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Abstract

We develop the theory of quantumn stop times on the boson Fock space & =
T(L*(R™)). We define and study, for any quantum stop times S and T, the spaces
Op, &p_, (S <T) and (S < T) which are the non-commutative analogues of the
usual o-fields Fr and Fpr— and events (S < T'), (S < T) in classical probability
theory. They are shown to satisfy the same basic properties as in the commutative
case. We apply these properties to define quantum predictable stop times on @
and to prove that the Fock space is quasi-left continuous that is, &7 = ®p_
for all predictable stop time T .This result proves that the well-known property
of quasi-left continuity for the filtration of all normal martingale satisfying the
chaotic representation property (that is, every probabilistic interpretation of the
Fock space) is actually a particular case of a more general and non-probabilistic
property of the Fock space ®.

1. Introduction

In classical probability theory a stop time 7' is a random variable on (2, F, P)
which is characterized by the increasing family of events (T' < t), ¢ € IR, which are
adapted to a given filtration. In the quantum probability context Hudson ([Hud])
has extended these properties to the case of quantum random variables and defined
a quantum stop time to be a non-negative self-adjoint operator T = fooo ANdE(X)
whose spectral measure F is adapted to a given filtration of von Neumann algebras.
In the context of the boson Fock space ® = F(LZ(R+)) a (quantum) stop time is
thus a spectral measure T on RT U {+0c}, with values in the set of orthogonal
projections on ®, such that for all t € R the operator T([0,t]) is a t-adapted
operator in the sense of Hudson-Parthasarathy’s stochastic calculus ([H-P]).

This theory has been developed in many directions. In the context of finite
von Neumann algebras (which does not contain the Fock space case), Barnett and
Wilde ([B-W]) develop a theory of quantum predictable processes which appear to
be powerful in term of quantum stochastic integration (in the same way as in the
classical probability theory). In the Fock space context the theory of stop times is
intensively studied by Parthasarathy and Sinha in [P-S]. For all quantum stop time
T they define the "Fock space before T”, denoted @, and of "Fock space after
T, denoted ®7. They show that the usual continuous tensor product structure
of the Fock space extends to (quantum) stop times : ® ~ &7 @ ®7. The notion
of quantum stop time is also successfully added to Bhat-Parthasarathy’s ([B-P])
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theory of quantum Markov processes in order to define quantum strong Markov
processes and to solve non-commutative Dirichlet problems ([A-P]).

In the classical one the main ingredients of stop time theory and stochastic
integration is the notion of predictable stop time. In order to use this notion one
needs to be able to identify when two stop times S and T are such that S < T
and one needs to define the o-field ®7_. In the quantum context the definition of
S < T and ®7 has been given by Parthasarathy and Sinha, but there is no clear
definition for S < T and ®7_. This is one the alms of this article.

We revisit Parthasarathy-Sinha’s definition of the space @7 and prove that
it admits an equivalent definition which mimicks the usual definition of Fp, the
o-field of events anterior to T' in the classical theory. Actually we prove that &7
is exactely the set of f € ® such that T'([0,¢])f belongs to ®; for all ¢. Pursuing
the analogy we define the spaces (S < T') and (S < T') for any two quantum stop
times S and T. Of course we get all the expected Most of the usual properties
remain validin this non-commutative context. This leads to a natural definition
of the notion of two stop times S and T such that S < T by saying that this
happens when (S < T) is the whole ®. This definition then corresponds to the
intuitive idea : one has S < T if and only if § < T and § and T "never coincide”.
Finally, we define the space ®7_ which is the quantum analogue of the o-field
Fr_ of events strictly anterior to T' in the classical theory. We can then mimick
some of the usual properties of the two o-fields Fr and Fr_ and extend them to
our non-commutative context.

Now, consider a normal martingale (z:),5, (that is, <z,z>; = ¢t for all ¢,
where <z,2>. denote the angle bracket process) on its canonical space (Q, F, P).
If z has the predictable representation property (that is, all martingales in L*(£2)
admit a representation as a stochastic integral with respect to x) then it is easy
too check that the natural filtration (F),5, of (2¢),5 is quasi-left continuous
that is, Fr_ = Fr for all predictable stop time 7. But the boson Fock space
® is isomorphic to a subspace of L*(Q, F, P) called the chaotic space of (x4),s,
(that is, the space of random variables f in L?(Q,F, P) which admit a chaotic
representation with respect to (z¢),5,). As our definitions on the Fock space
correspond to the usual one when one considers such a probabilistic interpretation
of ®, we have ®7_ = @7 for those predictable stop times on ® which correspond to
a commutative stop time in a probabilistic interpretation of ®. In this article, after
defining quantum predictable stop times (which is easy since we hold a correct
definition for S < T'), we show that the property ®7_ = @7 holds true for all
quantum predictable stop time 7. Thus the Fock space is intrinsicaly quasi-left
continuous. This property has nothing to do with any probabilistic interpretation

of ®.

2. Calculus on Fock space

Let @ denote the Boson Fock space over L2(1R+). In this article we identify
® with the Guichardet symmetric space over RT. Indeed, let T' denote the finite
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power set of IRT that is, the set of finite subsets of IRT. Thus I' has a disjoint
partition : ' = UnEJNI‘(") where T'(") is the set of n elements subsets of RT. For
n > 1 the set T(™ can be identified with the set {(t1,...,tn) € R™;0 < t1 <
... < tp} and then the Lebesgue measure on IR" induces a measure on I'"), By
declaring the measure of T(®) = {(}} to be unity, we obtain a c-finite measure on
T called the symmetric measure on RT ([Gui]). The element of volume of this
measure is denoted do. The space L*(T') is then isomorphic to the Fock space

([Par], p.132).

f-Lemma — Let g be an integrable measurable function on T xT. Then G : o
Yace 9la,ona) defines an integrable measurable function on T' satisfying

/FG(U) do :/F/Fg(a,ﬁ)dadﬁ.

An elementary proof may be found in [L-P]. [

In ® we distinguish the class of coherent vectors € = span{e(f); f € LZ(R+)}
where ¢(f) is the usual coherent vector associated to f that is, in the Guichardet
space notations, [¢(f)](o) = [[,c, f(5), o € . The space £ is dense in ®.

For all o € T and t € IRT we use the following notations : out = ou{t}, o\t =
o\{t}; for o # 0, vo = max{s € o}, 0- = o\{vo}, oy = 0nl0,1], o4 = onl]t, +o0[;
I'y = {oel0c[0,t]}, Tt = {oel'; oc]t, +oo[}. Recall that the Fock space @4 (resp.
) over L2([0,t]) (resp. L2(]Jt,+oc[)) is then isomorphic to L2(Ty) (resp. L?(T?)).

It is easy to check from the f-Lemma that for any fixed ¢ € R" the mapping

J o, 08 — @

fogr— (o flog)glow))
extends to a unitary isomorphism between ®; @ ®' and ®. From now we do not
make any difference between ® and ®; @ ®' and we omit the mapping J. This
structure ® = ®; @ ® is known as the continuous tensor product structure of the
Fock space (cf [Par], Proposition 19.6 or [Me2] IV.2.6). Note that in this structure
we get e(f) = e(fyg) @ e(fie) for all £, where fg = flp 4 and fiy = fl 400l

The definitions and results to come in this section can be found in great details
in [A-L].
For every t € RT define the operator IF; on ® by
[E:f](c) = 1r,(0)f(o)
forall f € ®, all 0 € I'. The operator [E; is clearly the orthogonal projection from
® onto P;.

For every t € RT, f € ®, 0 € T define the quantity
[Difl(0) = 1r, (o) f(o0t).
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Lemma 2.1 For all f € ® one has

/OOO/F|[th](a)|2dadt=/F|f(g)|2 do — |F(0)2.

This lemma is an easy consequence of the f-Lemma (see [A-L]). |

This implies that for all f € ®, for a.a.t € IRT the mapping ¢ + [D;f](o) is
square integrable. Thus, for a.a.t, D, f is an element of ®. In other words D; may
be considered as an almost everywhere defined operator that is, for all f € ®, D; f
is defined as an element of ® only for a.a.t € R™.

Notice that this lemmma implies

A1 = [Eol)] + / D fI[? dt. (2.1)

A process in ® is a family f. = (f¢),o of vectors in ® such that the mapping
t — f; 1s strongly measurable. B

A process f. in @ is adapted if for all ¢ the vector f; belongs to ®,.

An process f. in ® is [to integrable if it is adapted and

| R < o
0
In this case we define the Ito integral I(f.) of f. by

_ [ fuolo=), o #0
1) = { P50 7 2]
One easily checks (same reference as for Dy f) from the -Lemma that I(f.) defines

an element of ®. In the following we denote I(f.) by fooo fs dXs. This notation

will be justified latter. For 0 < a < b < oo we denote by fab fs dX; the Ito integral
Jo”" fsl(a)(s) dX, when it is defined.

Because of (2.1) one can compute fooo D, fdX, for any f € ®. One then easily
get the following result.

Theorem 2.2 (Fock-space predictable representation property)— For all f € F,
the process (Dif),~q s Ito integrable and we have the representation

f=Eo[f] +/0 D,fdX, (2.2)

and the isometry formula

<fig>=BalllEolg+ [ <D.f.Dig>ds (23)
0
forall g € ®. [

Let ¢ be fixed in IR, Recall that an operator H on @, with domain containing
£, is said to be t-adapted in Hudson-Parthasarathy’s sense ([H-P]) if, for all f €

L*(R™),
{Hé‘(ft]) € oy
He(f) = [He(f)] @ (fe)-
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Note that if H is a t-adapted operator and if its adjoint H* is defined on &, then
H* is also a t-adapted operator.

Lemma 2.3—Let t € RY. Let H be a bounded t-adapted operator. Then for any

Ito integrable process (fy) the process (H fu),~, 15 Ito integrable and

u>t’

H/ fuqu:/ Hf,dX,.
t t
Proof

The proof of this lemma is here sketched quickly as it is a consequence of
[A-L]’s redefinition of adaptedness; anyway, all the elements have been given in
this section for the reader to be able to follow the proof.

The Ito integrability of (H fu),~, is clear from the adaptedness and the bound-

edness of H.
For every g € L*(IR™) one has

<€(g),H/toofuqu>
= < H*:(g), [o fudX, >
= <[He(9q)] @ elgp) /too fudXy>
=<l o, [ fax

+<[He(g9)] ® / g(t)e(gyua) X / fudXu>

by (2.2), where 9[t,u] = g]l[t,u]

=< [H*g(gt])] ®/f g(w)e(gre,u)) dXu /t fudXy >

for IF; ftoo fudX, =0

=< ng(u)[ﬂ*e(gt])} @ e(91e,u)) dXu /too fudX, >
=< /mg(U)H*é‘(gu])qu, /Oofu dX, >
¢ ¢
= /too <g(u)H"e(gu)), fu>du
= [o <g(uw)e(gu)) , Hfu>du
=< [mg(U)é‘(Qu])qu, [o Hf, dX, >
— <<(g), /toonuqu>. -
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3. Probabilistic interpretations

This section contains only remarks which connect the operators IEy, Dy, I(.)
to some well-known probabilistic operations.

Let (2, F,(Ft);>0, P, (2¢),5¢) be a probabilistic interpretation of the Fock
space ®. That is, (z¢),5, is a normal martingale (i.e. a martingale such that
(27 —t),50 18 also a margingale) which possesses the chaotic representation prop-
erty ; for example the Brownian motion, the compensated Poisson process, some
Azma martingales (cf [Eme]). Let (Q,F, (F¢);>q, P) be its canonical filtered space.
One knows ([Me2]) that, throught the chaotic representation of random variables,
the Fock space @ is isomorphic to L?(,F,P). Let denote this isomorphism
from ® to L*(Q,F, P). All the operators IEy, D¢, I(.) have an interpretation on
L*(Q, F, P) as well-known probabilistic operators. Note that one can assume that
(%¢),;50 only possesses the predictable representation property and then identify
the Fock space @ to the chaotic space of (z),s, that is, the subspace of those
f e L*(Q,F, P) which admit a chaotic representation with respect to () ;>0

First of all, one has [E; = ~!E; where Ej is the operator of conditionnal ex-
pectation E|[-|F:] ; by the way the space ®; = ImIE; is isomorphic to L*(Q2, Fy, P).

As the normal martingale (z¢),5o has the chaotic representation property, it
has in particular the predictable representation property. Thus, for every ran-
dom variable f in L*(Q,F,P) there exists a predictable process (&(f)),>q In
L*(Q,F, P) such that f = E[f] + fooo &:(f)dxs. One can see & as an a.e. defined
operator on L*(Q, F, P). From this point of view &; is nothing but the probabilistic
interpretation of the operator D;; that is, D; = ~1'¢;.

The operator I(.) corresponds to the usual Ito integral with respect to (z¢),5,-
Theorem 2.2, when interpreted in L?(Q, F, P), only expresses the predictable rep-
resentation property of (z¢),5, and the isometry formula for the Ito integral.

This means that all the operators introduced in section 2 can be interpreted
as well-known operators coming from the stochastic calculus, when the Fock space
1s interpreted as the chaotic space of some normal martingales. In fact, one should
think the other way round. Probabilistic operations such as Ito integration, pre-
dictable representation, etc... can be expressed in term of the chaotic expansion
of the random variables ; in their definition they do not use any specific property
of the normal martingale involved except the chaotic representation property and
the Ito isometry formula (which is the same for all the probabilistic interpretation
as the normal martingale property implies that the angle bracket <, x> is equal
to t). Thus they can be translated into intrinsic operators on the Fock space.

4. Stop times on Fock space

Following [Hud] and [P-S], we define a stop time T on ® to be a spectral
measure on RT U {+0c} with values in the set of orthogonal projection operators
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on ® and such that, for all + > 0 the operator T'([0,t]) is a t-adapted operator in
Hudson-Parthasarathy’s sense.

In the following we adopt a probabilistic-like notation : for every Borel set
E C R" U {+o0} we write lreg instead of T(E), in the same way T([0,]) is
denoted <, T({t}) is denoted Ly, etc...

A stop_time T is discrete if there exists a finite set E = {0 <t <--- <t, <
+oo} such that lpep = 1.

A point t € R™ is a continuity point for T if 1p—, = 0. Note that any stop
time T has an at most countable set of points which are not continuity points; also
note that if T is not the null stop time, the point 0 in R™ is always a continuity
point for T

A sequence (T,), of stop times converges to a stop time T if for every conti-
nuity point ¢ of T', the operators 1, <; converge strongly to lr<;.

For any two stop times S and T one says that S < T if lg<; > < for all ¢
(in the sense of the positivity of the operator ls<; — ]ngt)- - N

Let T be any stop time. By a sequence of refining T-partitions of RT we
mean a sequence (B, ), of finite sets F, = {0 <t} <5 <--- <t} < 4oo} such
that

1) all the t; are continuity points for T

ii) E, C Epqq for all n

iii) the diameter, sup {t7',; — ', = 1,...,in}, of E, tends to 0 when n tends
to +o0.

1v) tfn tends to +o00 when n tends to +oo.

The following result is a combination of [P-S] Proposition 3.3 and [Mel].

Proposition 4.1 For every stop time T there ezists a sequence (T,), of discrete
stop times such that Ty > Ty > --- > T and (T,), converges to T

Proof

Let E = {0 <t <ty < -+ <t, < +oo} be a partition of R". Define a
spectral measure T'r by

]1T<t lfl — 1
Tp({t;:}) = =" o
E({ }) { ]]'TE]ti—lati] lf 3 > 1’
Tp({+oc}) = Irsy,.
The spectral measure Tr clearly defines a discrete stop time on ® and T > T.
Taking a sequence (E,,),, of refining T-partitions of IR™ gives the required sequence

(T.),, = (Tg, ), Details are left to the reader. |

5. The space &7

For a t € IRT the space ®, is interpreted as the "Fock space before 7. In-
deed, it is generated by the coherent vectors £(g) where ¢ has its support in-
cluded in [0,¢]. One can also think of the case of any probabilistic interpretation
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(Q,F, (Ft)i>0y Py (1) 4>0) of @ (cf section 3), in which case ®; is isomorphic to
L*(Q, Fy, P)_. In the same way as in the classical theory of stop times we wish to
define, for a quantum stop time T, the projection IE7 and the associated ”Fock
space before time T7, &7 =Im E7. Mimicking the classical case, one can define

IE+ in the case where T is a discrete stop time :

Er =)l By,

Note that because of the t;-adaptedness of 17—, the projections lr—¢, and [Ey,
do comnute.

For a general stop time T we wish to pass to the limit on a sequence (T,),
of discrete stop times converging to T' (Proposition 4.1). The following result is
inspired from [Mel].

Proposition 5.1 Let T' be any stop time on ®. Let (E,), be refining sequence
of T-partitions of RY. Let T, = Tg,, n € IN. Then the projections IET, converge
strongly to a projection IE1T which satisfies

Erf=Eo[f]+ /OOO I7rss Do f dXs.

Therefore the limit IET is independent of the chosen sequence (E,)

Proof

If ¢ € € one gets Er,¢c = ¢. Thus one can assume that FEg[f] = 0. By
definition one has

Er,f= Z ]lTE]ti,ti+1]Eti+1f

tit1
= Z ]]-Te]tiyti-l-l] /0 -Dsf dXS
i+

- Z Z I7e)e; ti4a] /

i g<i l

D,fdX,

i1

= Z Z Dreye; tiga] / D,fdX,

joi>j L

tj4+1
~Ytry [ D.fax.
J

tj

ti+1
= Z/ l754; D, f dX; (Lemma 2.3)
t

J

F )
tj+1
— Z/ ]lT")s Dsf dXs
J

J

= / I7,>s Dy f dXs.
0
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Thus the proposition holds true for discrete stop times. Let us check the conver-
gence. Indeed, one has
2

HJET”f —/ s, D, f dX,
0

:/ ||]1T">stf—]1T>stf||2 ds

0

= / ||]1T2ti(s)Dsf — Qs D5f||2 ds where ti(s) <s < ti(s)—}-l
0

= [ 1rqu e, Dedl ds.
0

By the dominated convergence Theorem this term converges to 0 when the diam-
eter of the partition {¢;;¢ = 1,...n} tends to 0. |

It is easy to check that I[E7 is a projection on ®. We call &7 its range. We
are going to see that the space @7 can be characterized in another way which is
closer to the definition of the o-field Fr in classical probability theory.

Lemma 5.2— For every stop time T on ®, every f € ®, every t € R
1) Ir<i IETf belongs to @,
i) Uy IE7f belongs to ®,.

Proof
i) One has

lr<i ET, f = 1< Z IGUSTIRTANY ey
= Z ]1T§t ]]-TE]ti,ti+1]‘Eti+1f+ ]lTe]t

i<ig—1
where t;, <t < t; 41

] JEti0+1 f

IoR)

= IF; Z ]]-TSt ]lTE]t,',ti+1]‘lEti+1f + ]]'TE]tio:t]Etio+1f
1<ig—1
+ Et Z ]lTSt ]lTE]ti,t,'+1]Eti+1f
1>10+1

as the last term actually vanishes

=IE;Ir< Z Urejts i) Etin [+ Drgye, g Bty 1o f

- Et ]]-Tst ]]'TE]tio,tiO+1]Eti0+1f
=FE:lr<: Er,f + Ireu,, (Bt f — Ef).
The left hand side of this identity converges to lIr<; IE1f, the first term of the

right hand side converges to IE; l7<; [E7Tf and the second term converges to 0 by
continuity of t — IE, f. This proves (i).
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The proof of ii) is the same, one just has to check that the operator 7y
commutes with IF, for all u > t, even for those ¢ which are not continuity points

for T. Let u > ¢, f € ®. One has
< By f — B 7 f||?
< Urai B — Upey s Buf|? + 21 Bulye,_ s f — Bulrc f]

<2|pgpm s o Buf1? + 2| Tpgpem 1 o FII-

n

This quantity converges to 0 when n tends to 4oo. |

Theorem 5.3 For every stop time T one has

S ={f €®; lr<, f € P, for allt} ={f € ®; Ipey f € By for all t}.

Proof

Let E< be the set {f € ®;lr<;f € ®; for all t} and let E. be the set
{f€® ref € @ forallt}. If f € @7 then f = [E7f and by Lemma 5.2 I7<; f
and lIp¢ f are elements of @, for all ¢. Thus &7 C E« and &7 C E_.

Let f € E<. One has -

E’Tnf - Z ]lTE]ti,t,'+1]Eti+1f
= Z(ﬂTStH-l - ]lTSti>Eti+1f

=Y Euy(Urcny, — Ires)f

But, as f belongs to E<, (1r<¢,,, — lr<y,)f is an element of ®, . Thus ET, f =
Yoilr<t;y, — U<y, ) f = f. Passing to the limit we get E7f = f, thus f € &7
and we have proved that F< C .

The proof of E. C ®7 is the same as for E« C ®7 by noticing that as all the
t; are continuity points for 7' one has ]]'TE]ti,ti+1]_ = Drepe; tiga) = DIr<tiy — Drcs,

With this theorem one recovers a non-commutative extention of the usual
characterization of the o-field Fr in the theory of classical stop tumes. By the way
we are able to recover most of the usual properties of Fr in our context.

Proposition 5.4 -
1) If S, T are two stop times on ® such that S < T then &g C ®r.

i) If (Tn),, s a decreasing sequence of stop times converging to T then ®7 =
Np®T, .

Proof

i) Let f be an element of ®g. One has l7<;f = Ir<;lg<;f as S < T. But by
Theorem 5.3 lg<;f belongs to ®;. Therefore, by t-adaptedness and boundedness
of I7<; one gets Ip<;f € ®;. This proves i).
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ii) By i), @7 is a subspace of @7, for all n, thus a subspace of N, @7, . Con-
versly, let f € N,®7,. Let ¢ be a continuity point of T. One has lr<; f =
lim, 7, <¢ f. As each l1,<; f is an element of ®; then so is Ip<¢ f. If ¢ is not a
continuity point of T, let (e,), a sequence of strictly positive real numbers such
that ¢1 > e2 > ..., such that ¢, tends to 0 when n tends to +o0c and such that, for
all n, t+¢, is a continuity point of T'. For all r» and n we have 7, <iy., f € ®rye,.
As Ir<iye, f = limpy, U7, <44, f one gets that Ir<;y., f also belongs to ®;4. .
Furthermore lr<;f is equal to lim, lr<s;., f. Noticing that for all n' > n one
has Ir<sqe, , f € ®i4c,, one deduces that I7<; f belongs to @41, for all n, thus
it belongs to ®; = N, Py ., . |

6. The spaces (S<T) and (S<T)

For any stop time T on ® one denotes by (T' < t) (resp. (T < t), etc...) the
range of the projection lr<; (resp. Iy, ete...).
For any two stop times S, T on @ denote by (S < T') the closed subspace

(S<T)=\/ (S<nn@<nt =\ (S<r)n(T>r)
re@Qt re@Q*t
where @7 denotes the set of positive rational numbers. Denote by (S < T) the
space (T < S)J' that is,

(S<T)= () (S<HV(T<r) = [ (S<r)V(T>r).
reQt reQt

Proposition 6.1 - For any stop times S and T on ® one has the following prop-
erties.

1) The space (S < T) is a closed subspace of (S <T).

ii) One has S < T if and only if the space (S < T) is equal to the whole ®.

i) If T 1s the constant time t € R* then (S<T)=(S<t)and (S<T)=
(S <t).

iv) Let J be the set of closed subspace A of ® such that (T <r)NA=(5 <
r)N (T <r)NA for allr € QF. Then J admits one and only one mazimal element;
this element is the space (S <T).

v) Let J' be the set of closed subspace A of (S < T) such that for all closed
non-trivial subspace A' of A there ezists ar € QT with (T <r)nA" £ (S <r)n4’.

Then J' admits one and only one mazimal element; this element is the space

(S<T).

Proof

i) If f belongs to UrEQ"‘(S <r)Nn(T<r)
such that f € (S < ¢)N (T < (I)J'. As (S < ) is a subspace of (S < r) for
all > g and as (T < q)J' is a subspace of (T < T')J_ for all r < ¢, we get that
(S <g¢gn(T< q)J' is a subspace of (S < r)V (T < T)J_ for all r € Q1. Thus

L then there exists a g € QF
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(S<qgn(T< q)J' is a subspace of N,co+(S < r) V(T < T‘)J_ = (S <T). So we
have U,cg+ (S <r)N (T < T‘)J_ C (S <T)andhence (S<T)C(S<T).
ii) If one has S < T we have (S <t) C (T <t)forallte R™. Consequently
(T <t)=(T <t)N (S <t) for all t. The space (S < T) can then be written as
(S<T)= () (S<nHVIT<r)N(S <)t
reQt
= () (S<nHVT<rtv(sS<r)®
r€Q+
= () ev(T<n)"
r€Q+
=) ¢&=2.
reQt
Conversly, if (S < T) is equal to the whole ® then we have (S < r)V (T
forallr € Q. Thus (S < T‘)J_ﬂ(T <r)={0}forallr € Q7 thatis, (S
r)=(T <r)forallre @QT. This means that (T <'r) is a subspace of (S < r) for
all ¥ € @F. One concludes easily that S < T.
iii) If T is the constant time ¢ € R™ we have
(S<T)= () (S<r)V(T<r)"
reQt

reQt

= (N (S<rv{op () () (S<rvet

T€Q+ T€Q+
<t r>t

= ﬂ (I)ﬂ ﬂ (S <r)

re@t re@Qt
r<lt r>t

= (S5 <1).
The case of (S < T) is treated in the same way.
iv) One has
(T<r)N(S<T)=(T<r)[][)(5<s)V(T>s)
SEQ+
= () (S<s)N(T<r)V(T>s)N(T<r)

se@+t

N () (S<s)N(T <)V (T>s)N(T<r)

se@t
s>r

= () (S<s)N(T <r) V(T €ls,r))

se@t
s<r

12
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() (S<s)N(T <)

() (S<s)N(T<r)V(TEls,)N(S<r)n(T <)

seQt
s T

Thus (T < r)N (S <T) is a subspace of (S < r) and consequently (S <r)N (T
r)N(S <T)isequal to (T <r)N(S <T). We have proved that the space (S < )
is an element of .J.

Now, let A be an element of J. We have AN (S <T) = N,co+(S<r)NAV
(T'>r)NA. But as Aisin J we have (T >r)NA=[(S>r) V(T >r)NA
This implies

AN(S<T)= [V (S<r)NAV(S>r)NAV(T>r)nA= [] A=A
reQ+ reQ+
That is, A is a subspace of (S < T'). This ends the proof of iv).

v) We first want to prove that the space (S < T') is an element of J'. From i)
the property that (S < T') is a closed subspace of (S < T') is satisfied. Now, let A’
be a subspace of (S < T). If we have (S <r)NA' = (T <r)nA forall r € QF
then this means (S < r)N (T > r) N A’ = {0} for all » € @. Consequently the
space V,co+(S <r)N (T >r)N A" is trivial. But on the other hand this space is
equal to (S < T)N A" = A’. This means that A’ is trivial. We have proved that
the space (S < T) is an element of J'.

Finally, let A be an element of J'. Let A" = (S < T)J' NA=Neo+((S >
)V (T <r)]NA. Forall r € Q" we have (S < )N (T >r)n A" = {0}, that is
(S<r)nA"=(T <r)nA’. Butas A’ is a subspace of A € J' this must imply
that A’ = {0}. Consequently (S <T)N A isequal to A, thatis AC (S<T). N

We say that two stop times § and T on ® coincide on a closed subspace A of
Pif(S<r)NA=(T<r)NAforallre Q". We say that S and T never coincide
if there exist no non-trivial closed subspace A of ® such that S and T' coincide on

A.
We say that § < T if the space (S < T) is equal to the whole &. The

following corollary says that this definition corresponds to the intuitive notion of
the property S < T.

Corollary 6.2-1If S and T are two stop times on ® then the following assertions
are equivalent :

1) S<T
ii) S < T and S and T never coincide.

Proof

If S < T then (S < T) = ® and thus (S < T) = ®. This means that one has
S < T. Furthermore, by Proposition 6.1 v) we have that for all non-trivial closed

13
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subspace A of ® there exists a r € Q7 such that (T <r)NnA#(S<r)NnA. That
is, S and T never coincide.

Conversly, if § < T and if S and T never coincide we get that the whole space
® is an element of the set J' of Proposition 6.1 v). As the space (S < T) is the
only maximal element of J' we must have (S < T) = ®. [

7. The space ®7_

Pursuing the analogy between the definition of the space ®7 from Theorem
5.3 and the classical definition of Fr, one defines, for all quantum stop time T
on @, the space ®7_ to be the closure in ® of the linear space generated by
{Irsf; f € @t € RT}.
Proposition 7.1 -

1) For all stop time T one has ®7_ C ®p.

i) If S, T are two stop times in ® such that S < T then ®g_ C $p_.

i) If (Ty), is an increasing sequence of stop times converging to T then
dr_ = VnCI)Tn_.

Proof

1) For every t € R*, every f € ®; we have Ir<lipsf =0if s <, Ipgyyqf
if s > t. Consequently in any case Ip<,l7>¢f is an element of ®,. This means
that all the vectors which generate ®7_ are elements of 7, thus ®7_ C $7.

i) Let t € R*Y and f € ®,. By adaptedness lgs¢f is an element of &; and
thus Ip~s;lss¢f is an element of ®7_. But as S < T the vector Ips;lg~f is also
equal to g~ f. This means that the generators of ®gs_ are all elements of &7_,
thus ®s_ C ®7_.

iii) Because of property ii) all the spaces &7, _ are subspaces of ®7_, thus
sois V, @7 _. Conversly if f belongs to ®7_ and if ¢ is a continuity point of T
we have Ips,f = lim,, 17 <.f, thus Ips,f is an element of V,, &7 _. If ¢ is not a
continuity point of T' one choses a sequence (e5,),, as in the proof of Proposition
5.4 and one concludes from the identity Irs:f = lim,, lim, 17 >¢y-, f. [ |

Proposition 7.2-If S and T are two stop times such that S < T then one has
b C Op_

Proof
As (S < T) = ® we have in particular

os= \/ ((S<r)N(T>r)Ndg).
reQ+
Let f be an element of (S < r)N®s. In particular f is an element of &g thus f =
Es f. Furthermore f is an element of (S < r) thus f = lg<,f. All together this
gives f = lg<, IEs f. So, by Theorem 5.3, f is an element of ®,. If furthermore
f belongs to _(T > r) we have f = lps, f and thus f € ®7_. This shows that for
all r € Q+ we have (T >r)N (S <r)N®g C ®7_ and thus &5 C S7_. [ |
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Proposition 7.3 -

1) If (Ty,),, is a decreasing sequence of stop times converging to a stop time T
and such that T, > T for all n then ®7 =N, &7, _.

ii) If (Tn),, ts an increasing sequence of stop times converging to a stop time
T and such that T,, < T for all n then ®7_ =V, @7 .
Proof

1) By Proposition 7.2, @7 is included in @7, for all n thus @7 is included
in N @7, _. Conversly, N, @7 _ is included in N, ®7, which is equal to &7 by
Proposition 5.4. This proves i).

ii) By Proposition 7.2, ®7, is included in ®7_ for all n thus so is V,®7,.
Finally, by Proposition 7.1, ®7_ =V, &7 _ C V,®7,. [

A stop time T is said to be predictable if there exists an increasing sequence
(Ty),, of stop times converging to T' and such that T,, < T for all n.

Theorem 7.4 The Fock space 1s "quasi-left continuous” that 1s, for all predictable
stop time T one has @7 = &7_.

Proof

We know that ®7_ C ®7 and that &7_ = vV, &7 . It is thus sufficient to
prove that ®7 C V,®7, . Let f € ®. By Proposition 5.1 we have

Erf = Eolf] +/0 IrssDsfdXs

and FEr, f = Eo[f] —{—/ 17, >sDsfdXs.
0
Thus one has

|Brf — Ex, f|° = / L5 s Dof — Tz,5. Do f|[? ds
0

N / 11r<s Do f = 17, <o D, f|* ds.
0

For every s which is a continuity point of T' the term ||]lT§5D5f — ]lTngstsz
converges to 0 as n tends to +00. As the Lebesgue measure of the set of continuity
points of T' is null, we conclude by the dominated convergence Theorem. [
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