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Abstract

We consider series of iterated non-commutative stochastic integrals of scalar
operators on the boson Fock space. We give a sufficient condition for these series
to converge and to define a reasonable operator. An application of this criterion
gives a condition for the convergence of some formal series of generalized integrator
processes such as considered in [CEH].

1 Introduction

On the multiple boson Fock space ® = T'(L?(R™; CN)) the quantum stochas-
tic calculus ([HP1], [Mel], [Par]) gives the definition of stochastic integrals of
the form fot H]’(‘;) (],A;-(s) where A}, A9, A;-, i,7 € {1,...,N} are the creation,
annihilation and conservation processes respectively; the H]Z beeing adapted pro-
cesses of operators on ®. These quantum stochastic integrals can be seen as
non-commutative extensions of the usual stochastic integrals with respect to the
Brownian motion (for example). In the classical stochastic calculus one considers
chaotic expansion of random variables, that is, series of iterated stochastic inte-
grals of scalar processes. It is also useful in many problems of quantum stochastic
calculus to consider series of iterated non-commutative stochastic integrals that
is, operators of the form

=M+ Y / he . AT .. AT (1)
n=1ccpn JO<ti<...<t, <t

where I is the identity operator on ® and ) is a complex number; where E =

{0,1,...,N}*\ {(0,0)} and for each n = (n',n?) € E the symbol A] denotes the
operator Az;(t); where {h; , ;n € IN*,0 < t; < ... < tp,e € E"} are scalar
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operators; and finally f0<t1<...<t < Pt dAYL - dAST denotes the iterated non-
commutative stochastic integral

/Ot {/Otn { . /Otg hi, .. dAfj} dAfj} ...dAj:_—ll}dAfs_

We propose here to give a sufficient condition on the family {h§ , } for the
expression (1) to define a reasonable operator on ®, that is for each iterated
stochastic integral to be well-defined and for the series to converge weakly.

Let us first present a useful “short notation”: the Guichardet space notation.
Let T be the set {1,...,N}. Let P be the set of finite subsets of IRT, then
P = UneNPn where Py = {(} and P, is the set of n-element subsets of R"’, for
n > 1. Each set P, can be identified with the increasing simplex {(#1,...,t,) €
R™0 < t; < ... < tp}, so it is equipped with the restriction of the Lebesgue
measure on IR". Thus the set P can be equipped with a measure space structure
whose element of volume is simply denoted do, o € P (in the following, elements
of P will always be denoted by small greek letters o, 3,7v,0,7,...). It can be
easily seen that the Fock space & = F(LZ(R+; CN)) is isomorphic to the space
L*(PT) (see [Mel], p. 103-104), called the Guichardet space. Thus a vector f of
® is determined by the family of complex numbers f(o), 0 = (0:);c7 € PT which
satisfies [,z [f(0)]* do < oo where do denotes [];.7 doi. The family {f(c),0 €
P} is called the chaotic expansion of f.

In the following the symbol + used for elements of P denotes the union of
disjoints elements of P.

Recall a fundamental property of integrals over Guichardet space, known as
the f-Lemma.

f-Lemma (see [L-P])— Let ¢ be a positive (resp. integrable) measurable function
on P™, then the function
> Z o(at,...,an)
ar1+..+tap,=a

is a positive (resp. integrable) measurable function on P and one has

/.../@(al,...,an)dal...dan:/ Z elag,...,a,)da. [ |
P P

P a1+..fa,=a

Let L% (R™; (DN) be the space of locally bounded elements of L?(R™; CN).
For f in L} (R™; CN), one puts fy = fljo g, fit = flj400] and denotes by (f)
the associated coherent vector, that is the element of ® whose chaotic expansion
is given by [e(f)](0) = [l;ez Hserri fi(s) (where as usual the empty product is
equal to 1), where the f;’s are the coordinates of f. The space of finite linear
combinaisons of coherent vectors is denoted &. It is a dense subspace of ®.

Let ®, be the space F(LZ([O,t];CN)) and ®[; the space T(L%([t, oa; CN)),

then one has the continuous tensor product structure ® ~ &5 @ ®(;, in which we
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have e(f) = e(fq) @e(fr) (cf [Me2]). Actually, in the rest of the article, the spaces
¢ and ®, ® @[; are not distiguished. The tensor product symbol is even omited
in the rest of the article (e(f) = e(fy)e(fpr))-

Recall that an adapted process of operators (in the sense of [HP1]) is a family
(Hi),> of operators from ® to ®, defined on &y and such that:

1) the mapping ¢t — H;e(f) is strongly measurable for all f;
ii) Hye(fy) € ®q for all ¢, all f;

111) Ht €(f> = [Htg(ft]ﬂs(f[t) for all t, all f
Recall that if an adapted process of operators (Hy),o is such that for all

feLiy(R ;M)
t
/ ||H56(f)||2ds<oo for all t > 0, (2)
0

then for every n = (n!,n?) € E the process (fot H, dAZ)s>0 is well-defined as an

adapted process of operators on & given by

<e(g), /OtHSdAge(f)> = /Otgnl(s)fnz(s)<£(g), H e(f)>ds (3)
where go(s) = fo(s) = 1.

2 Definition of the iterated integrals

Lemma 1-Let (Hy),5, be an adapted process of operators satisfying (2). Then,
for every T > 0, e’uery_f € L%b(IR+; CN) there exist two constants C,C' > 0 such
that for all 0 <t < T, all n € E one has

t t
[ szl <o [ et as

Proof
One can find many proofs of this kind of estimate. This particular one is
taken from [At2] p.93. One can find an analogous one in [Par] p. 188, |

Lemma 2—Let t € RT. If h is a function on Py such that

/ |h§1...tn|2 dti...dt, < oo
0<t;<...<tp, <t

then the iterated non-commutative stochastic integrals

Tt:/ h(tl,...,tn)dAfll...dAf"
0<t1 < .. <ty <1 "

are well-defined on &y for every e = (e1,...,e,) € E™.
If h satisfies

Cty 1.8 2
/ e’ by g [T dt L dt, < oo
0<ty <...<t, <oo
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for all C € R™ then the iterated integral
T:/ h(ti,... tn)dA;! ... dAS"
0<ty <oty <00
is well-defined on &y for every ¢ = (¢1,...,¢,) € E™.

Proof
From (2) it is sufficient to have for every f € L% (R™; CN)

t
/ (/ h(t,. .. ta1,tn) dAS! ...dAj::j)a(f)
0 0<t1 <. <ty 1 <1y

By successive applications of Lemma 1, one gets that this quantity is indeed dom-

2
dt, < oo.

inated by

cn—le<"—1>c'f/ h(trs . t)e(FI) dts ... dt
0<ty <... <ty <1

— C"—le(”—l)c't||e(f)||2/ \h(ty, ... t)| P dby ... dt,.
0<ty <. <ty <t
Which is finite if £ is locally square integrable.
The case t = 400 is easy to get in the same way. [

3 Correspondance between non-commutative chaotic
expansions and Maassen-Meyer kernels

We now consider operators of the form (1) and call their representation as se-
ries of iterated non-commutative stochastic integrals, the non-commutative chaotic
expansion of the operator. Of course, for the moment, we have not given a
sense to the series; so let us consider operators of the form (1) such that the
dechn f0<t1<__.<tn<t hi, . dA7 ...dA7", n € IN, do not vanish only for a finite
number of n. We are going to show that the operators of the form (1) have a
Maassen-Meyer kernel. The reader does not need to know the theory of Maassen-
Meyer kernels, we just use them as a useful language for our computations. All
what 1s needed in this note is going to be defined. Note that what we here call
Maassen-Meyer kernels are in fact Dermoune’s extension ([Der]) to multiple Fock
space of Maassen-Meyer kernels ([Maa], [Me2]).

Recall that 7 = {1,...N}. Let M = Z?. We consider in the following
elements of PT and of PM. An element a € PT is then a “vector” ()i

element § € PM is written as a “matrix” (/31])1 jer We also underline (3) the

elements of PM in order to distinguish them from the elements of PZ. Thus
when one integrates with respect to 8 € PM . the symbol df actually denotes

HieI HjeI dﬁ;-

An operator T from ® to ® is said to have a Maassen-Meyer kernel on a
domain D if there exists a measurable mapping, also denoted T, from PZ x PM x P

all
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to €' such that D is included in Dom T and for every f € D the chaotic expansion
of Tf is given by

T = [ Y T (st Syl ) de

s .
Vi, pi+Ejol tri=a;

Let us make precise some more notations. For (p,o,7) € PL x PM xPT we denote
by ord(p, o, 7) the set U;ez(pi UU; o U ;) but ordered in the increasing direction.
We denote by ¢(p, o, 7) the element of E™, where n = #ord(p,o,7), such that

i) if the k-th smallest element of ord(p, o, 7) is in o

(0,7) if the k-th smallest element of ord(p, o, ) is in 7;.

(2,0) if the k-th smallest element of ord(p, o, 7) is in p;
6(:07277—)19 = (]7

Conversely, for every ¢ € E", every (i,7) € E, let ¢(i,5) = {k € {1,...n};er =
(4,7)}. For given ¢ € E™ and o = {t1,...,tn} € Pn, let o be the element of PZ
defined by 0'?_ = {ty; k € £(1,0)}; let o be the element of PM defined by (g); =
{tr; k € &(i,7)}; let o~ be the element of PT defined by o; = {tx; k € (0,7)}.

Proposition 3 Let t € RY U{4oc}. Let Ty be an operator on ® which admits a
non-commutative chaotic expansion

T=M+) Y / he . dAS .. AT
n=1ccEn Y 0<ti<...<t, <t

which 1s well-defined on & 1n so far as the corresponding conditions of Lemma 2
are satisfied and that the sum over n is finite. Then Ty admits a Maassen-Meyer

kernel described by
1(0,0,0) =2
{Tt( o,7) =R o a(p,a,T)
where Nio q(p, o, 7) is the indicator function of ”pi,af,'ri C [0,¢t], for alli,j € T7.
Conversely, let T be an operator on ® having a Maassen-Meyer kernel repre-

sentation given by the kernel (p,o,7) — T(p,0,7). Then T admits a non-commu-
tative chaotic expansion

=\ + Z / he o dAST . dAS

n=1ecpn YO<t1 <. <ty <0
’U)hﬁT'e, fOT' o= {tla e /n}; hi — T(0'+7£70'_>.

Proof
By (3) one has

<elg), Tye(f >_/\+Z / ger(t) . g (tn)

n=1eccpn v 0<t1<..<t, <t
X fea(tr) . fea(tn) he, 4, dtr .. dtn <e(g), e(f) >.
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For every ¢ € E", every (i,7) € E, recall that e(i,7) = {k € {1,...n};er = (1,7)}.

Then
<elg), Tie(f >_/\+zz/ I II )

n=1c€En <t1<"'<t"<tielk€e(z‘0)

LI 1T ftoseo IT T £ite)

€T j€T kee(d,j) 1€ kee(0,i)
X hi o dty...dt, <e(g),e(f)>.

But, for a given o = {0 < t; < ... < t, < t} € Py, every ¢ € E" defines
a partition, o = Y. ; and p; + Z]- ol + 7 = a;, of a simply by taking p; =
{ti;k € ¢(1,0)}, 0‘; = {ti;k € ¢(i,j)}, 7 = {trisk € €(0,4)}. Conversely, let
(p,a,7) € PT x PM x 'PIZ then ¢(p,o,7) is an element of E” which corresponds
to the partition p; + Z ol + 1 = a; of ord(p, o, 7). So

<(g), Tie( >—A+z/m )Y Y Mo

E-aiza Vi, pi+3; U‘g-i—Ti:ai 1€L sEp;

<ITII IT i) 9as) TT IT #:6s)

i€T €T s g i€ sET;
< P2 da < e(g), e(f) >
= / I () Y > [E@)]((pi + Z507)i)
a€® Tiai=a i pi+ D00 +ri=ay
< e(N(Sjol + ) ) e P27 da < e(g), e(f) >
by putting g ” = \. By the f-Lemma, this gives

<<l9), Ticl >_/pew/aew/r€wn[0ﬂ .. )@ (o + 500))

< [e(DN(Sj0] +7i):) hishiern ) dpdodr <e(g), =(f) >.

But <e(g), e(f) > = [pz [e(9)](10)[e(f)](p) dp, therefore

<eto) Teth>=[ [ [ weglean)
pEPT JoePM JrePT JpueP”

< (@] ((pi + Sjo! + pa)i) ()] (i + S0k + 74)i)

X hzgg’(%’gr) dpdo drdp.

Now, in order to get coherent notations, we exchange p and 7 in the previous
identity. This gives

<elg), Tre(f >—/ / / / io.q(p, o, 1)
pEPT JoePM TE?I pePr

EW@NT (i + Sjod + 7)i) bz

6



< [e(H)]((pi + Sjol +7i)i) dpdp do dr.

Using the f-Lemma once again, we get
<o) Telh>= [ F@l@ [ Y Lealean)
acP HE,P Vi,pi+2j0g+ri=ai

o« BEPTm) ()] (s + E]-O'; +74)i) dp do.

ord(p,a, i)

Let T; be the Maassen-Meyer kernel given by the statement of the Proposition.
We have proved that for every f,g € L%b(ﬂ%_}_) we have

<elg), Tre(f)> = <elg), Tre(f) >.

So one concludes.

The converse is now easy. [

4 A criterion for the convergence of Maassen-Meyer kernels

In the previous section we have identified any finite series of iterated non-
commutative stochastic integrals with a Maassen-Meyer kernel. Now, in the Fock
space with multiplicity one (that is, N = 1) Belavkin and Lindsay [B-L] have
given a criterion for a mapping T : P? — € to define a "reasonable operator” on
® whose Maassen-Meyer kernel is 7. We give an extension of their result to the
case of any finite multiplicity.

Let a € (0,400). Define

Ba) = (f € PPy [ 0¥ (o) do < ox).

’PI
Equipped with the scalar product <g, f >(,) = fpz a*i#% (o) f(o) do the space
®(a) is a Hilbert space, whose norm is denoted || - [(,); it is a dense subspace of ®
for a > 1.

Let T be a measurable mapping from PZ x PM x PT to €. One identifies
the mapping T with the operator T from L°(P%) into itself defined by

7fl(e) = [ S T+ Siot ) de. (4
HeP” Vi,Pi-}-Eja'{—}-T,-:ai

Let us consider the quantity

[ ) T (@) da.
2

It i1s dominated by

/7?1 /pI > T(p, 0, p) f((pi + S0k + 73)i)

Y, i+2‘0'g+7'i=ai .
o <9((pi + o] +7i)i)| dp do

oL e

X_q((pi + Ejolj + Tl)l> ‘ dudpdr do.



Let us change the notations and put 3! = o! + 7; and ﬁ]l = 0;- for 1 # 5. The
previous expression then becomes

Z T(p, By, i) (i + 580)i) 9 ((pi + Z,8)i)| dudp dp
s s

where 37 denotes the element § of PM such that §! = ~; and 51 = ﬁl for 1 # j.
Define the measurable mapping

T :PExPMxPl — €
(p,B:m) = Y, T(p,7,7).
Vi, v C B
From now on, for a € PT we denote by |a| the quantity >.; #ai, and for 3 € PpM

we denote by [(] the quantity >, j #/3]1
For a,b,c € (0,400), let

T o, 2,
. b,c(aaéaﬁy) = ( é 7>

vV alelplBl el
T ||a,p,c = (/ / sup |T;’b’c(a,@,7)|2 da dy)
PI JPT Ee'pM

The following estimate is inspired by [B-L].

1/2

Lemma 4 - Let p,a,q,c € (0,+00) with p > a, ¢ > ¢. Let f,g € L°(PT) and T be
a measurable map from PT x PM x PT to €. Then one has

[ o) @A) e < lallin 1l 17l

where b = 7V(p_]a\,)(q_c).
Proof

Let b = @_ One ha,s
[ ) 7 fl(0)] do
< /PI /pr /PM‘T’(PagaH)f((/M+Zjﬂji')i)g((p,j—I—Ejﬂg)i)‘dudlodﬁ

— a8l yqg — e 18l
e
o 7;1 pI JpMm N

Th..(p, 5, u)f((uHrE B2):)g((pi + S361)i) \dudpdé
ale | - , NI dpd
ALLM Mol + 5,800 P dpag)”
J— q_cml, )
X/PI CM /PI /pM N ) ‘Ta’b’C(p’é’M)‘
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< |F (i + 2380 dpdﬁ) “dp

/731/7’1 Z ||( N )| || ((pi‘l‘/\i)i)'zdpd/\)%

Vi, B; =X
<oVl (qi—c)'ﬁ'\f«m +90))*d3

></ sup [T, (p, B, )| dp) dp
P B

: (/7’1 Pz Nl (%)MHQ((M +X)i) I dpd/\)%
/131 e /,DM qz:fc>|ﬁl\f((ui+2jg;)i>‘2 dﬁdu)%
/pI/P SUP‘ bcpaﬁu\ d,odu)1

< ||9||<p)||f||<q)||T [la,b.c u

Proposition 5-Let T be a measurable map from PT x PM x PT to C satisfying
|T'||ap,c < oo for some a,b, ¢ € (0,400). Then, for every e € (0,400), T defines
a bounded operator from ®(c + b\/ﬁ/e) to ®((a + b\/ﬁe)_l) with norm at most
||T/||a,b,c-

Proof
By Lemma 4 we have proved that |<g, ff > < ||g||(p) ||f||(q) T"||a,b,c for

any p,q such that p > a, ¢ > c and b = 7V(p_]a\,)(q_c). Take ¢ € (0,400), put
= /Nbe and b" = /Nb/e, put p = a + b and ¢ = ¢+ b, we then have

b = 7&1’—;)(4—6). Take f,g € L°(PT) and define g in LO(PT) by g(o) = 1/(a +
v)l7lg(c). Then applying Lemma 4 one gets

|<g,Tf>|

=\ e e 8
< ([ () "ok ae) ([ a1 do) I
= (/?I(aib,)|a||g(a)l2da)l/2 (/7> (c+ ") |f(a)|2da)1/2||:r'||a,,,,c.

So one concludes easily. [

Now notice that if T is a measurable mapping from PT x PM x PT to C,
then the operator T on the Fock space whose Maassen-Meyer kernel is given by
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the mapping T satisfies identity (4) wherever it is meaningful. So by Proposition
5, one easily gets the following results.

Proposition 6 —Let T be a measurable mapping from PT x PM x PL to C such
that ||T"||ap,c < oo for some a,b,c € (0,400).

1) If a < 1 then the associated Maassen-Meyer kernel is well defined as an
operator from ® to ®, with a dense domain containing ®(c + N?b*/(1 — a)). This
operator is bounded from ®(c + N?b*/(1 — a)) to ® with norm at most ||T'||abc.

i) Ifa<l, ec<1landb= 7W then the Maassen-Meyer kernel T 1s

a bounded operator on ®, with same bound for the norm. [

Let us give a sumple example to illustrate these estimates.
If H is a Hilbert-Schmidt operator on @, it is then a Hilbert-Schmidt operator
on L?(PT), thus there exists a mapping ¢ from PZ x P to € such that

L] tetenl dady < o

7o) = [ elmfe)dy 8
for all f € ®. Now consider the Maassen-Meyer kernel T' defined by

T(a,B,7) = { (~1)"#% o(a,y) i =0 for alli # j

0 otherwise.

and satisfying

Applying (4) we get
T = Y Tl (Gt S+ ) da
neEPT

Vi, pi+E; U‘Z-I_Ti:ai
_ : Si#o;
= / . Z ﬂvz';éj,a;:@ (1) @(ps 1)
nEP Vz‘,pi-i—Ejajf—}—n-:ai

x f((pi + EjU;' +73)i) dps
:/ > (=1 *7 o, ) F (i + 0} 4 72)i) dp

A -
€P Vi, pitoitri=a;

S D SR AT T(PERANED SUNC
S IVZ

iy 05 Ca; Vi, ol C;
:/ > (o \ &) f((pi + 6:)i) Ls=p dp
REPT i s Cas

(by Meebius inversion formula)
— [ elonrn)d
nePr
= [Hf](o).
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Thus the Hilbert-Schmidt operator H admits T(«, 3,7) as a Maassen-Meyer ker-
nel. Let us apply our criterion to this kernel. We get

. 2
/ / ‘sz‘,cicﬂj T(aa@ﬁ)‘ e d
sup o »}/
PLJPL B Valolbl8l el

. . 2
Svicicg (DT g gig|e(a,7)
/ / Sup Vi, C; C B #3, B! | ‘dad’y
Pz JpzT

vV alolplBl el

2
:/ / ]lw,j,,e;:(z) “P(aﬁ)‘ do dy
PI JPpIT alalb|ﬂ|clvl

/ / |plas )|
da dry.
PI JPpT alalch”

This quantity is finite for ¢ = 1, ¢ = 1 and b = 0. Hence we recover that this
kernel defines a bounded operator (Proposition 6).

5 Convergence of series of iterated non-commutative
stochastic integrals

We are now able to give our final result, which gives a condition for a series of
iterated non-commutative stochastic integrals of the form (1) to define a densily
defined operator on .

Theorem 7 Let t € RT U{4oc}. Foralln € IN, alle € E™, let h® be a function
on Pn satisfying the condition of Lemma 2. Suppose that the functions h® satisfy

(@,8C) |2

/ ‘Zw,cicﬁ;ﬁ hord(mjc,'y) ]1[0,1‘](/3)
7'l T, (e, y) sup — dady < oo
ab,ec = [0,] Y 3]
PI JPpIT ﬂEPM (alalb_ c|’7|)

for some a € (0,1), b,c € (0,+00). Then the operator

T, = M\ + Z / he . AT dAS
=1 cepn J0<t1 <. <tn <t "

is well-defined as an operator on ® with (dense) domain ®(c + N2b*/(1 — a)),
bounded from ®(c+ N?*b?/(1—a)) to ® with norm at most ||T"||ap.c. Furthermore,

if e <1 and b= 7~(1—va)(1—(1) the operator Ty is then a bounded operator on ®, with

the same bound for the norm.

Proof

Combine Lemma 2, Proposition 3 and Proposition 5. [

We also have a uniqueness theorem for the representation of operators as
non-commutative chaotic expansions.
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Theorem 8 — Let T be an operator on ® having a representation of the form

VIS SO Sl SN T

i=1 ecEn YO<t <..<t, <t B
for some t € RY U {4+oc}. Then T vanishes if and only if for all n € IN, all
e € B, almost all (t1,...,t,) € Pn one has h ., =0.

Proof

We have proved in Proposition 3 that there is a one-to-one correspondance be-
tween non-commutative chaotic expansions and Maassen-Meyer kernels. In [At3],
Theorem IV.6, the uniqueness of Maassen-Meyer kernels representation is proved,
for any multiplicity of the Fock space. So one concludes. [

6 The case of iterated non-commutative stochastic integrals
containing the time integrator

In all the results considered previously we have never considered the case
where the iterated non-commutative stochastic integrals are containing the time
process as an integrator. Indeed, we have only considered the integrators dA;-
for (1,7) € {0,1,... ,N}2 \ {(0,0)}, avoiding the term dAY(¢) which in fact cor-
responds to the time integrator dt. There are two reasons for that. The case of
series of iterated non-commutative stochastic integrals without time integrator re-
ally corresponds to the notion of non-commutative chaotic expansion; that is, the
representation of a given operator in terms of a series of iterated integrals of scalar
operators with respect to the ”quantum noises” : the creation, annihilation and
exchange processes. Another way to understand these series as non-commutative
chaotic expansions is to see that, in some cases like the case of Hilbert-Schmidt
operators on the Fock space (cf [Atl]), these series can be obtained by iterating
the integral representation of the operators; exactely like one can prove the chaotic
representation property of the Brownian motion by iterating the predictable rep-
resentation property. The second reason is that in the case where there is no time
integrators, we have uniqueness of the series (Theorem 8); this uniqueness is lost
when allowing the time integrator. But it is convenient in some problems (such
as the application of the next section) to consider series with the time integrator.
That is why we present here the results corresponding to this case. Let us first
make precise some new notations.

Let F = {0,1,...,N}?. For ¢ = (¢',¢?) € F the operator A denotes, as
previously, Azi(t) for ¢ # (0,0) and A§(¢) = ¢ if ¢ = (0,0). We now want to

consider operators of the form
T, =M+> Y / Wi . dAST . dAZ (6)
nelcepn JO<t<..<t, <t

In the following we consider elements of PZ, PM and P, so in order to distinguish
them we will denote as previously elements of PT with small greek letters (p),
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elements of PM with underlined small greek letter (¢) and elements of P with
upperlined small greek letters (§). A quadruple (p,o,7,8) in PT @ PM @ PT P
can be seen as a (N + 1) ® (N 4 1) matrix (a;‘)i,je{o,l,...,N} of elements of P
j
ord(p,o,7,d) we mean the ordered set U; j—o, . N a?; by e(p,c,7,8) we mean the
element of P™ (where n = #ord(p,a,7,d)) such that e(p,a,7,8)r = (i,7) if the
k-th smallest element of ord(p, o, ,d) is in oz;-.

By using the same kind of proof as in Proposition 3, one can prove that an
operator T; given by a series of the form (6) admits a Maassen-Meyer kernel T;

which given by

by putting ol = 4, o} = p;, ozj- = ot and oY = 7, fori,j = 1,...,N. So, by

_ (pa,m8) %

T(p,a7) = /73hord(p,z,r73) dd.

So we obtain the following easy extension of Theorem 7.
Theorem 9—Let t € RT U{4+oc}. For alln € IN, all e € E™ let h* be a function

on Py satisfying the condition of Lemma 2. Suppose that the function h® is such
that the quantity

T2, =
5 2
e(a@,B.C,v,8) _
_/ / 1 ( ) ‘sz‘,cicﬂf f'p hord(?&,%g)]l[o’t]@” dd ﬂ[O,t](ﬁ) y
= PI JPpT [O,t] a’»)/ ESEI}PI:\A (a|a|b|£|(,|7|) o ")/

is finite for some a € (0,1), b,c € (0,4+00). Then the operator

=ty Y | B, QAT A,
i=1 ccFr YO<t1 <...<t, <t

is well-defined as an operator on ® with (dense) domain ®(c + N?b?/(1 — a)),
bounded from ®(c+ N*b?/(1—a)) to ® with norm at most ||T"||ap,c. Furthermore,

ife<1andb= Y190

N then the operator Ty 1s a bounded operator on ®, with
the same bound for the norm. [

7 An application to series of generalized integrators

In [CEH], Cohen, Eyre and Hudson are considering some generalized integra-
tor processes. Let K be the space €. For a (N+1)x (N +1) matrix H, that is an
element of the space J of linear transformation of the space € & K, they consider
the process (A¢(H)),~q, defined on the exponential domain £ by the identity

<elg), M(H)e(f) > = /Ot <G(s), Hf(s)>ds<e(g), e(f) >,

where for u € K, ﬂdéf(l, u) € C&K. This means that, with our notations, A;(H) is

actually equal to 3=, . H(i, ) A;(t), where H = (H(1, 7)), ;- Now take H" € Jer
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of the form H" = H' ® ... ® H,;. Counsider processes of the form

0<t1<...<tp <t

= >y / H ki, l) ... H (k1)
. o<t <. <, <2E

111"-711L7k17'~~7k1

€{0,1,...N} xdAp! () ... dAT" (t)
-y By e, dAG . dAG)
cefn Y 0<i <. <1, <t

— Hp(e},e3)... Hy(eh,22).

&
where htl’mﬂf 5

By exter;lding it linearly the mapping I; can be defined on the tensor space
over J: J=CT TG . ...

In [CEH] such operators have been formally considered, and were proved to
form an "Ito algebra” of which the product was described. This extended the
formula given in [HP2] where only the purely conservation generalized processes
case was considered. Indeed, the matrices H of J are composed of four elements:
a complex number, a vector in K, a linear form on K and a linear transformation
of K, each of them corresponding to the time, creation, annihilation and multidi-
mensional conservation component of A¢(H). So, when only the fourth component
does not vanish, we are in the purely conservation case.

Our purpose here is, for elements H of the tensor algebra J, to give a meaning
to Iy(H) as a well-defined operator on the Fock space, a series of iterated non-
commutative stochastic integrals.

Proposition 10- Let ‘H be an element of the tensor algebra J over J of the form
H=@,H", with H" = Ri<nH and each H beeing a (N + 1) X (N—I— l) matric.
If K = sup{|H'(k,)|;n € IN;i < n; k1 =0,1,...,N} is finite then, for all
t € R, the operator

LH) =Y / Ay, (HT) ... dA, (H")
0<ty <. .. <ty <t

n=0

is well-defined as a bounded operator from ®(r) to ®, with any r > N*(K + 1)

Proof
We have to apply Theorem 9 to the familly of scalar operators hy =, =

HP(ey,e3)... H (e, eh). The corresponding conditions of Lemma 2 are obvioﬁsly
satisfied.

Let K = sup{H](k,l);n € N;i <n;k, 1 =0,1,...,N} < co. We then have
|hi, 1, < K". Thus we get

R N
Svicicsi fo e W00 () 48] To.0(8)

/ / o (e, ) sup N7 dardy
pr JpI ’ gepMm (a|a|b|ﬁ|c|7|)
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su
ﬂeplzz)vi (a|a|b|£|c|7|)

. - _ N\ 2
< (Sviscucar Jp K1 KA KK 1 4(3) db)
B /pr /pz

><]1[0,t](0‘a’7) dadry.

. 2
: ’|£| ~la] e >
:/ / To, () sup (B e K )W ) (KD
prtpr

sepm el alol

X (Z %I(")Z da dry

1

[

< (/pr (I;:) T, q(a) da) (/pr (?) Lo, (%) d’Y) exp (2tK)

X sup
BePM

= exp (t( + + QK)) sup
a ¢ BeEPM

NK? NK? ((K +1)2 ) 12l

So taking any a,c € (0,400), any b > (K +1)? one gets that the quantity ||T"||2 , .
is finite. Taking a and ¢ as close of 0 as possible, applying theorem 9, gives the

result. [ |

The authors are very grateful to Prof. P.-A. Meyer for pointing out an error
in a first version of this article.
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