then by the Uniform Boundedness Principle, (A, B,), converges
strongly to AB. This remark, together with the fact that 6; is a homomorphism,

imply that if A and B belong to P then so does AB. [ |

Theorem 4.3— There exists a unique semigroup (8;)¢>0 of contractive *-endo-
morphisms of P such that 6,(js(X)) = js4(X) and 0,(ks(Z)) = ksy4(Z) for all
s,qteERTY, X €A Ze2Z.

Proof

From Lemma 4.2, P is the 7-closure of B. If (Y},), is a sequence in B con-
verging to Y € P then (Y,), converges strongly to Y and (6;(Y})),, is a strongly
convergent sequence, for all t > 0. The operator lim,,_,~, 6;(Y) is an element of
P for if (X,), is a T-convergent sequence then so is (6,(X,)), for all s. Further-
more, this limit depends only on Y for if (Y})) is another sequence converging

to Y then (Y, —Y,) 7-converges to 0 and consequently (6;(Y, —Y)), converges

7
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strongly to 6,(0) = 0. Define 6,(Y") to be lim,_,o 6¢(Y,). Then, restricted to B,
the mapping 6; is the one given by Proposition 4.1. Consequently, if XY € P
and (Xp), (resp. (Yy),) is any sequence in B 7-converging to X (resp. Y') then
0/(XY) =s—limp o0 61(X0nY5) =8 — limy 00 64(X0)60:(Ys) = 0:(X)0:(Y). [ |

5. Non-commutative stop times

In classical probability theory a stop time 7 on the canonical space of a Markov
process (x;),5 is characterized by the family of projections 1,.<; on L*(Q). Fur-
thermore, the event (7 < t) is measurable for F; that is, it is “independent” of
f(zy) for u >t (more precisely it is conditionally independent of f(z,) given ).
Translating these properties in our context we take the following definition.

A stop time (or a Markov time, to follow Dynkin’s terminology) 7 on H is a
spectral measure on IR U {400} with values in the set of orthogonal projection
operators on H and such that

7([0,¢]))7u(X) = Ju(X)7([0,¢]) forallu >t, X € A. (5.1)

The commutation relation (5.1) expresses that 7([0,t]) does not interfere with the
future “trajectories” of the Markov process. In other words “knowing that the
event of stopping at time 7 has occured before time ¢ does not affect the Markov
process after time ¢”. In the language of physicists this is called the non-demolition
property. Note that in the context of commutative Markov processes the condition
(5.1) exactly expresses the fact that (7 < ¢) is a Fy-measurable event.

In the following we adopt a probabilistic-like notation : for every Borel set
E C R" U {+oo} we write l,cr instead of 7(E), in the same way 7([0,t]) is
denoted 1<, 7({t}) is denoted 1,—, etc...

A stop time 7 1s finute if 1=y = 0.

A stop time 7 is bounded by T € R™ if lr<7=1.

A stop time 7 is discrete if there exists a finite set E = {0 <t; < -+- <t, <
+oo} such that 1,cp = I.

A point t € R™ is a continuity point for 7 if 1,—; = 0. Notice that any stop
time 7 has an at most countable set of points which are not continuity points for
T.

A sequence (7y,),, of stop times converges to a stop time 7 if for every continuity
point t of 7, the operators 1., <; converge strongly to <.

For any two stop times 7 and 7/ one says that 7 < 7/ if lr<i > Nr<q for all ¢
(in the sense of the positivity of the operator I,<; — I <¢).

Let 7 be any stop time. By a sequence of refining 7-partitions of R we mean
a sequence (E,), of finite sets B, = {0 <t <17 <--- <t} < 4oo} such that

(1) all the t7 are continuity points for 7

(ii) E,, € Epyq for all n

(iii) the diameter, sup {#,; —t7',i = 1,...,1,}, of E, tends to 0 when n tends
to +o0.

(iv) tr tends to +o00 when n tends to +oo.

11
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The following result is inspired by [P-S], Proposition 3.3 and [Mel].

Proposition 5.1 - For every stop time T there ezists a sequence (7,,)y, of discrete
stop times such that 7y > 19 > -+ > 7 and (7,), converges to T.

Proof

Let E = {0 <t <t3 < -+ < t, < +oo} be a partition of R". Define a
spectral measure 7g by

‘ . ]17-<t1 ifi =1
Te({ti}) = { Lrepis iy 021
TE({+o0}) = Lr>y, .

The spectral measure 7 clearly defines a stop time on H and we have 75 > 7.
Taking a sequence (E, ), of refining r-partitions of IR™ gives the required sequence
(Tn>n = (TEn>n Details are left to the reader. [ |

When F = {0 <t; <ty < -+ < t, < o0} is a partition of R™ the stop
time 7 is then supported in {t1,...,t,} U {4+0oc}. In that case we put t5 = 0 and
tnt1 = +o00 so that we get lrp=¢, = gy, 1,0 = 1,n+ L.

The rest of this section is devoted to constructing the value Fr of the family
of projections (Fy)¢>0 at any stop time 7 .

Lemma 5.2 - One has Foodéf limyyy0 Fr=1.

Proof

The family (F});>0 is an increasing family of projections so it admits a strong
limit which is the projection on the Hilbert space spanned by U;H,. But, by
Lemma 3.3, we have that A(r, X, u) belongs to H; for all (r,X,u) € D such that
ri < t. Thus, every A(r,X,u) belongs to U H;. We conclude, by totality of the
A(r,X,u) in H, that U;Hy is equal to H. [ |

For all t > 0 we have Fy = j,(I), thus by (5.1) we have
l,<s Fy = F; 1<, for all s <t. (5.2)
Note that (5.2) is obviously valid for ¢t = 4oc.

The following result is proved in [Bh2]|, Theorem 4.10 and can be deduced by
computing the explicit formula giving the mapping € in Proposition 3.1.

Proposition 5.3-If (T});>0 is strongly continuous then the maps t — Fy; ¢ and
t — J¢(X)¢ are continuous for every X € A, ¢ € H. [ |

12
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Since we made the assumption that (T is strongly continuous we have
p t)i>0 y

the continuity of ¢ — Fy ¢ for all ¢ € H.

For a discrete stop time 7 we define
Fr = Z ]lrztiFti (: ZFt’ ]lrzti)-

The operator F; is clearly a projection operator, let H, denote its range. In order
to define F; for any stop time 7 we are going to approximate 7 by a sequence of
discrete stop times (7,), as described in Proposition 5.1 and prove the conver-
gence of (Fy, ). That is, we want to prove the convergence of 3, Trcry,_, 1,1 Fr; (=
> 1e t17t1+1]Ft1+1 by changing the indices) when the diameter ¢ of the partition
{ti,i =1,...,n} tends to 0.

Proposition 5.4 Let 7 be any stop time. Let (Ey), be a sequence of refining
T-partitions of RY. Let 1, = 7p,, n € IN. Then the projections Fy, converge
strongly to a projection Fr which is the projection on the space Hr = N, H, .

Proof

Let (E,), be a refining sequence of 7-partitions of R'. Let 7, = 7g,,n € IV
as described in the proof of Proposition 5.1. Let n <m € IN. As E,, C E,, we
can suppose that E, is of the form {0 < #; < --- < t,} and E,, is of the form
{0< - <t =t <t!l < - <t =t;41 <---}. Let » € H. One has

<, (Fr, = Fr, )¢ >
=<9, Z]lre [t tip) Frig 0> — <, Z Z ]lre[tJ #41] tJ+1L/J>

= Z Z<’I,/)7 t.] t.7+1 (Ft1+177b Fti:+1¢)>

But as all the tf are continuity points for 7 we have ]].Te[t,g’t‘gﬁ—l] = ]lre]tff,t{“] =

1__+ —1__,, thus by (5.2) the operator ]lre[ti 4 commutes with Fy, , and
k2 (2 k2 t’f7..+1

2

F,i+1 (we do not discuss the case where t;41 = = +o0 as it is obvious).

td
Consequently, we have

<Y, (Fr, = F. )¢ >
= D <Pt L g P> = <Fynd, 1 i Fyndp >]

= Z Z[’l]lre[tg,t'g+1]Fti+1¢H2 HFJ‘H tJ t‘7+1 Fh+1¢“ j|
i J

>0

The sequence (Fy, ), is thus a decreasing sequence of projections. Hence it con-
verges strongly to a projection F; which is the projection on H, =N, H,, . [ |

13
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By denoting the limit F; and its range H, we have anticipated a result to be
proved now. Indeed, the limit F> may depend on the sequence (7,,), and not only
on 7. We are going to prove a result which is interesting in itself as it makes the
connection with the usual properties of classical stop times, and as a corollary we
will get that F, depends only on 7.

Lemma 5.5 For every stop time 7 on H, every o € H, everyt € RT one has :
() I,<; Frip € Hy
(i) Lr<¢ Frep € Hy.

Proof
(1) One has
ﬂrgt Frnl/J = ]lrgt Z ﬂre[ti,ti+1]Fti+1¢

= Z ]lrst ]]-TE[ti,ti+1]Fti+1¢ + ]]'TE[tiO,t]FtiO+1,¢
i<io—1
where t;, <t <t 41
= Fi Z ]lfﬁt]lTE[ti,ti+1]Fti+1¢ + ]lTE[tio,t]Ftio+1?7/)

i<ig—1
+ Fy Z ]1"9 ﬂTE[ti,ti+1]Fti+1¢
i>ig+1

as the last term actually vanishes

= F ]ITSt Z ]lre[ti,ti+1]Fti+1¢ + ]ITE[tio,t] Fti0+177/)

— Fy ]lrgt ﬂre[tio,tio+1]Ftio+1¢
= Ft ]17'575 FT7L?7/) + ]lre[tio,t](Ftio+177b - Ftd))

The left hand side of this identity converges to l.<¢Fre, the first term of the
right hand side converges to Fill,<Fr1 and the second term converges to 0 by
continuity of + — Fy ¢, This proves (1).

The proof of (ii) is the same, one just has to check that the operator 1,
commutes with F, for all u > ¢, even for those ¢ which are not continuity points

for 7. Let u > t, ¢ € H. One has
11r <t Futp = Fulecitp|?
<2 MrcePuth = gy Futh|* + 20 Full,p 1 = Fullo it
< 2H]17'€]t—%,t[FlL77/)“2 + QH]lre]t—%,t[?Z)HQ-

This quantity converges to 0 when n tends to +oc. [ |

Theorem 5.6 — For every stop time 7 one has
H, ={y € H; 1.« € Hy for all t}
= {'Qb € H, ]].7-<t ¢’ € Ht fOT’ all t}

14
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Proof

Let E< be the set {¢p € H;l,<4p € Hy for all ¢t} and let E. be the set
{ € H;1.<4tp € Hy for all t}. I ) € H, then ¢ = Frtp and by Lemma 5.5 l,<; ¢
and -« are elements of H; for all t. Thus H, C E< and H, C E..

Let vb € E~. One has

Frn¢ = Z ]lTE[ti,ti+1]Fti+1¢ = Z ]ITE[ti,ti+1[Fti+11/]
= Z<]I7'<ti+1 - ]1T<ti)Fti+177/)
= Z Fti+1 (]17'<ti+1 - ]]'T<ti )¢

But, as 1 belongs to E<, (Ir<t,,, — Lr<¢;)¢ is an element of H; Thus

Frn@b = Z(]lr<ti+1 - ]1T<ti)77b = ¢

i1

Passing to the limit we get Frip = 1, thus ¢ belongs to H; and we have proved
that E. C H,.

The proof of E< C H is the same as E< C H- by noticing that L.¢p, ¢,,,[ =
]lre]t,-,ti+1] = ]lrgtH_l — Lr<y, . |

Corollary 5.7 H,; and thus Fr depend only on 7. [ |

Two stop times 7y and 7 are said to be commuting if 1, ¢p and 1,,cp com-
mute for any two Borel sets E, F C RT U {4+oc}.

Proposition 5.8 - For any two commuting stop times 71 and 79, there emists a
stop time T N\ T2 satisfying
]1T1/\T2St = ]lrlst + ]17-2St - ]1T1§t ]]'TQSt' (53)

Furthermore one has 7y A1 < 73, 1+ = 1,2 and if 7 18 any stop time such that

7 <7, i=1,2 then one has T < 11 A 3.

Proof
Identity (5.3) can also be written as : 1 ar,>¢ = Lr, 5417, 5¢. Thus the family
(Tr, Ara<t) g 18 clearly aright continuous nondecreasing projection valued function

of t on Rt U {+0o0} and hence can be extended uniquely to a spectral measure
71 A 73. The fact that 1, rr,<¢ commutes with all the j,(X),u > #,X € Ais
clear. Furthermore we have 1 ar,>t > I, 2 = 1,2,8 € R" thus i A < Ti,

i = 1,2. If 7 is another stop time satisfying 7 < 7, + = 1,2 we then have
]1T>t Z ]1Ti>t;i = 1,2, thus ]1T>t Z ]]-T1>t]17'2>t = ]1T1/\T2>t- This proves T S ™ /\7'2.
|

15



S. Attal & K.R. Parthasarathy

We now prove an analogue, in our non-commutative context, of Doob’s con-
ditioning theorem.

Theorem 5.9 - For any two commuting stop time 71 and T3 one has

FTlFTQ :FTQFTl = T1/\T2

Proof
Let E = {t;,i = 1,..,n} be a partition of RT. Let 7 (resp. T2) be the discrete
stop time built from 7y (resp. 72) and E as in Proposition 5.1. We have

FﬁFf'z = E E ﬂTlE[ti7ti+1]Fti+1 ]172€[tj,tj+1]th+1
(A

= § : E :]lfle[ti7ti+1]Fti+1 th+1 ﬂfze[tjatjﬂ]
i J

= E , E :]lTle[tiyti+1]Fti+1/\tj+1]lTQE[tjvtj+1]
? J

- Z Z ]17'1 E[ti,tz’+1]th+1 ]1T2€[tj,tj+1]

P g<i

+ Z Z Lo et tipa Frign Drogty t40)
i j>itl

= E :]17'12’%‘ ]lfze[tj,tj+1[th+1 + E :]17'1E[ti7ti+1[]17'22ti+1Fti+1
7 1

= E []17'12751' ]17'22751' - ]17'1 >t; ]17'22ti+1 + ]17'12751' ]17'22ti+1
7

- ]17'1 >t ]lTQZti+1]Fti+1
= Z[]lﬁ ATo2t; = ]17'1 ATa 2141 ]Fti+1
?

= Z ]171/\T2€[ti7ti+1[Fti+1
i

— H ———

o T1A\T2

where 7 A 75 is the discrete approximation of 7y A 75 based on the partition E.
Thus, passing to the limit, we get the result. [ |

6. Strong Markov processes

The process (jt),5o of *-homomorphisms on A represents our Markov process.
In order to define strong Markov processes we need to define the value j- of (j¢),5,
at a stop time 7. When 7 is discrete, j, can be obviously defined by -

jr(X) = Z Tr=y; ju,(X) = Z e (X)r=y; = Z D= jei(X)Tr=s;.

16
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For a general stop time 7 we wish to pass to the limit through a sequence of
discrete stop time (7,), converging to .

We say that the Markov process (j¢), is 7-regular on (Ao, ﬁ), for a quantum

stop time 7, a dense subspace Ay of A and a dense subspace H of H if for every
sequence (T ) of discrete stop times converging to 7, every X € Ag, every ¥ € H
the sequence (j,, (X)¥), converges in H to a limit ],.(X)\Il which is independent
of the choice of the sequence (7,,), .

We say that the Markov process (j¢),~, is a (quantum) strong Markov process

if there exists a dense subspace Ay of A and a dense subspace H of H such that
(],«)t>0 is 7-regular on (Ag, H) for every finite stop time 7.

Proposition 6.1 Let (j;),, be a strong Markov process. The mapping ¢
J- (X)) defines a bounded linear mapping which extends to a bounded linear oper-
ator j-(X) on H with norm dominated by || X||. The mapping X — j,(X) extends
to a (contractive) *-homomorphism on A.

Proof
Let ¢ € H,X € Ag. Let 7 be a discrete stop time. Then

i (X)p[|* = I\Zﬂmu’t J$l* = Z!Iﬂr e ey
< |1 X ZHﬂmﬂsz = [ X Il 11"

If 7 is now any finite stop time and (7,,),, is a sequence of discrete stop times
converging to 7 then

. . . . 1
17 (X)PN = 157 (X)% = G, (XD g, (X)) < =+ X[ [[4]

for n large enough. Thus ||j-(X)¢| < || X] ||¢]]. As H is dense in H we get that
Jr(X) extends to a bounded linear operator on H with norm dominated by || X||.

The mapping X — j-(X) is then a continuous linear mapping on Ay which
is dense on A. Thus it extends to A. Let us check the morphism property. If 7 is

discrete we have
Gr(X)ie (V) = 3 3 Brmti s (X) ey, 1y (V)

i J

_= Z Z 7tz (X)]]'T:tz ]]-thj jtj (Y)
i J

= Z ]lr:ti jti (X>]tz (Y>

= Z ]1T=ti jti(XY)

= j-(XY).

17
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Now let 7 be any bounded stop time and (7,),, be a sequence of discrete stop
times converging to 7. Let v € H, X, Y € Ay. One has

17(X)j7(Y) = 5-(XY)]]|
<N XY) = G, (XY + (|7, (X)), (V) = i, (X) 7 (V)]0 4
Ui ()i (V) = 52X (V)19 |
< GAXY) = o, (XY + [1X][ N7, (V) = 5-(V)]0][+
| lr (X) = 5 (X)]5-(Y)2|.
This expression converges to 0 when n tends to +o0c. Thus for X, Y € Ag one

has j,(XY) = j,(X)j-(Y) on H. As all these operators are bounded this equality

holds on the whole H. Furthermore, as [|j-(X)|| < ||X]| for all X € A, the
morphism property extends to A. |

For any stop time 7 and any ¢t € IR define the stop time 7 + ¢ by

1 _ 0 if s<t
THES T gy i s >t

If 7 is finite then so is 7 + ¢.
Now the naming “strong Markov process” is justified by the following result.

Theorem 6.2 (Strong Markov property)— Let (j¢),~o be a strong Markov process.
For any finite stop time 7, any X € A, any t € RT, one has

Fr.jr+t(X)Fr = ]T(Tt(X))

Proof

Let 7 be a discrete stop time, then

Frjrgt(X)Fr = ey, Fr My, i, 14(X)1rmy, F,

i,k

=Y Fileey, Loy, ji;44(X) ey, Foy
0,5,k

= Z Fti ]lT:ti jti-l-t(X)]lT:tk Ftk
i,k
= Z Lr—y; Fy, jti+t(‘X>Fti

= Z Tr=s, ju. (T3 (X))

= Jr(Ti(X)).
When 7 i1s any finite stop time one approximates 7 by discrete stop times. Hence
there exists a sequence (7,), of discrete stop times such that Fy, converges to

18
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F:, 7., (X) converges to j-(X) and j, 4+¢(X) converges to jr4¢(X). As all these
operators are uniformly bounded one concludes easily. [ |

In the case of a strong Markov process (j;),, We are now going to define the
value at time 7 of the lifted Markov process (k;(Z)),5q,Z € Z.

Lemma 6.3 — For every stop time 7, every u > t and every Z € Z the operators
I < and ky(Z) are commuting.

Proof

For any (r,X,v) € D let us compute I,<; ky(Z)A(r,X,v). One has
Lr<i Bu(Z2)AN(r, X, v)

= Nr<tku(Z)jr (X1) -+ g, (X)) V0

= Jr (X1) ey (Xm1) Mr<ibu(Z) 70y, (X)) -+ 57 (X) V0

(where ri < u < rg—1; the cases u > rq or u < r,, do not contain any supplemen-

tary difficulty)
= Jr (Xa) - Iy (X)) e <0ju(Z) i (Xk) -+ Gy (X)) V0
= Jr (X1) Ty (Xk—1)Ju(2)1 T<t]Tk(Xk) Jra (Xn) Vv
= Jr (X1) Iy (Xm0 )Ru(Z) Fulr <y o (X)) -+ G, (X)) V0
= ku(Z)jr (X1) - Jrpy (Xkm1 ) Fulr <y i (X)) -+ G, (X)) V0
Xn)

1
= kU(Z>]1T§t Jr (X1> R P (Xk—1 )F’U]Tk: (Xk> o ]rn( n)Vv
= ky(Z) 1< Mr, X, u).
We conclude by boundedness of k,(Z) and 1.<¢, and by totality of the A(r, X, u)
in H. [ |

For a discrete stop time 7 we define k,(Z) by
Z) = Z Lr=y, ke, (2) = Zkti(z>]17':ti

Proposition 6.4—Let T be a discrete stop time. Let Z € Z. Let (r,X,u) € D
with r ={ry > ... >rp}. Put ro = +00 and rn41 = 0. Then the operator k.(Z)
is bounded with norm dominated by ||Z|| and it satisfies
n+1
kr(Z)A(r, X, u) = Z ]]'TE[Ti77'i—1[jT'1 (X1) - dries (Xiz1)52(2) 5 (Xi)

1=1
Furthermore, the mapping Z — k. (Z) defines a *-unital homomorphism on Z .

Proof
For all ¢ € H one has

I\’fr(Z)l\Z:HZﬂr:nkt JII* = Zl\ﬂr ke (2)0)* = lekt V=, 0"
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<NZ1P Y M emr o l* = (1Z]7]12)°

This proves the boundedness and the norm estimate for k,(Z). The mapping
Z — kr(Z) is clearly linear and *-preserving. The multiplication-preservation
property is obtained in the same way as for j, in Proposition 6.1.

Furthermore, we have

ke(Z)jr (X1) -+ Jr (Xn)Vu
= Z ﬂT:tikti<Z>jT1 (X1> I (Xn)Vu

n+1
=3 (X (o) (Y emikn(2))
J=1 it €[rj,ri—1
X .jTj (‘Xj) I (Xn)vu
n+1
=Y (X () (Y Lewiu(2)
1=1 i;tiE[T‘j,T‘j_l[
X Jry (X5) - e, (Xn) Vi
n+1
=D dn(X0) e (Xm) ey o (7( 2y (X5) i (X )V
j=1

n+1
= Z ]]'TE[T‘J‘,T‘J‘_l[jT'I (X1> v 'jTj—1 (Xj—1 )]T(Z>]7‘J (XJ> v .jrn (X">Vu
=1
This proves identity (6.1). [ |

Theorem 6.5 Let 7 be any finite stop time. Let (Ey ), be a sequence of refining
T-partitions. Let 7, = 7, n € IN. Then the sequence (k;, (Z)), converges to an
operator k. (Z), for all Z € Z, which satisfies
n+1
Ee(Z)MNE,Xou) = Mgl o i (X1) -+ oy (X215 (2) s (X)
=1

e (X)) V. (6.2)

The operator k.(Z) is bounded with norm dominated by ||Z|. The mapping Z
k-(Z) defines a *-homomorphism on Z.

Proof

Suppose that in (r,X,u) € D all the r;’s are continuity points for 7. From
Proposition 6.4 the identity (6.2) is satisfied for each 7,,. As 1. ¢[p, o (vesp.
Jr.(Z)) converges strongly to 1 ¢[,, r._,[ (resp. j-(Z)), as all the operators j,, (X;)
are bounded, it is easy to check that k, (Z) converges strongly to an operator
k+(Z) which satisfies (6.2). As the vectors A(r, X, u) where each r; is a continuity
point for 7 form a total subset of H we get that (6.2) holds for any (r, X, u) € D.
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From the norm estimate of k,, (Z) and the *-homomorphism property of k., (+)
one gets, in the same way as for j, in Proposition 6.1, the same results for k.. B

Important remarks : All what has been done here for finite stop time can be
extended to any stop times in the following way.

Notice that a time ¢ € IRT defines a stop time, also denoted t, by putting
li<, =0if s <t,Iif s >t. For any finite stop time 7, any n € IV, the stop time
7 A n, as defined in Proposition 5.8 is clearly a bounded stop time, with bound n.
Furthermore 7 A n converges to 7 when n tends to +oc.

If 7 is any finite stop time it is easy to check that

]]-Tgn .]T(X> - ]]-TSTL ]T/\n(X)7
indeed, one checks it directly for discrete stop time and then pass to the limit.
Let 7 be any stop time, even non-finite. Let ¢ be an element of the range of
1; <400 that is, ¥ = 1,4 o0t. Then consider the sequence (j-an(X)?), . Let p be
such that ||1r<oc® — 1r<ptp|| is small. Then for all m > n > p we have
iran(X)Y = Jram(X)PI| = [l7ran(X) Lrcoct) = Jram (X) Lr<oott|]
< lgran(X) <oty = Jran(X)1r <]
‘I‘ ||.]T/\m( ) T<OO,(/] ]T/\m( ) T<p17b||
+ gran(X)r<pth = ram (X)L pid ||
<2/ X [Ty cooth — Trp ]|
+ 7rap(X)Trptp = Jrap(X) Lrcpt)|]
= 2| X[y cooth — Tr<pip|].
Thus the sequence (jran(X)®), is a Cauchy sequence, therefore it is convergent.
Let us call j-(X)t this limit. If ¢ is any element of H then define j (X)y to be
Jr(X) s c oot
One easily get that ]],.Snj,.(X)L/J = ]lrgnjrAn(X)l/J = j,.(X)]l,.SndJ. Thus
. LT . |
]1T<oo ]T(X>’L;U nB)I-Il:loo]lTSn ]T(X>77)

Furthermore, it is clear that H]T( );b“ < ||X|| |[¢|| thus j7-(X) defines a bounded
operator on H with norm dominated by || X||. Finally, let X,Y € A. We have

Jr(XY ) = jr (XY )lrcyoct = lim j(XY)Ircnt)

n—+oo
:ngr_{_l ]T/\n(XY) T<n77b
:ngr-lr-l ]T/\n(—X>jr/\n( ) T<n¢— 11I_|I_l ]T/\n(X)]lTSnjr/\n(Y)]lTSn¢
:ng{{loojr(XﬂlTSn]T/\n( ) T<n77!)— ll{l"rl jT(X)]T<Y>]lTSn77/)
= ]T<X>]T<Y>]lr<+oot/) = ]T(X>]1T<+oo JT<Y>]1T<+002/)
= Jr(X)j (V).

Thus j, defines a *~homomorphism on A.
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The same properties clearly hold for k..

7. Sufficient conditions for strong Markov property

We are giving in this section two different sufficient conditions for a Markov
process (Jt),5q to be strong Markov.

A family (2¢),-, of elements of H is called a process of vectors. A process of
vectors (2¢),5 1s adapted if, for all t > 0, x4 belongs to Hy. An adapted process
of vectors (.T;)t>0 i1s a martingale if for all s <t one has Fsxy = 5. An adapted
process of vectors (z¢),5, 18 a regular semimartingale of vectors if it admits a
decomposition (which is always unique if it exists) as z; = m; + a; where (my)s>0
is a martingale and a; = fot he ds with fot ||hs]| ds < oo and (h¢)¢>0 is an adapted
process of vectors. The integral f(: hs ds is understood as the usual Hilbertian

integral defined by < f, fot hsds> = fot < f,hs>ds for all f € H; this clearly

defines a vector in H for

t 1 1
|/ <f,hs>ds|§/ |<f,hs>|ds§||fH/ hall ds.
0 0 0

For a process of vectors (z),5, one can wonder how to define the value z,
of (2¢),5¢ at time 7, for any stop time 7. When 7 is a discrete stop time the

Tr = E ﬂr:tixti-
?

But for a general stop time 7 the problem is to pass to the limit on z,, when (),
is a sequence of discrete stop times converging to 7. The following result says that

definition is obvious:

this can be realised when (z¢),5, is a regular semimartingale of vectors and 7 is

bounded.

Theorem 7.1 Let (x¢),5, be a regular semimartingale of vectors on H. Let T

be a bounded stop time. Let (Ey), be a sequence of refining 7-partitions of Rt
Let 7, = 7g,, n € IN. Then the sequence (x,-n)n converges to a limit vy which s
independent of the choice of the sequences (7y,),.

Proof

Let T be a bound of the bounded stop time 7. Notice that for n large enough,
the stop times 7, are also bounded by T'. As (»’Ut)tzo is a regular semimartingale of

vectors it can be written x4 = my + fot h,ds where (mt)tzo is a martingale. Thus

tiga
Tr, = Z ]lre[ti,ti+1[ [mti+1 + / hs ds]
i 0

t,] 1
= § , ]lre[ti,ti-H[ Fti+1mT + E E ]ITE[ti,ti-H[ / ’ hsds
i 1

i j<i
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ti+1
=F, mr+ Z N>, / hs ds
- t

j J
ti+1
—Fomr+ Y [ Ly
— Jt

7 J
tj41

:Fran+Z ]l,-n>shsd8

J

tj

T
=F,.an+/ 1, >shsds.
0

By Proposition 5.4 and Corollary 5.7, F, m7 converges to Frm7 which does
not depend on (7,),. Furthermore 1, s h, converges to 1,;5.hs for all but a

countable set of s, thus by the dominated convergence theorem fOT 1, >shsds

converges to fOT 1 sshsds.
Finally we have proved that (z,, ), converges to

T
T, :F,-mT—}—/ I,>shsds
0

which is independent of (7,),,. [ |

Now, recall the following characterization of Hilbertian quasimartingales.

Theorem 7.2 - Let (H, (F}),~q) be a filtered Hilbert space that is, a Hilbert space H
together with a right continuous increasing family (Fy),~q of orthogonal projections
in H. Let H, be the range of Fy, for allt € R, Let (;v_t)t>0 be an adapted process
of vectors (i.e. x¢ € Hy for allt € R™). If one has -

sup Z [ Ft w0 — 2,
R

where R = {t;,i = 1,...,n} runs over all the partitions of a fized bounded inter-

val [0,T], then (x¢),~, admits a unique decomposition as a sum of a martingale

(mi) ;s (te. Fsmy = my, s < t) and a finite variation process (a;),;~, (i-e.

Supg Y., las, ., — as,]| < o), vanishing at 0, adapted to (H;_),~q = (Ns<tHs) -

Such a (x¢),~, s called a Hilbertian quasimartingale. - -
If (2¢),50 ts an adapted process which satisfies

1
| Py — ]| < / o(u) du

for s <t and a locally integrable g of then (x¢),~q s a Hilbertian quasimartingale

< 400,

whose finite variation part is of the form a; = fot hy du with ||h,]| < g(u).

Proof

The first part of this theorem is due to Enchev ([Enc]) and one can find a nice
exposition of this article in [Me2].
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When (z),5o satisfies ||Fsz; — z4]| < f;g(u) du,s <t < T, it is clearly a
Hilbertian quasimartingale and the particular form of a; is easily obtained from
Enchev’s construction; indeed a; is the limit of ) (Fy, x4, ., — ) on some appro-
priate sequence of partitions of [0, 7. [ |

Corollary 7.3—If a quantum Markov process (ji),~q s such that there ezists a

dense subspace Ay of A and a dense subspace H of H such that for all ¢ € ﬁ, all
X € A, for all T > 0 there exists a locally integrable function g such that, for all
s <t <T one has

t
1P X0~ (X0l < [ gtu)du
then (j¢),>o s T-reqular for every bounded stop time 7.

Proof

From Proposition 5.3 the couple (H, (F}),s) is a filtered Hilbert space in the
sense of Theorem 7.2 and Hy_ = Hy for all t. The process (j:(X)t),5, which is
adapted for j(X )y = Fy j:(X)v, satisfies the assumptions of Theorem 7.2. Thus
(7:(X)) ;50 1s a regular semimartingale of vectors. Hence one can apply Theorem
7.1 to get the convergence of (jr, (X)), to a limit j-(X)¢ which depends only
on 7, X and . [ |

A Markov process (j;),+, satisfying the condition of Corollary 7.3 is said to
satisfy Enchev’s condition.

Theorem 7.4-Let (j),~, be a Markov process satisfying Enchev’s condition.
Then for any finite stop time T the sequence (jran(X)), converges strongly to a
bounded operator jr(X) whose norm is dominated by || X||, for all X € Aq. It

thus can be extended into a bounded operator on A. Furthermore, the mapping
X — j-(X) s a *~homomorphism on A.
Proof

Let n < m € IN. Let 7 be a discrete stop time, based on the 7-partition
{ti,i = 1,...,k}, which is close to 7. Let X € Ag,¢» € H. Then

77 An(X)Y = Jram(X)0|?
< 3llran(X)$ = jean(X)LN” + 3lljram (XN = jram (X)P]*
+ 3ll7ran(X)¢ = Gram (X[
The process (j¢(X)t)),5q is a regular semimartingale of vectors, let us denote by

t . . . .
Tyt fo hsds its decomposition as a sum of a martingale and an absolutely continous
finite variation part. By Theorem 7.1 one has

77 an(X) = jram(X )|
S 3||F.’7'/\n Tn +/ ]lr/\n>5 hs ds _Ff'/\n Tp — / ]17~'An>5 hs d‘;HQ‘I‘
0

0
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+3”FT/\TTLTT)’L + / ]lr/\m>s hs ds — F7~'/\m Ty — / ]17:/\m>5h5d3“2
0 0

+3” Z ]lre[tigti+1[jti+1 (X)’l/}”z
1n<t; <m

n 2
< 6| Ful(Fr — Fi )l + 6| Fun(Fr — Fr )| +6| / 1Ly = L)l ds]
0

m 2
+6[/0 O L K2 T S MRS MG o &

ryn<t; <m
¢ k 2
<120(Fy = Frloul + 12 [ (Les = Do) 3]
0

FIXI7 D M reges, g ¢l

yn<t; <m
for any k > max{n,m}

k 2
< 12(F, = Fojaall + 12 [ (s = Tl ds] 4+ 31X i
Let ¢ > 0 be fixed. Let Ng be such that, for all n,m > Ny one has

2 2
XN gy 1|7 < e
(this is possible as 7 is finite). Let n,m be fixed with n,m > Ny. Let k be fixed
such that & > max{n,m}. Let 7 be a discrete stop time approximating 7 such

that ||(F, — F)ai|?* < ¢ and [_fok |(1r>s — Dzsg)hs||ds]? < e. We then get

77 an (X)) = jram(X)P|* < 27e.
This proves that (jran (X)), is a Cauchy sequence in H, thus it converges to a
Jr(X).

All the properties of j,(X) are then proved in the same way as in Proposition
6.1. [ ]

Corollary 7.5—-A Markov process (ji),~q which satisfies Enchev’s condition is a
strong Markov process. B |

This sufficient condition for (j;),5q to be strong Markov applies for example
very well in the case of Evans-Hudson flows on Fock space. Indeed if one considers
a minimal Evans-Hudson flow (]t>t>0 on Fock space (cf [E-H]), this means that
(Jt);>0 1s Markov process which is given as a quantum stochastic integral process
([H-P]). But it is proved in [A-M], that if one applies such a process to the so-called
coherent vectors of the Fock space the process of vectors obtained so is indeed a
regular semimartingale of vectors. We thus get the following result.

Theorem 7.6 — Any minimal Evans-Hudson flow on Fock space is strong Markov.
|
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Now we wish to find another sufficient condition for getting the strong Markov
property, but which is expressable in terms of some property of the semigroup
(T¢),;> and its infinitesimal generator.

Let £ be the infinitesimal generator of the semigroup (7}),,. We say that
(T%),q satisfies the S-condition (or stability condition) if there exists a dense subset
Ao C Dom L such that

(1) Ap is an algebra;

(ii) Ao is stable under (T%),sq;

(iii) for all XY, Z € Ay the_mappingt — L(XT(Y)Z) is locally bounded in
norm.

For example if £ is a bounded operator then (T%),., satisfies the S-

condition.
Let H be the set of vectors ¢» = A(r, X, u) € H such that X; € Ap for all 7 .

Proposition 7.7 - Suppose (T;) s, satisfies the S-condition. Then for allT € R™,
all X € Aq, all b € H there ezists a constant C > 0 such that for all s <+ < T

one has

1E5je(X) = js(X)9|| < Ct = s).

Proof
Let » = A(r, Y, u) be an element of H. Let § = min(r; — riy1). Let T € RT
be fixed, let X € Ap. If s <t < T are such that t — s > ¢ then

; - 2|| X 2|1 X
| Faie( X )b — 5.(X)|| < 2|1 X |2 = | ! W”(g < I IJS [l

and the proposition is satisfied.
Thus, suppose t—s < §. Then two cases appear : there exists k € {2,...,n—1}
such that either rp < s <t <rp_qjorrpp <s<rp <t <rg_q.
Let us consider the first case. We have, by Lemma 3.3
Fy ji(X)¢ = Fojui(X)Fi M (r, Y, u)
= I'g jt(X)jt(Trk—l_tRYk—lTrk—Q_rk—lRYA:—Q e
e Ry, Ty (Y1) 3 (Vi) -+ iy (Yo )V

= F; jt(LXTrk_1 —t(Y>>jrk (Yk> T jrn (Yn>vu
where Lx denotes the mapping

(t —s),

LX A= A
Y — XY,
and where Y = Ry, T, ,—rn wRyv,_» - Rv,Tr,—r,(Y1). Thus, by Lemma 3.3
again,
Fy (X = jo(Tems Lx Ty —t(Y))iry (Vi) - - G, (V) Vi

In the same way we get

js(—X>¢ - .js(LX Trk_l—s(y'))jrk (lfk> e jrn (Yn)VU
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This gives

[ Fsje(X)e — ja(X)o||
= ls(Tems Lx Ty t(Y) = Lx Ty =5 (Y)) i (Ya) -+ i, (Ya) V|
SNTemsLx Ty —o(Y) = Lx Ty —s (V) 70 (Vi) i, (V) V] . (7.1)
Recall that for all X € Dom £ one has Ty(X) — X = fot Ts(L(X))ds (as

a t a a
L(X) = Fl,.oTo(X)). Thus |T,(X) - X|| <[5 ITo(£(X))|| ds < t]|£(X)].
So one gets, by assumption (i) and (ii) of the S-condition,

Tt s LxTr_y~¢(Y) = LxTr,_, —s(Y)]|
< (t = LK Ty —e VDN XN N Ty (V) = Temy Ty (V)|
< (t =) [ILX Ty —e DI+ XN LTz —e (VD]
< (t =) L T —e YD+ IX N Tz = (LYD]
< (t =) [ILX Ty =)+ IX L]
< C(t — s) by assumption iii) of S-condition.
The term |7, (Yz) - Jr, (Yn)Vul| in (7.1) is dominated by
s e (V). o (Va) V]

1i=1,...,n
which depends only on . This concludes the first case.
Now consider the second case that is, rp41 < s <71 <t < rg—1. One has

Fojul(X)¢ = Fuji(Lx Ty —e(Y))iry, (Vi) (Yo )V
= j-‘f(Trk—SRYk Tt—TkLXTTk—1 —t(?—>>j7‘k (Yk> t 'jrn (Y'n)VU
and

]S(X)¢ - js(LXTrk—sRYk Trk_l—rk (?—))]rk (Yk> e jrn (lfn>vu-

Thus in the same way as in the first case we have to estimate
1T~ s RY, Tomr Lx Ty ~e(Y) = Lx Ty —s R, Ty = (V)]
which is dominated by
1T —s RV, Tomry Lx Ty ~1(Y) = T s Ry, Lx T, (V)
+|Tr,—s Ry, Lx Tro_, —(Y) = Lx Ty, —s Ry, Tr,_, -, (V)|
SNl = Lx Ty (YY) = Lx Ty oY) |+ (E =) L (Ryy Lx Ty (V)|
HI Ry Lx Ty 1Y) = Lx Ty —s Ry, Ty = (V)]
< (t = ) [Vl X Ty (V) + LK T2y —e(Y) V)]
+(t = )N XN NE( Ry, Ty = (V)
IRy, Lx T ~(Y) = Lx Ry, Ty, (V)]
< (t =) [Vl I£(X Ty ~(Y D + IL(X Ty (Y)Y
HIX NN Ty = (V) Y3)]
XN YN Ty (V) = Temr, Ty —e (V)
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< (t = ) IVl X Tmy (V) LXK T, (V)Y
HIXI LTz = )Y+ X YN LOO]]
< C(t — s) in the same way as previously.

This completes the proof. [ |

Corollary 7.8 - If (ji),>o s a Markov process whose semigroup (Tt),~, and gen-
erator L satisfy the S-condition then it satisfies Enchev’s condition and thus it is
strong Markov. [ |

8. Extension of the time-shift to stop times

In the following (j;),~q is supposed to be a strong Markov process on A.
Theorem 8.1 - Let 7 be any stop time. Then there exists a unique contractive *-
homomorphism 6, on B such that 0,(ji(X)) = jr44(X) and 0,(ks(2)) = kr14(2Z)
forall X € A,Z € Z, 5,t € RT.

Proof
For € = ki (Z1)- - ke, (Zn)js, (X1) - “Js, (Xp) € B consider the quantity

D Meciririgal Ori (€)
- Z Lrepri rial Ftitriga (Z1) Ftytrign (Zn)Jsytrips (X)) - Joptrigs (Xp)
- (Z Lretririnl kt1+ri+1(Z1)> T (Z I | ktn+ri+1(zn>>
(3 et rin (X)) -+ (3 Dt s ot (50)

=k, 47(Z1) ke 47(Zn)Jsi+7(X1) - Js+7(Xp) (8.1)
where 7 is the discrete stop time 7p associated to the r-partition E = {r;;i =
1,..,N} of R,

If 7 is a finite stop time the operator (8.1) converges strongly, when the diam-
eter of E tends to 0, to the operator k¢, 4(Z1)...k¢, ++(Z3)jsy++(X1) - -jsp_|_,.(Xp)
which we define to be 6,(§). The operator (8.1) is equal to 6z(£) and we clearly
have that ||#;(¢)|| < ||€]| and that the mapping £ — 67(£) is a *-homomorphism
on By. Thus the same holds for 6, and these properties can be extended to B by
taking norm-limits.

If 7 is not finite, define 8,(§) to be 0,(£)1;<4oc. This definition answers the
statements of the theorem. Details are left to the reader. [ |

Corollary 8.2 For every stop time 7 and every t € IRT we have on B :
9T+t = 97- (0] 9t.
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Proof

It is immediate from the construction of 8, for discrete stop times. One passes
to the limit for general ones. ]

From now, in order to simplify the notations we make no difference between
the spaces Hy and Range (Fp). That is, we omit to write the unitary operators V'
and V*.

Theorem 8.3 (Strong Markov property, general form) - Let 7 be any stop time.
Lett € RY. Let £ € B. Then one has

Frer+t(§)Ff = jT(FOGt(g)FO)'

Proof

As Fy = jy(I)itis easy to check from the definition of F; (Proposition 5.4) that
Fr = j-(I) = 6:(jo(I)) = 0-(Fp). Thus F-0.(£)Fr = 0-(Fp)0-(6:(£))6-(Fo) =
O (Fob:(§)Fo) = 0-(jo(Fob:(§) Fo)) = j-(Fob:(£) Fo). u

Notice that taking £ = jo(X) in Theorem 8.3 gives Theorem 6.2 as a simple

corollary.

If 7 and 7 are two discrete stop times such that 1,,—,, belongs to P for all
J then one can define 6., o 9,.2 on P by

7.1 o 97-2 Z ]lrl—t et Z ]17'2 rj TJ
= Z Z ]17-1=tz-9ti r2=rj>9ti+7‘j (O
i

Let {sp;k=1,.., K} ={t;+r;;i=1,...,N;5=1,...,M}. Then
Br, 06, (€) = Z[ > ﬂﬁzmen<ﬂm=sk-n>} 0, (£).
ko ititrj=sk
But the family of projections
def
]17'1 oTy=s8p — Z ]1T1=ti9ti (]17'22-91@—751')
1,7 titrj=sk
clearly defines a stop time 71 0 72 on H ( Lr or,=s, is a projection for lr<¢ and

6:(&) always commute for any ¢ € P; this easy result is left to the reader). In
other words

T10T2<t - E ]]-Tl =1t; et T25t—t,‘>'

1t <t
We wish to define 7y o 75 for a more general family of stop times 71 and 7.
Define a P-stop time to be any stop time 7 on H which satisfies :
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(i) I,<; € Pforall t € R*;
(ii) On(1r<s) < Ly<ign for all t,h € RT.

We will see several examples of P-stop times in the following sections. For m being
a discrete stop time and 7 being a P-stop time define

]lTloTQSt = Z ]]-letigti(]]ﬂ'gst—t,')'
1t <t
The family (1, °T2§t>t20 clearly defines a stop time 71 0 75 on H. We want to pass
to the limit on discrete stop times approximating a general stop time 7.

Theorem 8.4— Let 71 be any stop time. Let (Ey), be a sequence of refining 7 -
partitions of RT. Let /' = (t1)g , n € IN. Let 79 be a P-stop time. Then the
sequence (7{ o 7—2)n converges to a stop time 11 0 T2.

Proof

For n < m one has
]11'1"07'2St - ]17'1"”07'2315

= 2 L Bron (Trgimiign) = O (g )]

i,
= E :]lrl SR et{“ [eti+1—t{f+1(]lrzét—ti+1) - ]lrggt—t{.'“]
hJ

< 0 as 7y is a P-stop time.

Thus the sequence (]1"1"°7'2St>n 1s an increasing sequence of projections, it thus
converges to a projection Ir or,<;. We leave to the reader to check that the
projections (I ory<t),5, define a stop time 71 o 3. [ |

Remark : One should notice that, as it is defined, when 7 is not a discrete
stop time, the limit 71 o 7, obtained in Theorem 8.4 may depend on the choice of
the approximating sequence (7{") . Actually it seems that it should not be the
case, but we are not able to prove it. Our intuition is driven to this conclusion for
the following reason: the operator 6, o 6., is not well-defined, as it is not clear
that 6., is valued in B (or even in P) and even it is not clear that 6, can be
extended to P, but in all the uses we make of 7 o 7, we see that 6., .-, has all the
properties we could expect from 6, 0 6,,.

So, in the following, when 7y o 7 is considerated we suppose that a fixed
approximating sequence (7). is choosen, for example the one based on the dyadic
partitions of R™.

A Markov process (j¢),5, 1s said to be a shift-strong Markov process if for
every h > 0, every X € A, every P-stop time 7, every approximating sequence
of P-discrete stop times (7, ), the sequence <9h (Jr., (X)))n converges strongly to a
limit 65, (j,(X)) which does not depend on the choice of the sequence (7,), .
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Proposition 8.5 If (j;),~q s a shift-strong Markouv process then for every £ € B,
every P-stop time T, the operator 8.(£) is an element of P. Furthermore, for every
h > 0, every approzimating sequence of P-discrete stop times (7,), the sequence

01 (6-, (£)) converges strongly to 0;(0-(€)).

Proof

First note that if (j¢),5q is a shift-strong Markov process it is then clear that,
for any P-stop time, j-(X) is an element of P.

Now consider a discrete P-stop time 7, fix Z in Z and h > 0. Then one can
easily prove an analogous of Theorem 6.5 for 8, (k-(Z)) that is,

n+1
eh(kT(Z>)/\<r7 X’ u) = Z 9h<]17'€[ri—h,r,-_1—h[)jr1 <X1> e jr,'_l (Xi—l)
X O (5r(Z))gri(Xi) - Jro (X)) Viu (8.2)

where 1,¢, 5[ for a,b € R is understood as 1 ¢[4vo,bvor-

Consequently k-(Z) is an element of P and 65 (k-(Z)) is the strong limit of
0n(k-(Zy)) for any approximating sequence (Z,), of Z.

Finally, in the same way as in Theorem 8.1, we get the result. [ |

Theorem 8.6 - A markov process which satisfies Enchev’s condition 1s a shift-
strong Markov process.

Proof

First of all we have to prove that 6}, (F.
stop time 7, any approximating sequence (), and any h € R*. But it suffices

) converges strongly to 6, (F;) for any

(e}

to follow step by step the construction of F in section 5 to see that it also applies
to 0, (Fr). In particular the characterization of the range of 6;,(F:) (in order to
prove that it is independent of the choice of (7,),) gives

Range(0y (Fr)) = {¢ € H; 04 (Lr<o)y € Hepn,t € RTY.
Let (jt),»o be a Markov process satisfying Enchev’s condition that is, ji(X )i

can be written as j (X )y = m; + fot hsds where m is a martingale. Let 7 a

bounded stop time (with bound T') and h € IR™ be fixed. Choose an approximating
sequence (7,), based on a sequence of T-partitions of R™ with regular steps d,
such that for all n there exists k, € IN with k,d, = h. We then get

On(jr, (X)) =D On(Try=t)jri4n(X )0
1 t;+h
= Zeh(]]_Tn:tz>|:mtz+h +/ hs d.‘;]
- 0
tj41
= Z On(1;, =4 ) Fripnmr + Z Z | / hsds
t

1 gt <ti+h J
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tj41
= On(Fr, )mr + Y 0n(1r, >4, _h>/ h ds

J .7
tj4+1
—On(Fr)mr + Y / 01 (s, 5 e i) ds
j Ut

= O (Fy ) + / 00 (T, 5o )y ds.
0

It is now clear that 6(jr, (X))y is going to admit a limit 6,(j-(X))y which is
independent of (7,,),,. We then proceed in the same way as for the construction of
Jr in order to go from bounded to finite stop times. [ |

Theorem 8.7 (Strong Markov property, general form II)—Let (j;),~, be a shift-
strong Markov process. Then for every stop time 71, every P-stop time 72, for all
€ € B, one has

FT19T1°T2(£>FT1 = jTl(F09T2(£>F0>'

Proof
One has that Fy, 0r or, (&) Fy, is the strong limit of
Z Z ]17'1 E[T{ ,T{+1[F’"i+1 ]17'1 E[rﬁ,rﬁ+1[eru+1 (]lrge[rz—rz‘l'l,ri'l'l—r}j'l'l[ erl‘l'l—r:j"'l (5))

i,5;k,lip,q w,v

X ]11- glrd, rq+1[ Frp+1

= E E ]]. TU rv-]-l 7« i1 97‘“4_1 <]1T2€[T‘ _T'u-|—1 l+1 'u-}-l[ HTL-]—l_T;Li-]—l <£>)Fr”+1
k, uw,v

= ZZ]IHE u+1 ry,+1 (Fo]lr2€[r _rv-l-l l+1 ”+1[6rl+1—r}j+1 (f)Fg)
k,l u,v

= Z ]17'1 glry ot [er“'l'l (Z Fo ]17'2 E[r;g —TZ+1,7‘L+1 —T‘Z+1[ 6ri&+1 —potl (E)FO)
k.l

= Z ]]'T1 Elry ,TZ'H[eru‘*'l (Z FO ]]'7'2 E[rL 7rﬁ;l'l[ 6T2+1 (g)FO)

k1l

_Zn o gt Or 41 (Fob2(€) F)

where 7 is the approximation of 7 based of the partition {ri;k, [}
= Lrieiry o Orut1 (Fo02(€) ).

As (Jt),;>o is shift-strong, then by Proposition 8.5 we get that when 7 converges
to 7 the last expression converges strongly to

> M efrarusn(Ora 41 (Fob-(€) Fo)

u,v
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which itself converges to

67’1 (F09T2 (£>F0> = .jﬁ (F09T2(§>F0>

9. Martingale problem

Recall the following classical results on the generator £ of (T}),,. Parts
of these results have been already used in previous sections. The domain of the
generator £ is the set of X € A such that +(7,(X) — X) admits a limit (in
operator norm) when A tends to 0. If X € Dom £ then T}(X) € Dom £ and
T(L(X)) = LIT(X)) = T,(X).

In the classical theory of Markov processes it is well-known that the Markov
process with generator £ solves the martingale problem associated to £. In our
non-commutative context we get a similar result.

Theorem 9.1 - For every X € Dom L, the process

My(X) = j(X) — jo(X) — /Otju(E(X))du

is a martingale in the sense that FM(X)Fs = M(X) for all s <t.
Furthermore, if X € A is such that there exists a Y € A satisfying the fact

that the process
t

M; = ji(X) = 3o(X) = [ (Y du
0
is a martingale, then X € Dom L and L(X) =Y.

Proof
One has, for s <,

FoMy(X)F, = j(Ti—o(X)) — jo(X) = | Faju(£L(X))F. du

= (T s (X)) = jo(X) = [l £(X)) du — / Ja(Tus(£(X))) du

d

—Ju(Ten(0) — o) = [0 du = [ 0

= Js(Ti—s(X)) — Jo(X) —
— M,(X).

Ju(£(X)) du = js(Ti—5 (X)) + js(X)

This proves the martingale property of (My(X)),s,-
In order to get the uniqueness part notice that

t
0= M, = RM!Fy = jo(T(X) - X) — / Jo(Tu(Y)) du.
0
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Thus

IF90(TX) = X) = oVl = 11 [ o(Tul¥) = ¥)aul < £ [ |T(¥) = ¥

1
which converges to 0 as t goes to 0. Thus lim —(T3(X) — X) exists and is equal

t—0 ¢
to Y. [ |

We now recover the analogue of the usual “opérateur carré du champ” and
its relation with the “angle bracket” of (M;(X)),s-

Theorem 9.2 For every X, Y € Dom L such that X*Y € Dom L, the process
t
M (X*)M,(Y) _/ Ju(L(X*Y) = X*L(Y) = L(X*)Y)du, t € RT
0

1s a martingale.
Furthermore, if one defines

(M.(X),M.(Y)), = /tju(E(X*Y) — X*L(Y) = L(X*)Y)du

then the following holds :
1) (M.(X),M.(Y)), 1s the weak-limit of the conditionned quadratic variations

Z Fyy (My (X7*) = My, (X%)) (Myy (V) — M, (Y)) F,

when the diameter of the partition {t;;1 = 1,...,n} of [0,t] tends to 0.
i) (M(X),M.(Y)), defines a completely positive bilinear map in the sense
that, for allY; € B(H),X; € A,i=1,...,N,j=1,..., M, one has

> YI(M(X), M.(X;)),Y; > 0.
i

Proof
Let X,Y € Dom £ be such that X*Y € Dom L. Put
t
Wi = My(X*)M(Y) _/ FlL(XTY) = XPL(Y) = L(X")Y) du.
0

Then, for any s < t one has
FW, F

= B jul(X*Y)F, — Fu ju(X*)jo(¥)Fa — Fu ju(X") / ju(£(Y)) du F,
Fjo(X*)ju(Y)Fs + B jo(XY)E,s + Fy jo(X*) / Jul£(Y)) du F,
_F, / Ju(L(X*)) dujy(Y)F, + F, / Ju(L(X*)) du jo(Y)F,
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P [ ey du [ L))o,
—F, /tju(/:(X*Y) — X*L(Y) = £(X*)Y)du F,

= Js(Ti—s(X7Y)) = js(Tt—s(X7))jo(Y) = 5s(Ti—s (X)) /Os.iu(C(Y)) du

= Fgi(X) [ G0 du By = ol X)ju(Tema (V) +30(X°Y)
+io(x) | Gul£(Y)) du + (X7 o(Tims(¥)) = jo(X)js(Y)

- [Cauteey dugu @) - £ LX) du jo(V)F

0

+ [ Ju(L(X7)) du jo(Y) + ja(Te—s (X))o (Y) = ja(X™)jo(Y)

FulECE N du [ L) duct [ 5L duju(Tims(¥)

0 0

+

FuECX)) du oY) 4 5(Trea (X)) [ (V) du

0

o

s(X*>/OS.7'u(£<Y>)du+FSA ju(ﬁ(X*»du/s Ju(L(Y)) du F,

_ sju(L(X*Y) CXL(Y) = LX) du — jo(Ti—s(XY)) + jo(X*Y)

o)

o~

Ju(LX ) Gu(Ti—u(Y)) = ju(Y)) du Fy
_W,-F, /t Fo [ Go(C(X)) do Fu ju(£(Y)) du F,
_F, /tju(E(X*))Fu /tjv(/:(Y)) dv Fy du F,
LF, /t /tju(E(X*))jv(/:(Y)) du dv F,
_W,_F, /t /tjv(L(X*))ju(E(Y))dv du F,
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F [ e D) dvda
+F, / / Fu(L(X™))jo(L(Y)) dudv F,

This proves the martingale property.
From the martingale property of (My(X)),s, we get

Z Fti (J\/Iti+1 (X*) - Jwti (X*))(J\/[tiH (Y) - j\/—[ti (Y))th

= Z (Fti“/\d-ti+1 (X*)]Mti+1 <Y>Fti - Ftijwti (X*>*7wti (Y>Fti>

- Z F, /ﬁ . (L(XY) = X*L(Y) = L(X")Y)du Fy,

by the martingale property of (Wy),>q- Thus, the difference between this quadratic
variation and fot Ju(L(X*Y) = X*L(Y) — L(X*)Y) du is equal to
it1 tita
Zth / w(M(X,Y))du Fy, — Fy, / Ju(M(X,Y)du Fy, | (9.1)
t;
where J\J(X, V)= L(X*Y) - X*L(Y) — L(X*)Y. Applying (9.1) to a vector ¢

and taking the scalar product with a vector ¢ gives
i+1 ti+1
> <, [ F - Fy [ M) duF o>
t;
Whose modulus is dominated by

titn
Sl B [ MY du (P, — Fio>|
i ti

tit1
+§:pah(ﬂﬁ,—ﬂg/‘ Ju(M(X,Y))du Fy, ¢ >|
i ti

MX,Y)|[(Fir1 = 8)l[(Friys — Fr )

+ 2 el 1M Y[ (Fiva = 20)[(Froyy — Fo )0

< I XY sup [[(Fy — Fu)ellt

|lv—u|<é

el MY sup [(Fy = Fu)yf|#

u, v

|v— u|<5
where ¢ is the diameter of {t;;7 = 1,..,n}. By continuity of (F}),s, this last quan-
tity converges to 0 when § tends to 0. This proves the “angle bracket” property.
The complete positivity is an easy consequence of the “angle bracket” prop-
erty. |
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Consider a stop time 7 which is finite, it defines a spectral measure p™ on

IR™. That is, for every ¢» € H the mapping A — <1, pT (A SE U, Drcath >
defines a measure on R™.

In the theory of functional calculus on self-adjoint operators, the positive
operator 7 is defined to be fooo spT(ds) in the sense that Dom 7 is defined to

be the set of ¢ such that fooo s <4p, pT(ds)y > is finite and ||T¢||* is given by
fooo s2 <, pT(ds)y >. In the same way, the domain of the operator /2 =
fooo V/$pT(ds) consists of those 1 such that fooo s<, pT(ds)y > < oo, in which
case one has HTUZ@/)HZ = fooo s<t, pT(ds)yp >.

We are now able to present a non-commutative generalization of a well-known
identity due to Dynkin in the case of classical Markov processes ([Dyn]).

Theorem 9.3 (Dynkin’s localisation formula)— Let 7 be a finite stop time. Let
Y € H be such that Fyip belongs to Dom 74/2. Then, for all X € Dom L, we have

Fodr(X)Fot = ol X)6 + Fo [ Lo (£(X) ds Fov, (9.2)
Proof

Let 7 = 7g where E is the 7-partition {r;;¢ = 1,...,N} of IR*. Then, by
Theorem 9.1 one has

Fo j#(X)Fo = Z Follrelri riga [ Jrig: (X) Fo

= Z Fo ]lTE[Ti,Ti+1 [ j0<X)F0 + Z Fo ]]'TE[Ti,Ti+1 [ ‘Z\Jri-}-l (X>F0

Ti41
+ ZFO]I"E[”v’"Hl[/O Js(L(X))ds Fy

= jO(X) + Z Z FO]lTE[T,’,ri+1[ (‘{MTJ'+1 <X> - ‘{MTJ' (X>)F0

P j<i

Tj+1
#3Y Ailecinl [ (£ ds

i j<i
= jo(X) + Z Follysr, (M, (X) = My, (X)) Fo
i

Tj+1
+ZF0/ 1,5, js(L(X)) ds Fy
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= jo(X) + Fo/ 1755 75(L(X))ds Fp.
0

Thus the identity (9.2) is valid for any discrete stop time. The only obstacle
in passing to the limit to finite stop times is that the integral

R / sy j,(£(X)) ds F,
0

may not be defined. Notice that if we replace 7 by 7 A n then
FO/ Ilr/\n)sjs(ﬁ(XDdS FO = FO/ ]17'>3j3(£(X>>dS FO
0 0

and this last integral is well-defined for fon 1555 7s(L£(X))] ds < n||L(X)].

So we have to restrict ourselves to the set of ¢» € H for which

/n F0]17->3j5(£(X))F077/) ds
0

admits a limit when n tends to +oo.

Suppose that the operator Y = £(X) is positive. As one always has Y < ||Y||
we get j5(Y) < ||Y||Fs. As j5(Y) and 1,55 commute the operators Fyll,~ s js(Y ) Fp
are positive operators. Thus the integral fon <, Folrss js(Y)Fytp > ds is positive
and increasing with n. But one has

/ <¢,F0]lr>5js(Y)F0¢>ds:/ <oy Fotp, jo(Y) 1oy Fotp > ds
0 0

< HYH/O <oy Fotr, Folys, Foth>ds = HYH/O < Fotp, Ipss Fotp > ds.

Let GG denote the distribution function of the measure < Fytp, p7(-)Fpt > that
is, G(s) = < Fotp, 1<, Forp >. Integrating by parts we have

/on(l — G(s))ds = n(1 — G(n) + /on 5 dG(s).

But it is a classical result that if fooo sdG(s) is finite then lim, o n(1 — G(n)) =
0 and fooosdG(s) = fooo(l — G(s))ds. Thus, we will get the convergence of
fon < ko, 1~ Fop > ds provided fooo s< Fop, pT(ds)Fop > < oo. That is ex-
actly Foip € Dom 7'/2,

As every bounded operator, such as £(X), is a linear combination of four
positive operators, we conclude easily for the general case. [ |

Notice that in the context of classical Markov processes we have H = L*()
and [ <Fop, lesFop >ds = [° E[E[|1,5, E[Y]lds = E[{]* [J° P(r >
s)ds = IE[¢)]* E[7]. So one recovers the classical Dynkin’s condition : E[7] < 400
([Dyn]).

10. Non-commutative Dirichlet problem

In this section A is still supposed to be a C*-algebra, but as we are consider-
ating projections in the center Z of A this section applies better in the context of
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von Neumann algebras. But specific properties of von Neumann algebras are not
used here.

As explained briefly in the introduction, in the classical theory a “good”
Markov process with generator £ solves the Dirichlet problem associated to £. We
are now going to develop the analogous theory in our non-commutative context.

In this section we suppose our Markov process (ji),5o to be a shift-strong
Markov process (in the sense of section 8). Recall that Markov processes that
satisfy Enchev’s condition belong to the class of shift-strong Markov processes.

For any projection P in Z define Hp to be the space of ©» € H such that
(1) imy oo infy<y ks(P)p =0

(i) limyo infy<y ks(P)p = ko(P).

For any projection P € Z define 1.(p)~¢ to be the projection

Lr(py>e = inf ks (P).

The family (]lr(p)>t>t>0 is a family of projections on H such that ¢ — 1. (p), is
decreasing and ]l,.(p);t commutes with j,(X),u > t,X € A. Thus, if we take a
right-continuous modification of it, it defines a stop time 7(P) on H. The space
Hp is then the space of ©» € H such that i) belongs to the range of 1.(p)<14 and
1-(py>0 ¥ = ko(P).

The projection P € Z has to be interpreted as the indicator function of a
domain; ks(P) then stands for the event “the Markov process at time s is in the
domain P”; thus 1;(p)s; stands for the event “for all s < ¢ the Markov process
at time s is in P” or else “the exit-time of the process from P is strictly greater
than ¢”. This justifies intuitively that 7(P) stands for the ezit-time of the Markov
process (j¢);>o from P. The space Hp is the space of states in which 7(P) is finite
that is, the process (ji),5, exits from P in a finite time; the condition of right
continuity at 0 means intuitively that in the state ¢ the process (j;),5, stays an
infinitesimal time, at least, in P that is, it does not instantaneously jump outside
P after time 0.

Lemma 10.1 - For every projection P € Z, the stop time 7(P) is a P-stop-time.

Proof
For all s, ks(P) is an element of P, thus so is any finite product

ky (P)--- ke (P).
Furthermore, recall that
On (ke (P) -k, (P)) = ki, 4n(P) - ki, 15 (P).

As inf,<; ks(P) is a strong limit of such finite products we get that 1.(py~; belongs
to P and

:. = 1 > 1 =
On(1r(py>t) }f%f;ks-l-h(P) hgi%f;—kth(P)_sé?—{hks(P) L (py>t+h-
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This proves that 6, (1,(py<¢) < Tr(py<ign. Thus 7(P) is a P-stop time. [ |

By Theorem 8.4 we can form the stop time 7(P)o7(Q) for any P, @ projections
in Z.

Proposition 10.2-If P < Q are projections in Z then 7(P) o7(Q) = 7(Q).

Proof

Let (E,), be a sequence of refining 7(P)-partitions of R*. Let m(P) =
(r(P))g, >, n € IN. From the proof of Theorem 8.4, 7"(P) o 7(Q) converges to
T(P) o (Q) e have

Lo (Pyor(@)>t = Z L (pyefti tiga[Ptivs (Tr(@)>t—ti41)

= ZHT(P)e[ti,tm[ . inf  ks(Q). (10.1)

+1<s<t
On one hand (10.1) is dominated by

Z ]].T(P)E[t,,tz+1[ is:%f; kS<Q) = is]%f; ks<Q) — ]]-T(Q)>t

On the other hand (10.1) is greater than

zi:]lr(P) €lt; ,tiq1] Ui ti-}-iflé‘tj < ktj (Q)

- Z(HT(P»” a ]lr(P)>ti+1) {j§ti4—if1£tj5t} ktj(Q)

- Z slgf k - ti<lsréf;i+1 kS(P)> {7; ti_|_11n£tj <t} ktj (Q> (102)

But for all j < one has inf,<;; ks(P) < ky; (P) < ky; (Q) for P < Q. Thus (10.2)

is equal to

; f k(P)I - inf k(P)) inf ki(Q)

N {J,ltnf;t} kt Q) Xl: L-(Pyelts,tign]

— wf K
o g 4(Q):

But when the partition E, is refining this expression converges to inf,<; ks(Q)
that iS’ ]]'T(Q)>t
Thus we have proved that 1.(pyor(Q)>t = 1r(Q)>t, for all t € Rt [ |

We can now prove the non-commutative analogue of the usual harmonicity
property (1.4) or (1.4’). For every projection P € Z,all X € A let

Lp(X) = Fojrp)(X)Fo.
Theorem 10.3 (Harmonicity property)—If P < Q € Z then TpoT'g =Tq.
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Proof
For all X € A we have
I'poTq(X) = Fo jrp)(Fojrq)(X)Fo) = Fob-(p)(Fo br(q)(X)Fo)
= Fo 0,(Pyor(q)(X)Fo (by Theorem 8.7)
= Fy 0,(g)(X)Fy (by Proposition 10.2)
= Fo jro)(X)Fo = To(X). [ ]
We can now state the non-commutative analogue of the properties (1.5) and
(1.5”). That is, the non-commutative Markov process (j;),5 is going to solve the
non-commutative Dirichlet problem associated to £. First of all we need a simple
result which is actually a particular case of a more general proposition to be proved
in the section on multiplicative cocycles.
Lemma 10.4- For all X € A, all projections P € Z let
TP(X) = Fo L (pys: (X)) Fo.

Then (Ttp)t>0 1s a contractive semigroup of linear maps from A to A.

Proof
The only non-trivial result is the semigroup property. One has
T4 o(X) = Folle(pysigs jits(X) Fo

= Fy u1<1%1_c|_ ky )]t+s( )Fo = Fp 11%12 ku<P> tsiré£+sku(P)jt+s(X)Fo

(P

= Fol(py>t Ot (L (py>s Js( X)) Fo = Folly(pyst Fy 0i(1r(pyss 3s(X)) Ft Fo
(Fol(py>s js(X)Fo) Fo = Folly(py>e 6:(T, (X)) F,s
(T (X))Fo = T/ (T (X)). u

= Foll (py>1 bs
= Fpll T(P)>t Jt
Theorem 10.5 (Dirichlet problem)— Let (j¢),~, be a shift strong Markov process.
Let P be a projection on Z. Let X € A be such that T p(X) belongs to Dom L.

Then on the space of » € Hp such that Fyth belongs to Dom (7(P)'/?), if we put
Y =Tp(X) we have

PL(Y)=0 (10.3)
(I-P)Y =(I-P)X. (10.4)

Proof

We restrict ourselves to Hp N {1; For» € Dom (7(P)'/?)}. Thus by Theorem
10.3 we have for all X such that I'p(X) € Dom £

Fo ey (Tp(X)Fs = Tp(X) 4 Fo [ Loy i(£(TP(X))) ds Fo
0
that is,

Co(Tp(X) = Tp(X)+ [ Ry sl £TP(X))Fo s
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Thus, by Theorem 10.3 one has T'p(I'p(X)) = T'p(X) and consequently
/ Fol,(pyss u(£(Tp (X)) Fo ds = 0. (10.5)
0

In other words fooo TP(L(Tp(X)))ds = 0. As it is clear that fo TP(L(Tp(X)))ds
is well-defined, then so is ft TP(L(Tp(X)))ds. But the latter is equal to

/ T2 (L(Tp(X)) ds—/ T'p(X))))ds by Lemma 10.4
0

=T} [/ TP (L(Tp(X)))ds] =0 by (10.5) .

Thus, for all t € RT we have f Fol (py>s 3s(L(Tp(X)))ds = 0. Deriving in ¢
and lettmg t tend to 0 we get

1 (py>0 Jo(L(Tp(X))) =0
that is
PL(Tp(X))) =0.
This proves (10.3).
Furthermore, we have
(I = P)T'p(X) = M (py=o Fo jr(p)(X)Fo = Foll.(py=0 jr(P)(X) Fo.

But it can be easily seen from the construction of j, that for any stop time 7 one
has 1,;—¢ j-(X) = 1;=0 jo(X). Thus in our case (I — P)I'p(X) = (I — P)X. That
is, identity (10.4) is proved. [ |

Example : Let A, (T%),~0. (H, (F}),50: (Jt);>0) be as in the previous discussions.

Let A = LOO(ZRd) © A. The centre Z of A is the subalgebra LOO(ZRd) ® Z where
Z is the centre of A. Let P denote the probability measure of the standard d-
dimensional Brownian motion with sample trajectory (By),~,. Define

H=I*R"Y®LP)2H
F,=10FE ®F
Jt(G) = multiplication by j:(G(z + By)), G(+) € A

where E; denotes the conditional expectation given {Bg;s < t}. Let D C R
be a bounded domain with smooth boundary 0D and let 7 = 7(x, D, B) denote
the (classical) exit-time of the process (z + By)¢>o from D. Then the operator 7
of multiplication by 7 in H is a finite stop time and Jj#(G) is the multiplication
operator by the operator-valued function j,(G(z + B;)). Note that (H,F,j;) is a
minimal Markov process over A. Furthermore F j;.(G)ﬁ'o is multiplication by the
operator-valued function

H(z) = /Foj,(G(x + B,))F,dP
- /T,(G(J: 1 B,))dP
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which can be expressed more explicitly if the joint distribution of (z + B,, ) can
be computed. If the map z — G(z) is continuous from R? to A and the generator
L of (T})¢>0 is bounded it is easy to see that

{ LAH)(z)+ L(H(z)) =0, z€D
H(y) = G(y)’ y € 0D.

It is also of interest to note that H(z) > 0 for all # € D whenever G(z) > 0 for
all € 0D and furthermore H(z),z € D is determined by the values of G on 0D.

When d =1,D = (a,b), we get

H@) = [ TG + [ TG

where p, and v, are positive measures satisfying for all ¢ < = < b, a > 0

b—=zx

) — fy_r—a
/’LT(IR >_b_a’y-7/'<R >_b_a
1 — —2(b z)\V2a

/0 e~ 1y (dt) = ela—DVEa El - W_a;
( )
( )

00 —2(a—z)\V2a
—at _ (b—z)V2a) 1—
/0 " Mup(dt) = ¢ 1 — e=2(b—a)v2a)’

11. Non-minimal Markov processes

All the constructions of sections 3 to 10 are based on the fact we are consid-
ering the minimal dilation (H, (Fy),~q, (Jt);>0) of a semigroup (T}),~,. That is,
we strongly used the property that the set {\(r,X,u); (r,X,u) € D} is total in
H. But parts of these constructions can be realized in a more general context.

Let A be a von Neumann algebra of operators on a separable Hilbert space Hy.
Let (T%),>o be a strongly continuous semigroup of completely positive maps from
A into itself, with Ty = I. A weak Markov process with expectation semigroup
(T);>0 is a family (H, (F}),sq, (7¢)>0: P (01)450) such that H is a Hilbert space
containing Hy, (F}),s, is an increasing family of projections on H with range
(Fy) = Ho, the j;’s are *-homomorphisms from A to B(H), P is a *-algebra
containing the C*-algebra generated by the j(X), t € RY, X € A, (6:)i>0 is a
semigroup of *-endomorphisms of P satisfying -

(i) j«(I) = Fy, t € RY

(i) Fs 34(X)Fs = 3s(Ti—s(X)), s < 't

(iii) jo(X) = X

(iv) 6:(js(X)) = jare(X), s,t e RT, X € A

(v) FoYFy € jo(A) for all Y € P.

It is clear that in the case of the minimal dilation of (T%),, all these properties
are satisfied; indeed, the property (v) is clear from Y € B, thus it is valid on P as
A is a von Neumann algebra i.e. it is the strong (or weak) closure of a C*-algebra.
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The definition of a strong Markov process in this context is the same as in
section 6. In that case the strong Markov property (theorem 6.2) will be also true.
Furthermore, Dynkin’s formula (Theorem 9.3) is also valid.

12. Multiplicative cocycles

In the classical theory of Markov processes, perturbations of the semigroup
by multiplicative functionals play a very important role. Here we investigate a
non-commutative analogue of it and we focus on several examples, one of which
giving rise to a non-commutative generalization of the Feyman-Kac’s formula.

Let (H (F%) >0 (Jt)t>0,77 (0¢),>0) be a weak Markov process with expecta-
tion semigroup (Tt)t>0 on a von Neumann algebra A of operators in a Hilbert
space Hy.

A family {M(s,t);0 < s <t < 400} of completely positive linear maps on
the algebra P into itself is called a multiplicative cocycle if the following conditions

are fulfilled.

(a) M(r,s)M(s,t) = M(r,t) for all r < s < t;

(b) 0 o M(r,s) = M(r+h,s+h)of forall0 <r <s < +oo, h > 0;

(¢) FiM(0,t)(X)F, = M(0,t)(F; XF;) forallt > 0,X € P ;

(d) Fo M(0,0)(I)Fp = jo(P) for some projection P € A.

Our first proposition shows how a multiplicative cocycle M can be used to
obtain a new semigroup (7}),~o by perturbing the semigroup (7}),q-

Proposition 12.1- Define the map T, : A — A through the identity
Jo(Ti(X)) = FoM(0,t)(5:(X))Fo, X € A, t > 0.
Then (Tt)t>0 is a semigroup of completely positive maps on A with Th (X)=PXP.
If M(0,t) us contractive for each t then (Tt)t>0 18 contractive. Suppose that the map
t— M(0,t)(5:(X)) s strongly continuous. Then s — }ir% Tt(X) =PXP, X € A.
_>

Proof

The linearity and injectivity of jg together with the property (v) of section 11
imply that T} is a well-defined lienar map on A. The complete positivity of T} is
immediate from the complete positivity of M(0,t) and j;. For any X € A,s,t > 0,
we have

j0<Tt+8(X)> = Fo *7\4(0"9)(*“4(5’t + 5)(]t+8(X>>)
= Fy M(0,5)(6,(M(0,4)j,(X))) Fy
= Fo F,M(0,5)(85(M(0,t)j(X))) Fy Fy
= Fy M(0,5)(85(Fo M(0,8)(j¢(X))Fo)) Fo
= Fy M(0,5)(55(Fo M(0,)(5:(X))Fo)) Fo
= jo(Tu(Tu(X))).
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which proves the first part. The last two parts are immediate. [ |

When M is a contractive multiplicative cocycle there arises naturally the
problem of constructing a weak Markov process dilating the perturbed semigroup
(Tt)t>0 of Proposition 12.1. Property (a) of the definition of multiplicative co-
cycles and the methods obtained in [BP1,2] yield a minimal Markov dilation
(HM, (FtM>t>0’ (th>t>0> for the non-conservative completely positive evolution
described by_lW on the *_algebra P with the subordination property jM(I) < PM.
Define )

J1(X) = ]g\/l 0 ji(X), Fir =ji(1) = th(Ft), XeA
Clearly j; is a *-homomorphism and F} is a projection for each ¢. Furthermore,
for s <t

~However F, is not increasing in s in general. Infleed, the operator F,E F, =
Js(Ti—s(I)), s < t needs not even be a projection. If T;(I) is a projection for every ¢
then (F}),s, is a filtration and (HM, (F%)150(0t)4>0) Will be a weak Markov dilation
of (Ty),~,- We leave the general problem of dilating (7}),s, open but illustrate

how, in some examples, we can circumvent the difficulty by using the Fock space
stochastic calculus ([Par|, [Me3]).

Example 1 : Let (H,(F}),5q:(Jt);>0) be the minimal dilation of a conservative
semigroup (T}),s, over A. Choose and fix an element B € A and define m(s, )
by the differential equation
d
= m(s,t) =m(s,t)j¢(B), t > s (12.1)
with the initial condition m(s,s) = I. Choose P to be the intrinsic path algebra
defined in section 4 and define

M(s,t)(Y)=m(s,t)Ym(s,t)", Y € P, 0< s <t < 4o0. (12.2)

It follows from (12.1) that m(s,t) can be expressed as

o0

m(s,8) = T+ Z/ or(B) -+ ju (B)dsy - - - dsn (12.3)
8§81 < <8<t

n=1
where the right hand side converges in operator norm. Since 8, (j,(B)) = jitn(B)
it follows from (12.3) and a change of variables in the integration that

Hh(m(s,t)) = m(s + h,t+h)
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and hence
On(M(s,t)) = M(s + h,t+ h)oéb,.
It is a consequence of (12.1) that m

(
M(r,s))

r,s)m(s,t) = m(r,t) and hence
A(s,t) = M(r,t)
forall r <s <t.

Thus M(s,t) defined by (12.2) is, indeed a multiplicative cocycle. If —(B +
B*) > 0 then —j(B + B*) > 0 and equation (12.1) implies that m(s,t) is a
contractive operator and hence M defined by (12.2) is a contractive multiplicative
cocyle.

In this case too we do not have a method of constructing a Markov dilation.
We proceed to look at a modification of (12.1) by considering

d 1
am(s,t) = —§m(s,t)kt(Z), m(s,s)=1,t>s

where Z is a non-negative element in the centre Z of A. Owing to the commuta-
tivity of the family (k(Z)),~, we have

m(s,t) = exp(%/g ke (Z)dr)

and (12.2) takes the form

AM(s,t)(Y):exp(—%/s k‘r(Z)dr)Y exp(—%/g kr(Z)dr).

Denote by (TtZ)t>0 the semigroup (ft)t>0 of Proposition 13.1 when M is as above.
As k4(Z) commutes with j;(X) for s <t, X € A we have

jO(TtZ<X)) = Fojt(X) exp(— /: kr(Z) dT‘)F().

To construct a Markov dilation of (th)t>0 we shall use the methods of

Fock space stochastic calculus. To this end consider the Hilbert space H =
H®@T(L*(R")) and the Fock-adapted selfadjoint operator-valued process (N¢) >0
satisfying the stochastic differential equation a
ANt = dA; + \/ki(Z)(dAs + dAT) + ki(Z)dt, No = 0.

Since (k¢(Z)),> is a commuting family of bounded nonnegative operators it follows
that (V¢),so can, indeed, be chosen to be a commuting family of nonnegative self-
adjoint operators where the spectrum of each Ny is contained in the set {0,1,...}.
Define the projection-valued Fock-adapted process

Pt — ]l{O}(Nt)
It follows from quantum Ito’s formula that
dP; = —P;dNy, Py =1. (12.4)

Denote by E; the projection on the subspace H @ T'(L*([0,t])) ® P, C H where
®(; is the Fock-vacuum in T(L%([t,oc[)) and put

j(X) = ji(X)P By, Fy=F,E, (12.5)
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where ji(X) and F; are to be understood as their respective ampliations to H. Tt is
clear that the correspondence t — F} is a strongly continuous monotonic increasing
projection-valued map. Since P; is made up of the operators ks(Z) and the Fock
space creation, annihilation and conservation operators AT, A,, A,, s <t it follows
that P; commutes with j;(X). Thus j; defined by (12.5) is a *-homomorphism
and j,(I) < F; E;.

Proposition 12.2— The triple (ﬁ, (ﬁ't)t>0, (7t)4>0) 18 @ weak Markov process sub-
ordinated to the filtration F and having expectation semigroup (th)t>0.

Proof
For s <t one has
F,j(X)F, = F,E, j(X)P,E,F, E,
= F; jy(X)Es P, E, F (12.6)
where (12.4) implies

E;PE;=FE,P, E; — Z)Esdr

=F; P E, — /EPEk (Z)dr.

Thus
E,P,E; = E; Psexp(— / kr(Z)dr)E, fort > s.

s

Substituting this in (12.6) we get

A

t
F jt(X>Fe =FE, F, ]t(X> eXP(—/ kr<Z>dr>Fﬂx P, E,

t—s
= E;0(Foji—s(X) exp(—/ kr(Z)dr)Fy)Ps E,
0

= ]S(TtZ—s<X>)PS E,
= Js(T/Z,(X))
which proves the claim. [ |
We now evaluate the generator of the semigroup (T/7) ;>0 and thereby we get
an analogue of the classical Feynman-Kac perturbation of the Laplacian by the

operator of multiplication by a negative function.

Theorem 12.3 (Feynman-Kac’s formula) — Let Z be a nonnegative element of Z.
Then the generator of the perturbed semuigroup (th)t>0 given by

jO(TtZ(_X>> = Fy exp(— /Ot kr(Z> dT)jt(X>F0, Xed
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is L — Lz where L is the original generator of (T}),;~o and Lz is the operator of
multiplication by Z. -

Proof
Note that, by definition

1
hﬂﬂﬂwzﬂﬂﬂwmi/hwwm%
0
i . TR
=5 — nl_l)liloo Foji(X) eXP(_E 3 Ejin(Z))Fo
J:
. - —t ,
== Im FO(Hl kji/n(exp(=—2)))j:(X) Fo
]:

=s— lim jo((Loypi=tzToyn)"(X)).

n—4 oo
where Ly denotes the left multiplication by Y. If £ denotes the generator of
(Tt)t>0 it now follows that the generator of (TtZ)t>0 is L — Lz with the same
domain as L. h [ |

Example 2 : Consider the minimal dilation (H, (F}),~q (Jt);>0) of a conservative
semigroup (T}),5, on a von Neumann algebra A. Let P be a projection in the
centre Z of A. Consider the exit time 7(P) associated to P (cf section 10). Let

M(s,H)(V) = | inf k(P)] V| inf k(P)], Y €P,0<s <t <00
s<r<t s<r<t
where P is the usual intrinsic path algebra. It is clear that M thus defined is a

contractive multiplicative cocycle. Put
jt(X) = Oigriit kr(P)jt(X) = ]lr(P)>t ]t(X)

Then (H, (F}),~q, (Jt);>0) 18 clearly a Markov dilation of the expectation semigroup
(TF),sq defined by
Jo TF (X)) = Fy jo( X) Fy.
Note that j¢(I) < F; for all ¢.
We have already met the semigroup (T}7) >0 i Lemma 10.4. The Markov

process (J¢),5, can be considered as the Markov process (j;),5, but “killed” when
it hits the “boundary” of P. -

Example 3 : Choosing (H, (Fy),;>q,(Jt);>) as before, consider a quantum sto-
chastic differential equation on the Fock space H = H @ D(L*(IR';C™)) of the

form
n

dW (s,1) = W (s, 1)[>_ (e(—Li) dAT (1) + jo(L]) dAi (1)) +

=1

A R
+ il — 5 > LiLi)dt] (12.7)

=1
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Wi(s,s)=1,t>s
where H,L; € A,i = 1,...,n and H is selfadjoint. By a generalization ([Att]) of
the standard quantum stochastic calculus ([H-P]) there exist isometric operators
Wi(s,t)in H® F(LZ(IR+; C")) satisfying (12.7) and the relation
Wi(r,t) = W(r,s)Wi(s,t) forr <s <t.
Define
7e(X) = W(0,8)5:(X)W(0,t)*, F; = F; E,
where E; is defined as the projection on the subspace H @ T'(L*([0,¢]; C")) @ D
(cf example 1). Then (F}),s, is a filtration and for t > s
E,j(X)E, = F, E;W(0,1)5:(X)W(0,t)*F, E,
= F,W(0,s)EsW(s,t) (X)W (s, t)*E;W(0,s)" Fs
= F,W(0,s)M(s,t)(j¢(X))EW(0,s)* F

where
M(s,t)(Y) :Y—I—Z/ Lo Loy L, (Y)dsy---dsy (12.8)
k=1 8§81 < <8<t
and
. 1 -, ) . )
On(Ls(Y)) = iljs4n(H), Y] = 5 D Gatn(LIL)OK(Y) + 0n(Y)jayn(Li Ls)
=1
-2 js-l-h(L?)Hh(Y)js-l-h(Li)
= Loyn(0n(Y)).

Substituting this in the n-term of the right hand side of (12.9) and making a change
of variables in the integrations we conclude that

O, M(s,t) =M(s+h,t+h)ob.
This together with (12.8) implies that (M (s,t)),., is indeed, a multiplicative co-

cycle and (I;T, (Ft)t>07 (Jt);>0) 1s a Markov dilation of the semigroup (Tt)t>0 given
by Proposition 12.1. - . -

We shall now evaluate the generator of (73),,. To this end we first observe
that -

F@ / E,:;]"'Esde]"'dSqu
§<81 < <8 <%
:65’(/ FO‘C81—S"'Esk—s(jt—s(X))FO d31---dsk)
0<s1 < <8 <t—3s

_ 93(/ Ty KTy g Koo Ty KTiegesy (X) dsy - - - dsy)
0<s1 << <t—35

where K(X) = i[H,X] -1 S"" (LiL;X + XLiL; — 2L} XL;), X € A. Thus
F,M(s,1)(j+( X)) Fy
= Js(Ti—s(X))+
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o0
+ Z/ To KTy o K- KT, 4, (X)dsy - dsp
=1 Y 0<s1 < lsp <t—s
= Ju(Te—s(X))
where, thanks to Dyson’s perturbation series expansion, the semigroup (Tt)t>0 has
generator £ + K with domain same as that of £, the generator of (T}),5,.

Example 4 : Consider (H,(F}),5q, (Jit);50) as before. Let Z € Z with Z~! € Z.
Define - - B
M(s,t)(&) = ko(Z)ki(Z7 )R (Z)ki(Z* ).
It is clear that M(s,t) is a multiplicative cocycle and
Fo M(0,t)(j(X)Fo = Fo ZZ*Ty(ZZ*) ' X)) Fp.
Thus the perturbed semigroup (Tt)t>0 is given by
Ti(X) = |Z)To(|Z2| 7> X).
The perturbed semigroup is contractive if and only if
T,(I) = |Z|*Ty(|1Z|7%) < I for all ¢
or, equivalently,
T.(|1Z|72) < |Z|72 for all t,

i.e. |Z|7? is an excessive element for (Tt>t20-

The semigroup (T}),sq is conservative if and only if Ty(|Z]7%) = |Z|7?, i.e.
|Z| 7% is harmonic for (T}) -

A similar construction is obtained by taking

M(s,t)(Y) = jo(B™")ju(B)Y ji(B*)js(B* ), Y € P
where B, B~! € A. Then M(-,) is a multiplicative cocycle. Furthermore
Jo(Tu(X)) = FoM(0,)(j:(X))Fy
= Fy jo(B™")ju(B)je(X)ji(B")jo(B* ") Fo.
Thus ) B
T,(X) = B 'Ty(BXB*)B* .

Tt is contractive if Ty(BB*) < BB*, i.e. BB* is excessive for (T}),5,. It is
conservative if BB* is harmonic. B

We thus get two extensions of the classical Doob’s transform. It is an open

problem to develop a boundary theory which would enable us to construct the
associated Markov process along classical lines ([Dy2]).

13. Additive cocycles

We now investigate a particular family of additive functionals which give rise
to a perturbation of the semigroup by a random time change.

Let (H,(F}),;>g, (Jt);>0) be the usual minimal dilation of a conservative semi-
group (Tt),5, on a von Neumann algebra A. Let Z be the centre of A. Let P be
the intrinsic path algebra.
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Let (L¢),~ be a strongly continuous, strictly increasing commuting family of
positive operators in P such that

(1) Ly commutes with 7,(X), u >t, X € A
(ll) ah(Lt) - Lt-l—h - Lh.

An example of such a family is obtained, for example, by putting

t
Lt = / k‘r(Z>dT'
0

for some Z > 0in Z.
For every a € IRT define the stop time 7, by
]lra>t = ]l[O,a](Lt>

in the usual sense of the functional calculus on selfadjoint operators.

Lemma 13.1- For every a € R™, 7, is a P-stop time.

Proof

For any polynomial function f on IR™ it is clear that f(L¢) belongs to P
and that 6,(f(Ls)) = f(6n(L¢)). If f is a continuous function with compact
support on IR then, by Weierstrass theorem, it can be uniformly approximated
by a sequence of polynomials (f,),. Thus f,(L¢) converges strongly to f(L;) and
On(fn(L¢)) = fn(6n(Lt)) converges strongly to f(65(L¢)). Thus f(L) belongs to
P and 0,(f(L¢)) = f(6r(L)). Now if f is the indicator function of some interval
it can be approximated by a decreasing sequence of continuous functions with
compact support. By monotone convergence theorem we get that also f(Ly) € P

and 65,(f(Ls)) = f(6n(L¢)). This implies that 1, 5, € P and

On(1r,>¢) = Tjo,a)(0n(Le)) = Njo,a)(Lt+n — L)
> N a)(Lign) for Lipn — Lp < Ly
= ]lra >t+h-

This proves that 7, is a P-stop time for every a € R*. [ |
Thus, by Theorem 8.4, we can form the stop time 7, o 7 for every a,b € R™.

Proposition 13.2— For every a,b € IRT one has 7, 0 Ty = Tatp.

Proof

The operator 1, o5, <; is the strong limit, when the partition {t;;7 = 1,...,n}
is refining, of

Z ]]'Ta €]t; ,ti+1]9tz’+1 (]lTb <t—tiq1 )

i;tist

- Z (]1"@>ti B ]1Ta>ti+1)9ti+1(]lLt—ti+1>b)

1t <t
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= (U, <a = Ano,, <) Un—Le,,, >0

1t <t

= E Ur,<alry, >aln, -1, >b

1t <t

= E Ur, <alr,,  >aln, -1, >b 11,5044

1t <t
=1, >b+a E Iz, <alp,,  >aln, -1, >0
1t <t
+ 17,5544 E 17, <a ]lLti+1>a(]1Lt—Lti+1>b —17,—1,,>5)
1t <t
=17, >b+a E 17, <allL,, , >a
1t <t
~psite Y, iy <o Un,, sa Dbyr, <ri<bira,, - (13.1)
i;tist

Note that we are taking some liberty in our notations, but all this can be justified
in the following way : the operators Ly are commuting and selfadjoint, so there
exists one spectral measure P on IR' such that L; = fooo @(t,z)P(dz) for some
function p on RT x RT. Furthermore, for each z, the function (-, z) has the
same properties as (L;),, l.e. it is continuous, strictly increasing and strictly
positive. Furthermore, for any bounded measurable function f on RRT one has
f(Ly) = fooo fle(t,z))P(dz). So all what is written in terms of the L;’s can be
transfered in the same way in terms of the ¢(t, z)'s where z is fixed.

A consequence of that is that if L; > b+ a (i.e. go(t,;v) > b+ a for all ;v)
as L is increasing continuous there exists a i such that Ly, < a and Ly, 5.
Consequently the operator 17, >p+4 Zi;tiSt Iz, <a ]lLtH_1>a 1s equal to 1z, >pta-
Thus (13.1) is equal to

7, 5640 = D, >b4a Y 11, <0 Ur,,,, >adr, <pi—b<ie,,, (13.2)
1t <t

Let T = a + b+ h for some h > 0, one has

17, >b+a E U7, <alr,,  >alr, <n,-b<r,,
1t <t

= 11>, >b+a E I, <alr,,, >a L, <0, -b<I0,,

1t <t
+ o7 Y M, iy, sa bny <no-bsr,,, (13.3)
i;tist

The second term of the right hand side of (13.3) is dominated by

17, >7 E U7, <alp,,  >ath
i;tist
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<1p,>7 Z U, ~Li>h-
1t <t
Coming back to the spectral representation of L; we have to consider
ot,)>T Y Do(tign,o)—plise) 2h- (13.4)
i§tist
But ¢(-, z) is continuous, thus uniformely continuous on [0,t]. Consequently, when
sup; |tiy1 — t;] tends to 0 the expression (13.4) tends to 0.
Consider the first term of the right hand side of (13.3), it is equal to
Dhta>L,—b>a Z Do, (Lt ) Mo hta) (Ltiys )AL, <Ly —b<L,

1t <t

= Ttazo—b>a Y, Ur,,=0 Nanga) (Do), <1, —b<0
i;tist

N M
+ Dhta>ri—b>a Z ZZ Dyntiy gmnq(Lle)

1;t; <t n=0n=0
XUy agmgigy (L), <o-b<r,, - (13.5)
The first term of the right hand side is dominated by Zi;higt ]lLrl-+1—L:i>(l thus

applying the same argument as for (13.4) this quantity converges to 0 when the
diameter of the partition tends to 0. Consider the second term of the right hand
side of (13.5), it is equal to

]1h+a2Lt—b>a Z ]l]a—%a , a](Lti)]l]a ,a+ 4 b (Ltz )]lLti <Li=b<lLi;

1t <t

+ ]]-h+a2Lt—b>a Z Z ]l]a—"THa,a—%a](Lti)
1t <t

n,m=
)

0
(n,m)#(0,0)
X Doy mp aqmdin (Lo )AL, <n—b<po,,,

S ]1h+a2Lt—b>a< Z ]l]a—%a,a](Lti>]1]a,a+1ﬁh](Lti+1))ﬂa—%a<Lt—bSa+;4—h
1t <t

N,M
+ Upta>r,—b>a E E ]lLti+1—Lti>1ﬁa/\1ﬁh'

it <t nym=0
— (n,m)#(0,0)

The second term converges to 0 as previously. If the diameter of the partition
{ti;1} is small enough, the first term is equal to

]lh-|-a2Lt—b>a ]la—;v—a<Lt—bSa+1\14—h' (136)
If L; — b > a it is clear that ]]'Lt—b<a+ﬁh converges to 0 when M tends to 4oo.

Furthermore, this last expression (13.6) is independent of the partition {t;,i =
1,...,n}.

Thus, for a fixed M, letting the diameter of the partition {¢;,7 = 1,...,n} tend
to 0 and then letting M tend to 0 we have proved that

]lraorbgt - ]1L5>b+a - ]1Ta+b§t- n
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From now on we assume (j;),;~ to be a shift-strong Markov process.
One can define a new Markov process by random time change : a + 7,. Put

F,=F: ,ja = jr,, define
To(X) = Fyju(X)Fy = Fy jr (X)) Fp.
Then by the strong Markov property (Theorem 8.7) it is clear that (Ta)a>0 is a

contractive semigroup of completely positive linear maps on A. It is also clear

A

that (H, (Fa)a>0, (Ja)a>0) 1s a dilation of (T3 ), into a weak Markov process.

In the case where L; = fot kr(Z)dr for some positive elementZ in Z we shall

A

compute the generator of (7,),, and thereby get a non-commutative analogue
of the usual perturbation of the Laplacian by multiplication by a strictly positive
function.

Lemma 13.3 - Let (T}),~, be a strongly continuous contraction semigroup of op-
erators with generator A in a Banach space x satisfying

|T¢|| < ae™ V>0
for some a,e > 0. Then 0 € R(A) and

A_l - —/ Tt dt
0
Proof

Let v € Dom (A). Put S = fooo Tidt. Then ||| < e~ ! and

(e @] (e @] d
SAu:/ TtAudtz/ — Tiyudt
0 o dt

= lim Tvu—u=—u (for |Tyul < oze_ENHuH).
N—co

On the other hand

N N
A/ T, udt = lim Toon = Te oy
0 h—0 0 h
N
T, — 1
= lim Tt< h )udt
h—0 0 h

N
:/ T, Audt =Ty u — u.
0
Thus Afooo Tiudt = —u as A 1s closed. In other words ASu = —u for u €
Dom(A). Since S is bounded and A is closed we have ASu = —u for all u € y.
Thus —5 = A7, [ |

Lemma 13.4- Let 7 be a stop time and let u be in the range of lrci . Then

/ s<u, 7(ds)u> = / <u, Npsgu>ds. (13.7)
0 0
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Proof

Let Gy = <u, Lr<su> and 8 = lim,_, 4o G5 = |u||*. Suppose that the left
hand side of (13.7) is finite. Then

o@)

0= lim sdGs > lim N(f—Gn)
N—+oo N N—+oo

and integration by parts yields

/ONsdGsz—/ONsd(ﬂ—Gs)Z—N(ﬂ—GNH-/()N(B—Gs)ds

Letting N tend to 400 we obtain (13.7).
Conversely let the right hand side of (13.7) be finite. Then

o0 o0 n+1 o0
oo>/0 (ﬂ—Gs)ds:Z/ (B=Ga)ds > (8= Gny1).

Hence limy_,o N(3 — G) = 0. Integration by parts yields
N N
/ (ﬂ—Gs)dszN(ﬂ—GN)+/ sdGy.
0 0
Letting N tend to +o00 we obtain (13.7). [ |

Lemma 13.5-Let Z € Z,7 > 0. Denote by (TtZ)t>0 the contraction semigroup
with the Feyman-Kac perturbed generator L — Ly where L is the generator of T;.
Suppose that u € Hy satisfies

/ <U,,TSZ(I)71,>ds<oo.
0

Then u is in the range of 1, <o for every a > 0 and

/ s<u, Ta(ds)u>ds < oco.
0

Proof
We have

/ —a / <u, 1 ssu>dsda
0 0
/ / “<u, Mg q(Ls)u>dads
—/ <u,e” Loy > ds
0

:/ <u, TZ/(Nu>ds < o
0
by hypothesis. Hence by Fubini’s theorem

>0
/ <u, 1y, >su>ds < oo for almost all a.
0
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Since the integrand here is increasing in a it follows that fooo <u, 1 ssu>ds < oo
for every a > 0.

In particular limg_y 4 oo <u, 1, >su > = 0 and hence u is in the range of 1, <~
for every a > 0. Now by Lemma 13.4 the required result follows. [ |

Corollary 13.6—In Lemma 13.5 let Z > ¢ > 0 for some constant ¢. Then u is
in the range of 1, <o and

/ s<u, 7(ds)u> < 0o for all a>0,u € Hy.
0

Proof
We have
ITHDI < s <u, Foe b O >
ul|=1
< e
and hence -
[ < s ds <l < e, .
0

Theorem 13.7— Let £ denote the generator of the semigroup (Ta)a>0 associated

with the additive cocycle Ly = fot k. (Z)dr where Z € Z , Z > 0. Let u € Hy
satisfy

/ <u, TSZ(l)u >ds < oc.
0
Then for any 3> 0,X € Dom(L), we have

~

<u, —(L=B)""X)u>=-p""<u, X,>- 3" / <u, TtﬂZ(E(X))u > dt.
0

(13.8)
If there exists a positive constant ¢ such that Z > cI then

L=L,'L.

Proof
By Lemma 13.5 and Dynkin’s formula (Theorem 9.3) we have for X € Dom/(
<u, (F"()j.,-(l (X)FO — jo(X))U > = / <u, Fo]l[o’a]<L1>]1(£<X>>F0u > dt.
0

Multiplying both sides by ¢ 8% and integrating with respect to a in R we get
from an application of the Feynman-Kac formula

<u, —(ﬁ—ﬁ)_l(X)u> — 87 '<u, Xu>=p3" /oo<u, e_ﬁLtjt(E(X))u>dt
0
= ﬁ—l/oO <u, TtﬂZ(E(X))u>dt.
0
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which proves the first part.
If Z > ¢ > 0 then by Corollary 13.6 the identity (13.8) holds for all u € Hy.

As in the proof of Corollary 13.6 one has

Z~ "k (Z)dr o+

177X = 1 Foe” Jo &5, (X) R
< X

By Lemma 13.3 one has
/ T)7 dt = —(L — BLz)"".

0
Thus, for all X € Dom(L)

(£ =81 (X)=—B7"X + 87" (L~ BLy) " L(X)
which implies
(£L—=8)""(X)=(L—=BLy) 'Ly(X) = (L;'L =)~ (X).
In other words £ = Lgl,C. [ |

When A = LOO(Rd) and L 1s the generator of the standard Brownian motion
process in R" and Z is multiplication by a Borel measurable function ¢ satisfying
0 < a < ¢(x) < b, the construction yields the Markov process with generator

%@(x)_lA. The additive functional used in the construction is fot (x4 By)ds.
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