
             

ASYMPTOTICS OF THE HEAT CONTENT

FOR DOMAINS WITH SMOOTH BOUNDARY

Alessandro Savo

We give a recursive algorithm for the computation of the complete asymptotic series, for small time, of the amount
of heat inside a domain with smooth boundary in a Riemannian manifold; we consider arbitrary smooth initial data,
and we impose Dirichlet condition on the boundary. Our coefficients are given in terms of the algebra of differential
operators generated by the Laplacian of the manifold, and by an operator of order one written in terms of the mean
curvature of the hypersurfaces parallel to the boundary.

Introduction

Let Ω be a domain in a complete Riemannian manifold. We assume Ω̄ compact and ∂Ω smooth. Let u(t, x)
be the solution of the heat equation on Ω, satisfying Dirichlet boundary conditions, and unit initial conditions:
u(0, x) = 1 for all x ∈ Ω. Fix φ ∈ C∞(Ω̄), and define:

H(t) =

∫

Ω

u(t, x)φ(x) dx

H(t) is the amount of heat inside Ω at time t, given that the initial temperature at time t = 0, at the point
x ∈ Ω, is φ(x), and assuming that the boundary of Ω is kept at zero temperature at all times.

As t→ 0, there exists an asymptotic series:

(1)

∫

Ω

u(t, x)φ(x) dx ∼
∫

Ω

φ−
∞∑

k=1

βk(φ) · tk/2

The aim of this paper is to give a recursive formula which computes the coefficient βk(φ) for all k ≥ 1.

For domains in Rm, β1(1) was first computed in [2], and β2(1) was computed in [5]: both computations use
probabilistic methods. β1(1) and β2(1) were computed for the upper hemisphere of a sphere in [1]; then, van
den Berg and Gilkey (in [4]) established the existence of the asymptotic series, and proceeded to compute the
coefficients βk(φ) up to k = 4 for domains in Riemannian manifolds, and up to k = 7 for balls in Rn, when
φ = 1. Their calculation use the functorial properties of βk: in fact the method extends to operators of Laplace
type, and to Neumann boundary conditions (in which case, the first six terms of the expansion are calculated,
see [3], [10]).

If Ω is a polyhedron in Rm, there is also an asymptotic expansion of the type:

∫

Ω

u(t, x) dx ∼ vol(Ω) + β1(1) · t1/2 + β2(1) · t+O(t
3
2 )

β1(1) and β2(1) were computed in [6] for polygonal domains in the plane, and in [14] for convex polyhedral
bodies in Rm. These results do not follow trivially from the smooth case; in fact β2(1) does not pass to the
limit under smooth approximations of the polyhedron.
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Let us then assume that ∂Ω is smooth. We show that, for each k ≥ 1, βk(φ) is given by integration, over ∂Ω
and for the induced Riemannian measure, of the function Dkφ, where Dk is a differential operator, acting on
C∞c (U) ( U is a fixed neighborhood of ∂Ω in Ω) and belonging to the algebra A generated by the Laplacian ∆
of the manifold, and by the operator N , of order 1, defined by the formula:

(2) Nφ = 2∇φ · ∇ρ− φ∆ρ

where ρ : Ω → R is the distance function from ∂Ω ( since ∂Ω is assumed to be smooth, the distance function
ρ is C∞− smooth in a neighborhood of ∂Ω). We observe that the coefficients βk(φ), for k ≥ 1, depend only on
the behavior of the initial data φ near the boundary of Ω, hence they really give invariants for the immersion of
∂Ω in Ω (the interior invariants βintk (in the sense of [4]) are zero in our case for k ≥ 1); in particular, domains
which are locally isometric near the respective boundaries give rise to the same sequence of coefficients βk(1),
for k ≥ 1.

About the operators Dk, we show that each Dk is homogeneous of order k − 1 in N and ∆, and we give a
recursive formula which expresses Dk in terms of Di, i ≤ k − 1. Since ∆ρ, at its C∞-points, gives the trace of
the second fundamental form of the level hypersurfaces of the distance function ρ (the parallel manifolds of ∂Ω),
each Dkφ could be expressed in terms of the classical invariants: namely, the curvature tensor and its covariant
derivatives, and the second fundamental form and its covariant derivatives. In this way one can recover the
coefficients of (1) up to β4(φ) as presented in [4] (our βk(φ) corresponds to −βk(φ, 1) in [4]).

Main theorem. For each k ≥ 1, there exists a homogeneous polynomial Dk of degree k − 1 in the operators
N and ∆ such that:

βk(φ) =

∫

∂Ω

Dkφ

Let the families of operators of type R and S be defined inductively by:





Rkj = −(N2 + ∆)Rk−1,j +NSk−1,j

Skj = NRk−1,j−1 + ∆NRk−1,j −∆Sk−1,j

R00 = Id, S00 = 0 Rkj = 0 if j < 0

and set: {a, b} =
Γ(a+ b+ 1/2)

(a+ b)!Γ(a+ 1/2)
, Zn+1 =

∑n
j=0{n+ 1, j − 1}Rn+j,j , and αk =

∑k+1
j=0{k, j}Sk+j,j . Then the

following recursive formulas hold:

D1 =
2√
π
Id

D2n =
1√
π

n∑

i=1

Γ(i+ 1
2 )Γ(n− i+ 1

2 )

n!
D2i−1αn−i

D2n+1 =
1√
π
Zn+1 +

1√
π

n∑

i=1

i!Γ(n− i+ 1
2 )

Γ(n+ 3
2 )

D2iαn−i

We give below the explicit expression of the operators D1, . . . , D8:
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D1 =
2√
π
Id

D2 =
1

2
N

D3 =
1

6
√
π

(N2 − 4∆)

D4 = − 1

16
(∆N + 3N∆)

D5 = − 1

240
√
π

(N4 + 16N2∆ + 8N∆N − 48∆2)

D6 =
1

768
(∆N3 −N3∆ +N∆N2 −N2∆N + 40N∆2 + 8∆2N + 16∆N∆)

D7 =
1

6720
√
π

(N6 + 120N2∆2 + 4N3∆N + 4N2∆N2 + 4N∆N3 + 72(N∆)2 + 40N∆2N + 8N4∆+

+ 8∆N2∆ + 8(∆N)2 − 8∆2N2 − 320∆3)

D8 = − 1

24576
(40∆3N + 8∆N3∆ + 280N∆3 + 8N∆2N2 − 8N2∆2N + 72∆2N∆ + 120∆N∆2+

+ 4∆2N3 + 4∆N∆N2 + 4∆N2∆N + 4N∆N2∆− 12N3∆2 + ∆N5 −N4∆N −N5∆)

The case φ = 1 is of particular significance, since then:

H(t) =

∫

Ω×Ω

k(t, x, y) dx dy

k(t, x, y) being the Dirichlet heat kernel of Ω. Since ∆1 = 0, and N1 = −∆ρ, the coefficients β1(1), . . . , β8(1)
are given by:

β1(1) =
2√
π
vol(∂Ω)

β2(1) = −1

2

∫

∂Ω

∆ρ

β3(1) = − 1

6
√
π

∫

∂Ω

N∆ρ

β4(1) =
1

16

∫

∂Ω

∆2ρ

β5(1) =
1

240
√
π

∫

∂Ω

(N3 + 8N∆)∆ρ

β6(1) = − 1

768

∫

∂Ω

(∆N2 +N∆N −N2∆ + 8∆2)∆ρ

β7(1) = − 1

6720
√
π

∫

∂Ω

(N5 + 4N3∆ + 4N2∆N + 4N∆N2 + 40N∆2 + 8∆N∆− 8∆2N)∆ρ

β8(1) =
1

24576

∫

∂Ω

(40∆3 + 8N∆2N − 8N2∆2 + 4∆2N2 + 4∆N∆N + 4∆N2∆ + ∆N4 −N4∆)∆ρ

and in general βk(1), for k ≥ 2, is given by integration on ∂Ω of a differential operator of order k − 2 in N
and ∆, applied to ∆ρ.

The method we use is to reduce the study of (1) to a one-dimensional problem. It could be summarized as
follows. First observe that

∑∞
k=1 βk(φ) is the asymptotic series, as t→ 0, of the function:
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Iφ(t) =

∫

Ω

(1− u(t, x))φ(x) dx

We introduce an auxiliary variable r ∈ [0,∞) and let:

Iφ(t, r) =

∫

Ω(r)

(1− u(t, x))φ(x) dx

where Ω(r) = {x ∈ Ω : d(x, ∂Ω) > r} is the parallel domain at distance r from ∂Ω. By the so-called principle
of not feeling the boundary , in order to examine the asymptotic behavior of Iφ(t) as t → 0, we can assume
that φ is supported in a neighborhood U of ∂Ω: in that case, Iφ(t, r) is smooth in both variables, and satisfies
a one-dimensional heat equation on the half-line of type:

(
− ∂2

∂r2
+
∂

∂t

)
Iφ = L1Iφ

where:

(3) L1Iφ(t, r) =

∫

ρ−1(r)

(1− u(t, x))Nφ(x) dx−
∫

Ω(r)

(1− u(t, x))∆φ(x) dx

By Duhamel principle, iterated infinitely many times, we can then represent Iφ(t, 0) in terms of the derivatives

of the one-dimensional heat kernel e(t, r, 0) =
1√
πt
e−r

2/4t and the powers Lk of the heat operator L = − ∂2

∂r2
+
∂

∂t
applied to Iφ. The algebraic relations coming from this process will lead to the recursive formulas of the main
Theorem, and the form of (3) roughly explains why the operators Dk are generated by N and ∆.

Acknowledgements. The author wishes to thank Sylvestre Gallot for substantial remarks, and Gerard
Besson for profitable conversations. He is also grateful to the Institut Fourier for the financial support and the
hospitality he received during his visit in the October of 1995.

The algorithm

We first introduce the distance function from the boundary: ρ(x) = dist(x, ∂Ω) (for complete details, see
[14]). ρ is Lipschitz on Ω, and is C∞-smooth on the set Ω \ Cut(∂Ω), where Cut(∂Ω) is the cut-locus of the
normal exponential map of ∂Ω. Cut(∂Ω) has zero measure in Ω, and at all C∞-points of ρ we have ‖∇ρ‖ = 1.
Fix a smooth map v on Ω, and define:

F (r) =

∫

Ω(r)

v(x) dx

where Ω(r) = {x ∈ Ω : ρ(x) > r} is the parallel domain at distance r from ∂Ω. Then F is Lipschitz on (0,∞),
and we have (see Theorem 2.8 in [14]):

(4) F ′′(r) = −
∫

Ω(r)

∆v(x) dx+ ρ∗(v∆ρ)(r)

in the sense of distributions on (0,∞): here ∆ρ is the distributional Laplacian of ρ (it is, in fact, a measure)
and ρ∗(v∆ρ) is the measure on (0,∞) which is the push-forward of v∆ρ by ρ. However in this paper we are
going to apply (4) only for r in an arbitrarily small neighborhood of 0. If we let Rinj denote the injectivity
radius of ∂Ω in Ω, then ρ is C∞-smooth on the strip {x ∈ Ω : ρ(x) < Rinj}, and so F (r) is also C∞-smooth on
(0, Rinj), and, on this interval, we have:
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(5) F ′′(r) = −
∫

Ω(r)

∆v(x) dx+

∫

ρ−1(r)

v(y)∆ρ(y) dy

where dy is the induced Riemannian measure on the submanifold ρ−1(r). Finally, at all C∞-points x of ρ,
∆ρ(x) gives the trace of the second fundamental form of the level submanifold ρ−1(ρ(x)), with respect to the
unit normal vector ν = ∇ρ.

In what follows u(t, x) will always denote the following solution of the heat equation on Ω:





(
∆ +

∂

∂t

)
u = 0

u(0, x) = 1 for all x ∈ Ω

u(t, y) = 0 for all t > 0, y ∈ ∂Ω

Note that u(t, x) =
∫

Ω
k(t, x, y) dy, where k(t, x, y) is the Dirichlet heat kernel of the domain Ω.

So fix φ ∈ C∞(Ω̄). Our aim is to compute the asymptotic series
∑∞
k=1 βk(φ) · tk/2 of the function:

Iφ(t) =

∫

Ω

(1− u(t, x))φ(x) dx

as t→ 0. We first prove the following Proposition:

Proposition 6. Let φ, φ′ ∈ C∞(Ω̄). If φ = φ′ on a neighborhood U of ∂Ω, then βk(φ) = βk(φ′) for all k ≥ 1.

Proof. See Appendix A.

For the rest of the paper, we fix a < Rinj , and let U be the strip (tubular neighborhood) of width a around
∂Ω:

U = {x ∈ Ω̄ : ρ(x) < a}

Thanks to Proposition 6, we can assume from now on that φ is supported on U (if not, we can reduce to this
situation by a partition of unity argument).

Notation. We introduce the following symbolism. For φ ∈ C∞c (U), define:

Iφ(t, r) =

∫

Ω(r)

(1− u(t, x))φ(x) dx

Λφ(t, r) =

∫

ρ−1(r)

(1− u(t, x))φ(x) dx

Since U does not intersect the cut-locus of ∂Ω in Ω, we see that Iφ(t, r) and Λφ(t, r) are smooth on (0,∞)×
[0,∞). Our notation stresses the role of φ, and in fact it will be convenient for us to regard I and Λ as operators

taking φ ∈ C∞c (U) to Iφ and Λφ, both in C∞((0,∞)× [0,∞)) (and supported for r < a). Note that
∂

∂r
I = −Λ.

The computation of the asymptotic series of the heat content relies on an iteration of Duhamel principle (see
Lemma 9 below). In order to be able to apply Lemma 9, we will need to consider the following approximation of
the temperature function u(t, x): for 0 < ε < a, let uε(t, x) be the solution of the heat equation on Ω, satisfying
Dirichlet boundary conditions, and having initial conditions:

uε(0, x) =

{
1 if ρ(x) > ε

0 otherwise
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Since the initial conditions of uε tend to the initial conditions of u as ε→ 0, in the sense of distributions, we
see that, for fixed (t, x):

lim
ε→0

uε(t, x) = u(t, x)

Then let:

Iεφ(t, r) =

∫

Ω(r)

(1− uε(t, x))φ(x) dx

Λεφ(t, r) =

∫

ρ−1(r)

(1− uε(t, x))φ(x) dx

By Lebesgue bounded convergence theorem:

Iφ(t) ≡
∫

Ω

(1− u(t, x))φ(x) dx = lim
ε→0

Iεφ(t, 0)

Recall that Iεφ(t, r) is C∞-smooth in (t, r) for t > 0 and r ≥ 0. For any j we regard
∂j

∂tj
Iεφ(0, r) as a

distribution on [0,∞) (it is in fact supported on the interval [0, a)) and set, for ψ ∈ C∞([0,∞)):

∫ ∞

0

∂j

∂tj
Iεφ(0, r)ψ(r) dr = lim

t→0

∫ ∞

0

∂j

∂tj
Iεφ(t, r)ψ(r) dr

We also set:

∂j

∂tj
Iεφ(0, 0) = lim

t→0

∂j

∂tj
Iεφ(t, 0)

Similar definitions hold for the function Λεφ. All these limits will be evaluated in Lemma 15.

We then introduce the algebra A of all differential operators acting on C∞c (U), generated by the Laplacian

∆, and by the operator N , which takes φ to 2
∂φ

∂ν
− φ∆ρ, where ν = ∇ρ is the unit vector, normal to the level

hypersurfaces of the distance function ρ (the parallel hypersurfaces). The families of operators in A, of type
P,Q,R, S are defined inductively by the formulas:

(7)





Pkj = −(N2 + ∆)Pk−1,j +NQk−1,j

Qkj = NPk−1,j−1 + ∆NPk−1,j −∆Qk−1,j

P00 = 0, Q00 = Id, Pkj = 0 if j < 0

and:

(8)





Rkj = −(N2 + ∆)Rk−1,j +NSk−1,j

Skj = NRk−1,j−1 + ∆NRk−1,j −∆Sk−1,j

R00 = Id, S00 = 0, Rkj = 0 if j < 0

The operator Pkj has order 2(k − j)− 1, and vanishes for 2j > k − 1; the operators Qkj and Rkj have order
2(k − j) and vanish for 2j > k, and the operator Skj has order 2(k − j) + 1 and vanishes for 2j > k + 1.

As mentioned in the Introduction, our method is based on a reduction to a one dimensional problem; the
following lemma is an iterated version of Duhamel principle on the half-line, and is the technical tool upon

which our computation is based. So let L = − ∂2

∂r2
+

∂

∂t
be the heat operator, and let e(t, r, s) denote the heat

kernel of the half-line (0,∞) subject to Neumann boundary conditions at r = 0; explicitly:
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e(t, r, s) =
1√
4πt

(
e−(r+s)2/4t + e−(r−s)2/4t

)

and in particular:

e(t, r, 0) =
1√
πt
e−r

2/4t

Lemma 9 (Iterated Duhamel principle).
Let F (t, r) be smooth on (0,∞)× [0,∞)→ R, and assume that:
(i) LkF (0, r) = limt→0 L

kF (t, r) exists in the sense of distributions for each k ≥ 0;

(ii) As t→ 0, both LkF (t, 0) and
∂

∂r
LkF (t, 0) converge to a finite limit, for each k ≥ 0.

Then, for all m ∈ N, and t > 0:

F (t, 0) =

m∑

k=0

tk

k!

∫ ∞

0

e(t, r, 0)LkF (0, r) dr − 1√
π

m∑

k=0

1

k!

∫ t

0

∂

∂r
LkF (τ, 0)(t− τ)k−1/2 dτ+

+
1

m!

∫ t

0

∫ ∞

0

e(t− τ, r, 0)Lm+1F (τ, s)(t− τ)m ds dτ

Proof. Given our assumptions on F , the classical Duhamel principle holds for every LmF , in the sense that, for
all t > 0, and r ≥ 0:

(10)

LmF (t, r) =

∫ ∞

0

e(t, r, s)LmF (0, s) ds−
∫ t

0

∂

∂r
LmF (τ, 0)e(t−τ, r, 0) dτ +

∫ t

0

∫ ∞

0

e(t−τ, r, s)Lm+1F (τ, s) ds dτ

Taking r = 0, we see that the lemma holds for m = 0. To lighten notation, we introduce the (heat) semigroup
operator βt of the half-line, acting on the distribution U by the formula:

βtU(r) =

∫ ∞

0

e(t, r, s)U(s) ds

The semigroup property of βt states that: βt+s = βt ◦ βs for all t, s ≥ 0. We also let: β̄tU = βtU(0), so that
β̄t ◦ βs = β̄t+s. Finally, we write Ft for the function Ft(r) = F (t, r).

We now assume that the formula in (ii) holds for m− 1. The lemma will follow if we show that, in our short
notation:

(11)

∫ t

0

β̄t−τ (LmF )τ
(t− τ)m−1

(m− 1)!
dτ =

tm

m!
β̄t(L

mF )0

+

∫ t

0

β̄t−τ (Lm+1F )τ
(t− τ)m

m!
dτ − 1√

π

∫ t

0

∂

∂r
(Lmf)τ (0)

(t− τ)m−1/2

m!
dτ

From Duhamel principle applied to LmF (see (10)):

(LmF )τ = βτ (LmF )0 +

∫ τ

0

βτ−µ(Lm+1F )µ dµ−
∫ τ

0

∂

∂r
(LmF )µ(0)βτ−µδ0 dµ

where δ0 is the Dirac distribution at r = 0. When we plug (LmF )τ in the left-hand side of (11), we obtain three
terms. We examine each of them separately.

Since β̄t−τ βτ = β̄t, the first term becomes
tm

m!
β̄t(L

mF )0.

When we plug
∫ τ

0
βτ−µ(Lm+1F )µ dµ into the left-hand side of (11), we get:
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1

(m− 1)!

∫ t

0

∫ τ

0

(t− τ)m−1β̄t−τβτ−µ(Lm+1F )µ dµ dτ

using the semigroup property of βt, and switching order of integration , we obtain:

1

(m− 1)!

∫ t

0

∫ t

µ

(t− τ)m−1β̄t−µ(Lm+1F )µ dτ dµ =

∫ t

0

β̄t−µ(Lm+1F )µ
(t− µ)m

m!
dµ

Finally, we plug −
∫ τ

0

∂

∂r
(LmF )µ(0)βτ−µδ0 dµ into the left-hand side of (11), and get:

−
∫ t

0

∫ τ

0

(t− τ)m−1

(m− 1)!

∂

∂r
(LmF )µ(0)(β̄t−µδ0) dµ dτ

we switch order of integration, and we observe that: β̄t−µδ0 =
1√
π

(t− µ)−1/2. The expression becomes:

− 1√
π

∫ t

0

∂

∂r
(LmF )µ(0)

(t− µ)m−1/2

m!
dµ

We add-up the three terms, thus verifying (11). Proof is complete.
�

The next lemma shows how the operators LkI and LkΛ can be expressed in terms of the algebra A, and
partial differentiation with respect to time. The same relations hold replacing LkI and LkΛ by LkIε and LkΛε,
and in fact they hold if, in the definition of Iφ and Λφ, one replaces 1− u by any solution of the heat equation
on Ω.

Lemma 12.
(i) LI = ΛN − I∆

(ii) LΛ = −Λ(N2 + ∆) + I∆N +
∂

∂t
IN

and for all k ∈ N:

(iii)

LkI =

∞∑

j=0

∂j

∂tj
(ΛPkj + IQkj)

LkΛ =

∞∑

j=0

∂j

∂tj
(ΛRkj + ISkj)

where the operators of type P,Q,R, S belong to A and have been defined in (7) and (8).
Therefore, both sums in (iii) are finite (in fact in the first j ≤ [k2 ] and in the second j ≤ [k+1

2 ])

Proof. By formula (4):

− ∂2

∂r2
Iφ(t, r) = − ∂2

∂r2

∫

Ω(r)

(1− u)φ

=

∫

Ω(r)

∆((1− u)φ)−
∫

ρ−1(r)

(1− u)φ∆ρ

By Green’s formulas, the first integral equals:

2

∫

ρ−1(r)

(1− u)∇φ · ∇ρ−
∫

Ω(r)

(1− u)∆φ+

∫

Ω(r)

φ∆(1− u)

Therefore:
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(13) − ∂2

∂r2
Iφ = ΛNφ− I∆φ− ∂

∂t
Iφ

Adding
∂

∂t
Iφ to both sides, we obtain (i). As for (ii), observe that, since

∂

∂r
I = −Λ, (13) can be re-written:

(14)
∂

∂r
Λ = ΛN − I∆− ∂

∂t
I

Now apply
∂

∂r
to both sides of (14); since

∂

∂r

∂

∂t
=

∂

∂t

∂

∂r
, we obtain:

∂2

∂r2
Λ =

∂

∂r
ΛN + Λ∆ +

∂

∂t
Λ

We change sign, use (14) again, add
∂

∂t
Λ to both sides and get (ii). As for the other assertions in the lemma,

they can be easily verified by induction on k.
�

We cannot immediately apply the iterated Duhamel principle to Iφ(t, r), because Iφ, for k > 2, does not
satisfy the conditions (i) and (ii) of Lemma 9. However, the conditions are satisfied by Iεφ, as the next lemma
shows. The idea is then to apply Lemma 9 to Iεφ, obtain an asymptotic series, and then pass to the limit as
ε→ 0.

Thanks to Lemma 12, it is enough to check the conditions (i) and (ii) of Lemma 9 for functions of type:
∂j

∂tj
Iεφ(t, r) and

∂j

∂tj
Λεφ(t, r).

Lemma 15. Let ψ ∈ C∞([0,∞)), and set ψ(−1)(r) =
∫ r

0
ψ(s) ds. Denote by Ω′(ε) the tubular neighborhood

of ∂Ω of radius ε: Ω′(ε) = {x ∈ Ω : ρ(x) < ε}. Then:

(i)

∫ ∞

0

∂j

∂tj
Λεφ(0, r)ψ(r) dr =





∫

Ω′(ε)
φ(ψ ◦ ρ) if j = 0

(−1)j−1

∫

Ω(ε)

∆j(φ(ψ ◦ ρ)) if j ≥ 1

(ii)

∫ ∞

0

∂j

∂tj
Iεφ(0, r)ψ(r) dr =





∫

Ω′(ε)
φ(ψ(−1) ◦ ρ) if j = 0

(−1)j−1

∫

Ω(ε)

∆j(φ(ψ(−1) ◦ ρ)) if j ≥ 1

(iii)
∂j

∂tj
Λεφ(t, 0) =





∫

∂Ω

φ if j = 0

0 if j ≥ 1
for all t ≥ 0

(iv)
∂j

∂tj
Iεφ(0, 0) =





∫

Ω′(ε)
φ if j = 0

(−1)j−1

∫

Ω(ε)

∆jφ

Proof. The lemma is a consequence of the fact that, if φ ∈ C∞(Ω̄), then:
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(16) lim
t→0

∫

Ω

φ(x)∆juε(t, x) dx =

∫

Ω(ε)

∆jφ

To see that, write:

∫

Ω

φ(x)∆juε(t, x) dx =

∫

Ω

α1(x)φ(x)∆juε(t, x) dx+

∫

Ω

α2(x)φ(x)∆juε(t, x) dx

where suppα1 ⊆ Ω′(ε/2), suppα2 ⊆ Ω, and α2 = 1 on Ω(ε). Since, as t → 0, uε(t, ·) converges uniformly to 0,
together with all its derivatives, on Ω′(ε/2), we see that the first integral tends to zero with t; and as α2φ is
compactly supported inside Ω, the second integral converges to

∫
Ω(ε)

∆j(α2φ) =
∫

Ω(ε)
∆jφ.

(i)-(iv) are clear for j = 0. Now since, for j ≥ 1,
∂j

∂tj
(1− uε(t, x)) = (−1)j−1∆juε(t, x), and:

∂j

∂tj
Iεφ(t, 0) =

(−1)j−1
∫

Ω
∆juε(t, x)φ(x) dx, (iv) follows immediately from (16). (iii) is immediate from the Dirichlet conditions

imposed on uε. We have, by the formula of co-area (see [7]):

∫ ∞

0

∂j

∂tj
Λεφ(t, r)ψ(r) dr = (−1)j−1

∫ ∞

0

ψ(r)

∫

ρ−1(r)

(∆juε)φ dr

= (−1)j−1

∫

Ω

(∆juε)φ · (ψ ◦ ρ)

and (i) also follows from (16) by letting t→ 0. Finally, (ii) follows from (i) by integration by parts.
�

Lemma 17. Let φ ∈ C∞c (U). Then, for each m ∈ N, and for each t > 0:

Iφ(t, 0) = Z(m)(t) +
1√
π
B(m)(t) +O(t

m+1
2 )

where:

Z(m)(t) = lim
ε→0

m∑

k=0

tk

k!

∫ ∞

0

e(t, r, 0)LkIεφ(0, r) dr

B(m)(t) = lim
ε→0

m∑

k=0

1

k!

∫ t

0

LkΛεφ(τ, 0)(t− τ)k−1/2 dτ

Proof. We apply the iterated Duhamel principle (Lemma 9) to Iεφ(t, r) and then let ε → 0; the lemma will
follow if we show that:

lim
ε→0

∫ t

0

∫ ∞

0

(t− τ)me(t− τ, r, 0)Lm+1Iεφ(τ, r) dr dτ

is O(t
m+1

2 ) as t→ 0. Set: ψm(t, r) = tme(t, r, 0).
From the expression of Lm+1Iε given in Lemma 12 (iii), it is enough to show that, for φ ∈ C∞c (U), and for

j ≤ m+ 1

2
, (resp. j ≤ m

2
) the limits:

(18) lim
ε→0

∫ t

0

∫ ∞

0

ψm(t− τ, r, 0)
∂j

∂tj
Iεφ(τ, r) dr dτ

(19) lim
ε→0

∫ t

0

∫ ∞

0

ψm(t− τ, r, 0)
∂j

∂tj
Λεφ(τ, r) dr dτ

10



             

are O(t
m+1

2 ) as t→ 0.
We prove the assertion for (18), the one for (19) can be proved in a similar way. For a, b ≥ 0 and such that

a+ b = j ≤ m+1
2 , set:

Iε(a, b)(t) =

∫ t

0

∫ ∞

0

∂a

∂τa
ψm(t− τ, r) ∂

b

∂τ b
Iεφ(τ, r) dr dτ

Lε(a, b)(t) =

∫ ∞

0

∂a

∂τa
ψm(t, r)

∂b−1

∂τ b−1
Iεφ(0, r) dr

Now
∂a

∂ta
ψm(t, r) is a linear combination of terms of type r2iψm−a−i(t, r), for i = 0, . . . , a. Therefore, for

b ≥ 1 (since then m ≥ 2a+ 1): limτ→t
∫∞

0

∂a

∂τa
ψm(t− τ, r) ∂

b−1

∂τ b−1
Iεφ(τ, r) dr = 0 so that, integrating by parts:

Iε(a, b)(t) = Iε(a+ 1, b− 1)(t)− Lε(a, b)(t)
which implies that the limit in (18) is given by:

lim
ε→0

(
Iε(j, 0)(t)−

j∑

i=0

Lε(i, j − i)(t)
)

We show that there exists a constant, depending only on φ and Ω, such that this quantity is bounded in

absolute value by const · tm+1
2 for all t ≤ 1. Since |Iεφ(t, r)| ≤ ‖φ‖L1(Ω) for all t, r and ε, Iε(j, 0)(t) is going to

be bounded above by a linear combinations, with coefficients depending only on φ and Ω, of terms of type:

∫ t

0

∫ ∞

0

r2iψm−j−i(t− τ, r) dr dτ

for i = 0, . . . , j; each of these terms is a constant times tm−j+1, and since j ≤ m+1
2 , limε→0 Iε(j, 0)(t) is indeed

O(t
m+1

2 ).
Now take a pair a, b of non-negative integers with a+ b = j ≤ m+1

2 . By Lemma 15(ii), as

limε→0

∫∞
0
ψ(r)

∂b−1

∂τ b−1
Iεφ(0, r) dr is a sum of terms of type

diψ

dri
(0)
∫
∂Ω
φi for certain smooth functions φi

and for i = 0, . . . , 2b − 4, we have, replacing ψ by
∂a

∂ta
ψm(t, r), that limε→0 Lε(a, b)(t) is going to be a linear

combinations of terms of type:
∂2i

∂r2i

∂a

∂ta
ψm(t, 0) for i = 0, . . . , b − 2 and with coefficients depending only on φ

and Ω. The i-th term is a constant times tm−a−i−
1
2 ; since a+ i ≤ j − 2 ≤ m−3

2 , it is in fact O(t
m+2

2 ).
�

Proposition 20. For all m ∈ N, we have:

Iφ(t, 0) =
1√
π

[m+1
2 ]∑

k=1

∫

∂Ω

Zkφ · tk−1/2 +
1√
π

[m−1
2 ]∑

k=0

∫ t

0

Iαkφ(τ, 0)(t− τ)k−1/2 dτ +O(t
m+1

2 )

where Zk =
∑k−1
j=0{k, j − 1}Rk+j−1,j and αk =

∑k+1
j=0{k, j}Sk+j,j .

The proof is given in Appendix B.

Proof of the main Theorem. We can now prove that, for all m ∈ N, and for all φ ∈ C∞c (U), we have, as
t→ 0:

(21) Iφ(t, 0) =

m∑

k=1

βk(φ)tk/2 +O(t
m+1

2 )

11



            

and we prove the recursive formulas for the coefficients βk.
The proof is by induction on m; we prove it for m = 1. By Duhamel principle applied to Iφ(t, r):

Iφ(t, 0) = − 1√
π

∫ t

0

∂

∂r
Iφ(τ, 0)(t− τ)−1/2 dτ +

∫ t

0

∫ ∞

0

e(t− τ, r, 0)LIφ(τ, r) dr dτ

Now
∂

∂r
Iφ(τ, 0) = −

∫

∂Ω

φ for all τ > 0; since LIφ(τ, r) = ΛNφ(τ, r) − I∆φ(τ, r), and |1 − u(τ, x)| ≤ 1 for

all τ, x, we see that:

|Iφ(t, 0)− 2√
π

∫

∂Ω

φ · t1/2| ≤ const · t

where const = sup
r∈(0,a)

|
∫
ρ−1(r)

Nφ| + ‖∆φ‖L1(Ω). Hence (21) holds for m = 1, and β1(φ) =
2√
π

∫

∂Ω

φ. Assume

that (21) holds true for m− 1. Then, for all k = 0, . . . , [m−1
2 ]:

Iαkφ(τ, 0) =

m−1∑

j=1

βj(αkφ)τ j/2 +O(τm/2)

Substituting in Proposition 20:

Iφ(t, 0) =
1√
π

[m+1
2 ]∑

k=1

∫

∂Ω

Zkφ · tk−1/2 +
1√
π

[m−1
2 ]∑

k=0

m−1∑

j=1

Γ( j2 + 1)Γ(k + 1
2 )

Γ(k + j+3
2 )

βj(αkφ)tk+ j+1
2 +O(t

m+1
2 )

We look at the coefficient of tm/2 in the right-hand side of the above expression. If m = 2n is even, then
there is no contribution from the first sum, and the index j in the second sum must be odd, say j = 2i − 1,
with i = 1, . . . , n. Then k = n− i, and we get:

β2n(φ) =
1√
π

n∑

i=1

β2i−1(αn−iφ)
Γ(i+ 1

2 )Γ(n− i+ 1
2 )

Γ(n+ 1)

If m = 2n+ 1 is odd, then j must be even, say j = 2i, with i = 1, . . . , n, and we get:

β2n+1(φ) =
1√
π

∫

∂Ω

Zn+1φ+
1√
π

n∑

i=1

β2i(αn−iφ)
Γ(i+ 1)Γ(n− i+ 1

2 )

Γ(n+ 3
2 )

The theorem follows for the initial data φ supported in the strip U , and then, as observed at the beginning
of the section, for all φ ∈ C∞(Ω̄).

�

We now examine some consequences of the main theorem, in some special cases. We say that a function φ
on Ω is radial (near ∂Ω) if, on a neighborhood U of ∂Ω, it depends only on the distance from the boundary;
in other words, if φ(x) = f(ρ(x)) for a function f on [0, a), for some a > 0. If we now assume that ∆ρ itself
is radial (in geometric terms, all parallel submanifolds which are close to the boundary have constant mean
curvature), then the operators N and ∆ take radial functions to radial functions. In fact, if r is the distance
from the boundary, and if φ is a radial function (which we write, by a slight abuse of language, as φ(r)), then:

(22)
Nφ(r) = 2φ′(r)− φ(r)∆ρ(r)

∆φ(r) = −φ′′(r) + φ′(r)∆ρ(r)

In [4] it is proved that, for the upper hemisphere of a sphere, we have β2n(1) = 0 for all n ≥ 1. We can prove
the following more general fact:
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Theorem 23.
Assume that the domain Ω is such that ∆ρ(r) is an odd radial function on a neighborhood U of ∂Ω (in

particular, we assume that ∂Ω is minimal). If the initial data φ(r) is an even radial function on U , then
β2n(φ) = 0 for all n ≥ 1.

Proof. We know that β2n(φ) is given by integration over ∂Ω of D2nφ, where the operator D2n is a polynomial
of degree 2n− 1 in N and ∆. Since D2nφ is a radial function, we have:

β2n(φ) = vol(∂Ω) ·D2nφ(0)

Observe that, under our assumptions, N takes even functions to odd functions (and viceversa) and that ∆
preserves parity. Since D2n has odd degree, it must take even functions to odd functions. Hence D2nφ is odd,
which implies that D2nφ(0) = 0.

�

The theorem implies the above mentioned result for the upper hemisphere of the unit sphere Sm, because in

that case ∆ρ(r) = (m− 1) tan r for r <
π

2
.

Finally, we verify our formulas for the unit ball in Rm. Since ∆ρ(r) =
m− 1

1− r , using equations (22), and our

recursive formulas, one can easily recover the coefficients β1(1), . . . , β7(1) as computed in [4] (Theorem 4.2) by
using Bessel’s functions, and we find:

β8(1) =
πm/2

3072Γ(m2 )
(m− 1)(m− 3)(m4 + 15m3 − 399m2 + 1961m− 2298)

Moreover, since for a ball (or an annulus) in R3, N∆ρ(r) = ∆2ρ(r) = 0 for all r, we immediately have in
that case: βk(1) = 0 for all k ≥ 3 (this fact was already observed in [4] and [8]).

Appendix A

In this appendix, we prove:

Proposition 6. Let φ, φ′ ∈ C∞(Ω̄). If φ = φ′ on a neighborhood U of ∂Ω, then βk(φ) = βk(φ′) for all k ≥ 1.

Proof. For a domain in euclidean space, the proof is an immediate consequence of the so-called principle of not
feeling the boundary , to the effect that |1− u(t, x)| is bounded by an exponentially decreasing function of t, as
t→ 0, uniformly on each compact subset of Ω: in fact, by Levy’s maximal inequality:

|1− u(t, x)| ≤ 2

∫

‖y‖≥ρ(x)

1

(4πt)n/2
e−‖y‖

2/4t dy

≤ 2ne−ρ(x)2/4nt

for all x ∈ Ω, and for all t > 0. Therefore, since φ− φ′ is supported on Ω(a), for some a > 0:

|
∫

Ω

(1− u(t, x))(φ(x)− φ′(x)) dx| ≤ 2n · sup
Ω
|φ− φ′| · e−a2/4nt

and this implies that βk(φ− φ′) = 0 for all k ≥ 1.
In general, let us assume that φ − φ′ is supported on Ω(2a) for some a ∈ (0, Rinj). We are going to show

that, for each m ∈ N, there are constants Cm and Tm > 0 depending only on Ω and a such that:

(A.1) |1− u(t, x)| ≤ Cmtm

for all x ∈ Ω(2a), and for all t ≤ Tm. This clearly implies that βk(φ−φ′) = 0 for all k ≥ 1. A.1 may be regarded
as the principle of not feeling the boundary for Riemannian manifolds.
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Then fix x ∈ Ω(2a), and let, for r ≥ 0:

f(t, r) =

∫

Ω(r)

k(t, x, y) dy

Note that: f(t, 0) = u(t, x). The function f(t, r) is smooth on (0,∞)× [0, a) and satisfies the following heat
equation on (0, a):

(
− ∂2

∂r2
+
∂

∂t

)
f(t, r) = −

∫

ρ−1(r)

k(t, x, y)∆ρ(y)

Let ea(t, r, s) be the heat kernel of the interval (0, a) satisfying Neumann boundary conditions at r = 0, and

Dirichlet boundary conditions at r = a. By Duhamel principle, since
∂f

∂r
(τ, 0) = 0 for all τ > 0:

u(t, x) = f(t, 0) =

∫ a

0

ea(t, r, 0) dr +

∫ t

0

∂ea
∂r

(τ, a, 0)f(t− τ, a) dτ−

−
∫ t

0

∫ a

0

e(t− τ, r, 0)

(∫

ρ−1(r)

k(τ, x, y)∆ρ(y) dy

)
dr dτ

Now |f(t, a)| ≤ u(t, x) ≤ 1 for all t; moreover, if v(t, r) denotes the solution of the heat equation on (−a, a)
satisfying v(t,±a) = 1 for all t, and v(0, r) = 0 for all r, then:

1−
∫ a

0

ea(t, r, 0) dr = −
∫ t

0

∂ea
∂r

(τ, a, 0) dτ = v(t, 0)

Putting all these things together, we see that:

(A.2) |1− u(t, x)| ≤ 2v(t, 0) +

∫ t

0

∫ a

0

ea(t− τ, r, 0)

(∫

ρ−1(r)

k(τ, x, y)|∆ρ(y)| dy
)
dr dτ

Both terms on the right are O(tm) for all m, uniformly in x ∈ Ω(2a). In fact: v(t, 0) ≤ 2e−a
2/4t; by an

estimate of Li and Yau (see [13]), there exist positive constants C and b, depending only on a lower bound of
the Ricci curvature on a ball containing Ω, and on the dimension n of Ω, such that, for all t > 0:

k(t, x, y) ≤ Ct−n/2e− d(x,y)2

5t +bt

Since
∫
ρ−1(r)

|∆ρ| is bounded for r ∈ (0, a), and since d(x, y) > a, we conclude that the second term in

(A.2) is bounded above by a constant times

∫ t

0

τ−n/2e−
a2

5τ +bτ dτ , for all x ∈ Ω(2a). This proves (A.1) and the

proposition.
�

Appendix B

In this appendix, we prove Lemma B.9 and Lemma B.10 which, taken together with Lemma 17, will imply
Proposition 20. We will make use of the following identities, which can be verified by differentiating LkI with
respect to r in Lemma 12(iii):

(B.1)

{
Rki = Qki −NPki
Ski = ∆Pki + Pk,i−1
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The second relation implies, together with Lemma 15(iv):

(B.2)

p∑

i=1

∂i

∂ti
IεSkiφ(0, 0) =

∫

ρ−1(ε)

∂

∂ν
Pk0φ+ (−1)p

∫

ρ−1(ε)

∂

∂ν
∆pPkpφ

The next lemma is a description of the distribution LkIφ(0, r), and is needed in the proof of Lemma B.10.
Since we will need to test LkIφ(0, r) only on the function r 7→ e(t, r, 0), we restrict to even test functions.

Lemma B.3. Let ψ ∈ C∞([0,∞)) be even at r = 0: ψ(2i+1)(0) = 0 for all i. Then there are numbers
Aki = Aki(φ) such that:

(i)

∫ ∞

0

ψ(r)LkIφ(0, r) dr =

k∑

i=0

Akiψ
(2i)(0)

The numbers Aki satisfy:

(ii) Ak+j,j =

k−2∑

i=j

(
i

j

)∫

∂Ω

(Rk+i,i+1 +
∂

∂ν
Pk+i,i+1)φ

Proof of (i). From the formula:

∆(ψ ◦ ρ) = −ψ(2) ◦ ρ+ (ψ(1) ◦ ρ)∆ρ

one derives the formula:

∆(φ(ψ ◦ ρ)) = −(ψ(2) ◦ ρ)φ− (ψ(1) ◦ ρ)Nφ+ (ψ ◦ ρ)∆φ

hence, by induction, one shows that there exist operators Vij on C∞c (U) such that:

∆j(φ(ψ ◦ ρ)) =

2j∑

i=0

(ψ(2i) ◦ ρ)Vijφ

Since
∫

Ω(ε)
∆j(φ(ψ ◦ ρ)) =

∫
ρ−1(ε)

∂

∂ν
∆j−1(φ(ψ ◦ ρ)) we have, from Lemma 15, and letting ε → 0, that

LkIφ(0, r) is indeed a linear combination of the Dirac distribution at r = 0 and its derivatives.

Proof of (ii).
For p ≥ 0, define the operators:

Lk,pIε =

∞∑

j=0

∂j

∂tj
(ΛεPk,p+j + IεQk,p+j)

Lk,pΛε =

∞∑

j=0

∂j

∂tj
(ΛεRk,p+j + IεSk,p+j)

and set: Lk,pIφ(0, r) = limε→0 L
k,pIεφ(0, r) in the sense of distributions. Then there are numbers Apki such

that:

(B.4)

∫ ∞

0

ψ(r)Lk,pIφ(0, r) dr =

∞∑

i=0

Apkiψ
(2i)(0)
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and: Apki =
1

(2i)!

∫∞
0
r2iLk,pIφ(0, r) dr.

By using (B.1) and (14) one verifies easily that:

(B.5)
L(Lk,pIε) = Lk+1,pIε − IεNPk,p−1

∂

∂r
Lk,pIε = −Lk,pΛε + IεPk,p−1

Since Iεφ(0, r) and Λεφ(0, r) both vanish as ε→ 0, we see that, integrating by parts:

(B.6)

∫ ∞

0

ψ(r)Lk+1,pIφ(0, r) dr = −ψ(0)Lk,pΛφ(0, 0)−
∫ ∞

0

ψ(2)(r)Lk,pIφ(0, r) dr+

∫ ∞

0

ψ(r)Lk,p−1Iφ(0, r) dr

By (B.2), and Lemma 15:

Lk,pΛφ(0, 0) =

∫

∂Ω

(
Rkp +

∂

∂ν
Pkp

)
φ

We apply (B.6) to ψ(r) =
1

(2i)!
r2i, and obtain the relations:

(B.7)




Ap−1
k0 = Apk+1,0 +

∫

∂Ω

(
Rkp +

∂

∂ν
Pkp

)
φ

Ap−1
ki = Apk+1,i +Apk,i−1 if i ≥ 1

From (B.7), one proves that, for all p, k, j:

(B.8) Apk+p+j,j =

∞∑

i=j

∫

∂Ω

(
i

j

)(
Rk+p+i,p+i+1 +

∂

∂ν
Pk+p+i,p+i+1

)
φ

In fact, fix k, j; then Apk+p+j,j = 0 for p = k (in fact, for p ≥ k). Hence (B.8) holds for p = k, since

R2k+i,k+i+1 = P2k+i,k+i+1 = 0 for all i ≥ 0. Assuming (B.8) true for p, one verifies it for p− 1 using relations
(B.7). (B.8) then follows by induction. Taking p = 0 we obtain (ii). The upper limits in the sums (i) and (ii)
follow from the last part of Lemma 12.

�

Lemma B.9. Let Z(m)(t) be as in Lemma 17. Then:

Z(m)(t) =
1√
π

[m+1
2 ]∑

k=1

k−2∑

j=0

∫

∂Ω

{k, j}
(
Rk+j,j+1 +

∂

∂ν
Pk+j,j+1

)
φ · tk−1/2 +O(t

m+1
2 )

Proof. Apply Lemma B.3 to ψ(r) = e(t, r, 0); since ψ(2i)(0) =
(−1)i

π
Γ(i+ 1

2 )t−i−1/2, we obtain, setting j = k−i:

Z(m)(t) =
1

π

m∑

k=0

k∑

j=0

(−1)k−j

k!
Γ(k − j + 1/2)Ak,k−jt

j−1/2

Switching the two sums, and setting i = k − j, this can be re-written in the following form:

Z(m)(t) =
1

π

[m+1
2 ]∑

j=0

Z̃jt
j−1/2 +O(t

m+1
2 )
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where:

Z̃j =

j−1∑

i=0

(−1)i

(i+ j)!
Γ(i+ 1/2)Ai+j,i

Taking into account Lemma B.3(ii) and switching the sums:

Z̃j =

j−2∑

l=0

(
l∑

i=0

(−1)i

(i+ j)!
Γ(i+

1

2
)

(
l

i

))∫

∂Ω

(Rj+l,l+1 +
∂

∂ν
Pj+l,l+1)φ

Now:

l∑

i=0

(−1)i

(i+ j)!
Γ(i+ 1/2)

(
l

i

)
=

1

Γ(j + 1/2)

∫ 1

0

(1− τ)lτ−1/2(1− τ)j−1/2 dτ

=
√
π{j, l}

Substituting, we get the Lemma.
�

Lemma B.10. Let B(m)(t) be as in Lemma 17. Then:

B(m)(t) =

[m+1
2 ]∑

k=1

∫

∂Ω

{k,−1}Rk−1,0φ · tk−1/2 −
[m+1

2 ]∑

k=1

k−2∑

j=0

∫

∂Ω

{k, j} ∂
∂ν
Pk+j,j+1φ · tk−1/2

+

[m+1
2 ]∑

k=1

∫ t

0

Iαkφ(τ, 0)(t− τ)k−1/2 dτ +O(t
m+1

2 )

Proof. By Lemma 12, B(m)(t) is the limit, as ε→ 0, of B
(m)
1,ε (t) +B

(m)
2,ε (t), where:

B
(m)
1,ε (t) =

m∑

k=0

k∑

j=0

1

k!

∫ t

0

∂j

∂τ j
ΛεRkjφ(τ, 0)(t− τ)k−1/2 dτ

B
(m)
2,ε (t) =

m∑

k=0

k∑

j=0

1

k!

∫ t

0

∂j

∂τ j
IεSkjφ(τ, 0)(t− τ)k−1/2 dτ

Because of the Dirichlet condition on uε, we have, for all ε:

∂j

∂τ j
ΛεRkjφ(τ, 0) =





0 for all j ≥ 1
∫

∂Ω

Rk0φ if j = 0

Hence:

(B.11)

B
(m)
1,ε (t) =

m∑

k=0

∫

∂Ω

2

k!(2k + 1)
Rk0φ · tk+1/2

=

[m+1
2 ]∑

k=1

∫

∂Ω

{k,−1}Rk−1,0φ · tk−1/2 +O(t
m+1

2 )

To deal with B
(m)
2,ε (t), we use Laplace transform with respect to t, and let: f̄(s) =

∫∞
0
e−stf(t) dt.
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Laplace transform takes convolutions into products, tx = Γ(x+ 1)s−x−1, and:

(B.12)
djf

dtj
(s) = sj f̄(s)−

j∑

i=1

si−1 d
j−if
dtj−i

(0)

For the Laplace transform of B
(m)
2,ε (t) we then have:

(B.13) B̄
(m)
2,ε (s) =

m∑

k=0

k∑

j=0

Γ(k + 1
2 )

k!
IεSkjφ(s, 0)sj−k−1/2 −

m∑

k=1

k∑

j=1

j∑

i=1

Γ(k + 1
2 )

k!

∂j−i

∂τ j−i
IεSkjφ(0, 0)si−k−3/2

Since
∑m
k=0

∑k
j=0 akj =

∑m
k=0

∑m−k
j=0 ak+j,j , the inverse Laplace tranform of the first term of (B.13) is:

(B.14)

m∑

k=0

∫ t

0

Iεα
(m)
k φ(τ, 0)(t− τ)k−1/2 dτ

where α
(m)
k is the operator: α

(m)
k =

∑m−k
j=0 {k, j}Sk+j,j

Since |Iεψ(τ, 0)| ≤ Const, for all τ , and all ε, (B.14) can be written as:

(B.15)

[m−1
2 ]∑

k=0

∫ t

0

Iεα
(m)
k φ(τ, 0)(t− τ)k−1/2 dτ +O(t

m+1
2 )

If k ≤ [m−1
2 ], then m − k ≥ k + 1; since Sk+j,j = 0 for j > k + 1, we conclude that the inverse Laplace

transform of the first term in (B.13) is:

(B.16)

[m−1
2 ]∑

k=0

∫ t

0

Iεαkφ(τ, 0)(t− τ)k−1/2 dτ +O(t
m+1

2 )

where αk =
∑k+1
j=0{k, j}Sk+j,j .

We now examine the second term in (B.13). We re-arrange the sum in the following way:

(B.17)

m∑

k=1

k∑

j=1

j∑

i=1

akji =

m∑

k=1

m−k∑

j=0

k−1∑

i=0

ak+j,j+i+1,j+1

(the steps are: switch the last two sums and change j to l = j − i; get:
∑m
k=1

∑k
j=1

∑k−i
l=0 ak,i+l,i; switch the

first two sums and change k to p = k − i; get:
∑m
i=1

∑m−i
p=0

∑p
l=0 ap+i,i+l,i; now change p to q = p + 1, i to

n = i− 1 and then switch the first two sums; get:
∑m
q=1

∑m−q
n=0

∑p−1
l=0 aq+n,n+l+1,n+1 After renaming, we obtain

B.17).
The inverse Laplace transform of the second term in (B.13) can then be written as:

(B.18) −
m∑

k=1

m−k∑

j=0

Γ(k + j + 1/2)

(k + j)!Γ(k + 1/2)

k−1∑

i=0

∂i

∂τ i
IεSk+j,j+i+1φ(0, 0)tk−1/2
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By B.2, since Pk+j,k+j = 0:

k−1∑

i=0

∂i

∂τ i
IεSk+j,j+i+1φ(0, 0) = IεSk+j,j+1φ(0, 0) +

∫

ρ−1(ε)

∂

∂ν
Pk+j,j+1φ

As ε→ 0, IεSk+j,j+1φ(0, 0)→ 0. Hence (B.18) becomes:

−
m∑

k=1

m−k∑

j=0

∫

ρ−1(ε)

∂

∂ν
({k, j}Pk+j,j+1φ) tk−1/2 +O(ε)

Once again, modulo terms of order t
m+1

2 and higher, we can restrict k to the range k = 0, . . . , [m+1
2 ]. Since

Pk+j,j+1 = 0 for j > k − 3, the inverse Laplace transform of the second term of (B.13) can be re-written:

(B.19) −
[m+1

2 ]∑

k=1

k−2∑

j=0

∫

∂Ω

∂

∂ν
({k, j}Pk+j,j+1φ) tk−1/2 +O(t

m+1
2 ) +O(ε)

Taking into account (B.11),(B.13),(B.16) and (B.19), and passing to the limit as ε → 0, we obtain the
lemma.

�
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