FAMILIES OF SMOOTH CURVES ON SURFACE SINGULARITIES AND WEDGES

by Gérard GONZALEZ-SPRINBERG & Monique LEJEUNE-JALABERT

Introduction

In this paper we investigate the infinitesimal geometry of the set of smooth curves on a surface singularity. Our motivation to do so originates in a preprint (*) by J. Nash in which he initiates the study of the set of germs of parametrized curves, arcs in his terminology, on an algebraic or analytic variety over \mathbb{C} . The case on which we focus here may be regarded as the simplest one to be analyzed from this viewpoint.

It has long been recognized that, the rational singularity E_8 being factorial, it contains no smooth curves at all. In fact, a smooth curve is encountered only on those rational surface singularities whose fundamental cycle has a reduced component.

In section 1, we get a criterion for the existence of smooth curves generically contained in the regular locus of a surface singularity (S,O) of which the above condition is a specialization. This criterion involves the irreducible components of the exceptional fiber of the minimal desingularization of (S,O) over O and a suitable valuative condition, and leads to a decomposition of the set of all such curves into a finite number of mutually disjoint *families* in one to one correspondence with the components just distinguished.

The jets of the parametrizations of the curves in each family coïncide up to some order ℓ . An equivalent geometric formulation is that these curves go through an infinitely near point O_{ℓ} of O lying on a surface S_{ℓ} obtained from S by a chain of ℓ point blowing-ups. In addition, the strict transform of almost all curves in the family is a smooth branch of a general hypersurface section of S_{ℓ} through O_{ℓ} . This is theorem 1.10 and remark 1.11.

The application of this result given in section 2 is in the context of a question concerning the arc structure of surface singularities stated in the introduction of [N]. This question is also reproduced in [G/L2], problem 3.2 and the connection is explained in

^(*) We became aware of its publication in the special volume "A celebration of John F. Nash Jr." of Duke Math. Journal just after finishing writing these pages.

section 3 and [L-J]. Roughly speaking, it means that a smooth curve of one family cannot degenerate to a smooth curve of another one ; indeed, a *wedge* on (*S*,*O*) centered at a smooth curve Γ (see definitions 2.1) may be interpreted as a one parameter deformation of the coefficients of the parametrization of Γ .

Notation.

>From now on, (S,O) will denote a *surface singularity, i.e.* the spectrum of an equicharacteristic complete local ring *A* of Krull dimension two whose closed point *O* is singular; furthermore, it will be tacitly assumed that *A* is reduced and equidimensional, that its residue field *k* is algebraically closed and that a field of representatives has been fixed. Sing *S* and Reg *S* will denote respectively the singular and the regular locus of (S,O); and \mathcal{L} will be the set of smooth curves Γ on (S,O) whose generic point lies on Reg *S*.

1. Families of smooth curves

Any proper and birational morphism $\pi : X \to (S,O)$ inducing an isomorphism from $\pi^{-1}(\operatorname{Reg} S)$ to $\operatorname{Reg} S$ gives rise to a map of sets $\Phi_X : \mathcal{L} \to \pi^{-1}(O)$ by sending $\Gamma \in \mathcal{L}$ to the exceptional point of its strict transform Γ_X on X. The exceptional fiber $\pi^{-1}(O)$ has a natural scheme structure given by the inverse image ideal sheaf $\mathfrak{m}\mathcal{O}_X$ of the maximal ideal \mathfrak{m} of $\mathcal{O}_{S,O}$. The codimension one component of its underlying cycle, denoted by Z_X in the sequel, is the so-called *maximal cycle* of π ; its support $|Z_X|$ is not empty if and only if π is not a finite morphism.

When *X* is non singular, the image of the "fiber map" Φ_X is described through the schematic exceptional fiber as follows.

1.1. PROPOSITION. — Let $\pi : X \to (S,O)$ be a desingularization and let $Q \in \pi^{-1}(O)$.

i) If Q is isolated in $\pi^{-1}(O)$, then $Q \in \Phi_X(\mathcal{L})$ if and only if there exists a regular system of parameters (u, v) of $\mathcal{O}_{X,Q}$ and an integer $m \ge 1$ such that $\mathfrak{m}\mathcal{O}_{X,Q} = (u, v^m)$.

ii) If $Q \in |Z_X|$, then $Q \in \Phi_X(\mathcal{L})$ if and only if there exists a regular system of parameters (u, v) of $\mathcal{O}_{X,Q}$ such that $\mathfrak{m}\mathcal{O}_{X,Q} = (u)$.

Proof. — Let *x* be a greatest common divisor of the elements in $\mathfrak{mO}_{X,Q}$ and write $\mathfrak{mO}_{X,Q} = xI$ for some ideal *I* in $\mathcal{O}_{X,Q}$. If $\Gamma \in \mathcal{L}$ and $Q = \Phi_X(\Gamma)$, a formal parametrization of

 Γ in (*S*,*O*) factors through a local homomorphism $\mathcal{O}_{X,Q} \to k[[t]]$ such that $\operatorname{ord}_t \mathfrak{m} \mathcal{O}_{X,Q} = 1$, where ord_t denotes the (*t*)-adic valuation in k[[t]].

In case *i*), *x* is a unit and *I* is primary for the maximal ideal *M* of $\mathcal{O}_{X,Q}$. So we have ord_{*t*} I = 1 and, a fortiori , ord_{*Q*} $I = \max\{n \mid I \subset M^n\} = 1$. Any $u \in I \setminus M^2$ is part of a regular system of parameters (u, v) of $\mathcal{O}_{X,Q}$ and $I = (u, v^m)$ with $m = \operatorname{ord}_v I\mathcal{O}_{X,Q}/(u) \ge 1$.

In case *ii*), *x* is not a unit. So we have

 $1 \leq \operatorname{ord}_t x \leq \operatorname{ord}_t x + \operatorname{ord}_t I = 1.$

Therefore $\operatorname{ord}_{t} x = \operatorname{ord}_{Q} x = 1$ and $\operatorname{ord}_{t} I = \operatorname{ord}_{Q} I = 0$; the function x is part of a regular system of parameters of $\mathcal{O}_{X,Q}$ and we have $\mathfrak{m}\mathcal{O}_{X,Q} = (x)$.

Conversely if *i*) or *ii*) holds, the projection on (S,O) of any formal curve $\widetilde{\Gamma}$ on (X,Q) whose parametrization sends *u* to *t* is a smooth curve on (S,O). By imposing the generic point of $\widetilde{\Gamma}$ to lie in $\pi^{-1}(\operatorname{Reg} S)$, we get a curve in \mathcal{L} . \Box

This proposition has two immediate consequences, namely a criterion for \mathcal{L} to be non empty and a natural expression of \mathcal{L} as a disjoint union of finitely many families, joined together in the following statement.

1.2. COROLLARY. — Let π be the minimal desingularization of (S, O). For any irreducible component E of $\pi^{-1}(O)$, let ord_E denote the divisorial valuation of the function field of (S, O) given by the filtration of $\mathcal{O}_{X,E}$ by the powers of its maximal ideal. Then

i) The components *E* such that $\mathcal{L}_E := \{\Gamma \in \mathcal{L} \mid \Phi_X(\mathcal{L}) \in E\} \neq \emptyset$ are those for which $\operatorname{ord}_E \mathfrak{m} \mathcal{O}_X = 1$.

ii) The set \mathcal{L} is the disjoint union of the \mathcal{L}_E .

1.3. This motivates the introduction of some terminology which we will use from now on in this paper.

By a *family* (*) of smooth curves on (*S*,*O*), we will mean any of the non empty subsets \mathcal{L}_E introduced in corollary 1.2. If *E* is a point, the family \mathcal{L}_E will be said to be *small*. Each family lies on one sheet (*i.e.* analytically irreducible component) of (*S*,*O*). Note that \mathcal{L}_E is small if and only if the normalization of the sheet on which it lies is non singular.

1.4. It may happen that the *general hypersurface section* of (S,O) has smooth branches (*i.e.* analytically irreducible components). A family containing such a branch will be said to be a *first order* family; before going further in the description of these families, we

^(*) This definition does not coïncide with the one given by Nash in [N]. In fact, our theorem 2.3 belows is intended to be an intermediate step towards proving that a family of arcs as defined by Nash contains at most one of our families of smooth curves.

³

need to specify what we mean by general hypersurface section. This will be done in terms of the normalized blowing-up of (S, O) with center O, that is the composition $\overline{\sigma}_1 = \sigma_1 \circ n_1$ of the blowing-up $\sigma_1 : S_1 \to (S, O)$ of O and the normalization $n_1 : \overline{S}_1 \to S_1$. For simplicity, Z_1 (resp. \overline{Z}_1) will denote the maximal cycle of σ_1 (resp. $\overline{\sigma}_1$) instead of Z_{S_1} (resp. $Z_{\overline{S}_1}$); and $C_{S,O}$ (resp. $T_{S,O}$) will denote the tangent cone (resp. the Zariski tangent space) of S at O, as usual.

Recall that a hypersurface section of (S,O) is a "curve" *i.e.* a Cartier divisor on (S,O)given by a local equation h = 0 for some $h \in \mathfrak{m}$ which is not a zero divisor in $\mathcal{O}_{S,O}$. Here we will say that it is general if $h \notin \mathfrak{m}^2$ and if the hyperplane H in Proj $T_{S,O}$ given by $h \mod \mathfrak{m}^2 = 0$ intersects the curve Proj $|C_{S,O}| = \operatorname{Proj} |Z_1|$ transversally at regular points of $|Z_1|$ onto which neither singular points of \overline{S}_1 nor branch points of $|\overline{Z}_1| \to |Z_1|$ project and other than the exceptional points of the strict transform of Sing S (if O is not a isolated singular point), cf. [G-S].

In the sequel, the lines on $C_{S,O}$ corresponding to the above "prohibited" points of $|Z_1|$ will be said to be *special*.

In view of Bertini's theorem, the set of hyperplanes in $\mathbb{P}T := \operatorname{Proj} T_{S,O}$ with the properties just listed forms a Zariski open dense subset of the linear system $\mathcal{O}_{\mathbb{P}T}(1)$.

General hypersurface sections of (S,O) need not be analytically isomorphic. But they have in common the following "equisingularity" properties which will be enough for our purpose: any of them is generically reduced, is reduced if and only if $\mathcal{O}_{S,O}$ is Cohen Macaulay and has $-(\overline{Z}_1 \cdot |\overline{Z}_1|)$ branches, each irreducible component \overline{F} of $|\overline{Z}_1|$ contributing to $-(\overline{Z}_1 \cdot \overline{F}) > 0$ branches whose strict transforms on \overline{S}_1 meet \overline{F} transversally and whose multiplicity at O is the multiplicity $m_{\overline{F}}$ of \overline{F} in the maximal cycle \overline{Z}_1 . A component \overline{F} such that $m_{\overline{F}} = 1$ will be said to be a reduced component of \overline{Z}_1 .

First order families of smooth curves are identified from their images by the fiber map $\Phi_{\overline{S}_1}$ as follows.

1.5. PROPOSITION. — Let \mathcal{L}_E be a family of smooth curves.

If \mathcal{L}_E is a first order family, there exists a reduced component \overline{F}_1 of \overline{Z}_1 such that $\Phi_{\overline{S}_1}(\mathcal{L}_E) = \overline{F}_1 \cap \operatorname{Reg} \overline{S}_1 \cap \operatorname{Reg} |\overline{Z}_1|$.

If not, there exists a singular point \overline{O}_1 of \overline{S}_1 such that $\Phi_{\overline{S}_1}(\mathcal{L}_E) = \overline{O}_1$.

Proof. — Let $\overline{\pi}_1 : X_1 \to \overline{S}_1$ be the minimal desingularization of \overline{S}_1 . The morphism $\tau_1 : X_1 \to X$ factoring $\overline{\sigma}_1 \circ \overline{\pi}_1$ is the composition of the sequence of point blowing-ups with minimal length such that $\mathfrak{m}\mathcal{O}_{X_1}$ is invertible. It follows from Proposition 1.1 that $\Phi_{X_1}(\mathcal{L}_E)$ is contained in a single reduced component E_1 of Z_{X_1} , namely the strict transform of E, if E is

a curve, and that of the exceptional curve created by blowing up *E*, if *E* is a point. Indeed if dim E = 1, $\mathfrak{m}\mathcal{O}_X$ is invertible at any $Q \in \Phi_X(\mathcal{L}_E)$ and if dim E = 0 and $\mathfrak{m}\mathcal{O}_{X,E} = (u,v^m)$, it is easily checked that *m* point blowing-ups are necessary to make the total transform of $\mathfrak{m}\mathcal{O}_X$ invertible over a neighborhood of *E* and that E_1 is the unique reduced component of Z_{X_1} contracted to *E*.

Now, in view of 1.4, \mathcal{L}_E is a first order family if and only if the image of E_1 on \overline{S}_1 is a curve. This is because the exceptional points of the strict transform on \overline{S}_1 of a general hypersurface section are regular points of \overline{S}_1 and that E_1 being a reduced component of Z_{X_1} , either $\overline{\pi}_1(E_1)$ is a reduced component \overline{F}_1 of $Z_{\overline{S}_1}$, or the minimal desingularization $\overline{\pi}_1$ of \overline{S}_1 contracts E_1 to a singular point \overline{O}_1 of \overline{S}_1 .

In the first case, $\Phi_{X_1}(\mathcal{L}_E) = E_1 \cap \operatorname{Reg} |Z_{X_1}|$ by 1.1 *ii*), so $\overline{\pi}_1$ is an isomorphism on a neighborhood of $\Phi_{X_1}(\mathcal{L}_E)$ and $\Phi_{\overline{S}_1}(\mathcal{L}_E) = \overline{\pi}_1(\Phi_{X_1}(\mathcal{L}_E)) = \overline{F}_1 \cap \operatorname{Reg} \overline{S}_1 \cap \operatorname{Reg} |\overline{Z}_1|$. \Box

A small family of smooth curves may be a first order family as well. A first corollary of Proposition 1.5 is that the families enjoying both properties are in one to one correspondence with non singular sheets of *S* at *O*.

1.6. COROLLARY. — A small family of smooth curves is a first order family if and only if O is a non singular point of the sheet of S on which it lies.

Conversely any non singular sheet of S at O carries such a family.

Proof. — While proving Proposition 1.5, we have shown that the family \mathcal{L}_E is a first order family if and only if the image on \overline{S}_1 of the reduced component E_1 of Z_{X_1} containing $\Phi_{X_1}(\mathcal{L}_E)$ is a curve \overline{F}_1 .

Now by the projection formula, $(Z_{X_1} \cdot E_1) = (\overline{Z}_1 \cdot \overline{F}_1) \neq 0$ if this happens (since, up to sign, it coïncides with the number of branches of the general hypersurface section whose strict transforms meet \overline{F}_1) and is 0 if $\overline{\pi}_1(E_1)$ is a point.

For a small family such that $\mathfrak{mO}_{X,E} = (u, v^m)$, the intersection number $(Z_{X_1} \cdot E_1)$ does not vanish if and only if m = 1. Indeed the intersection matrix of the components of $|Z_{X_1}|$ which project to *E* is read off the weighted dual graph

$$E_1 \qquad E_2 \qquad E_{m-1} \qquad E_m$$

$$-2 \qquad -2 \qquad -2 \qquad -2 \qquad -2 \qquad -2 \qquad -2$$

 E_i being the strict transform of the exceptional curve created by the *i*-th blowing-up and one has $Z_{X_1} \equiv E_1 + 2E_2 + \cdots + mE_m$ up to curves which do not intersect E_1 .

So, if \mathcal{L}_E is both a first order family and small and if it lies on the sheet \mathcal{S} of S, $\mathcal{O}_{X,E}$ is a free module of rank 1 over $\mathcal{O}_{S,O}$. Therefore $\mathcal{O}_{X,E}$ and $\mathcal{O}_{S,O}$ coïncide and \mathcal{S} is regular

at O.

The converse is clear. \Box

Another corollary of Proposition 1.5 is a characterization of the first order families in terms of \overline{Z}_1 . More precisely, we have:

1.7. COROLLARY. — The map $\Phi_{\overline{S}_1}$ induces a one to one correspondence between first order families of smooth curves and reduced components of \overline{Z}_1 .

A reduced component of \overline{Z}_1 comes from a small family if and only if it is a non singular rational curve lying on Reg \overline{S}_1 with self-intersection -1.

Proof. — The second part of the claim follows from the fact that, if \mathcal{L}_E is small, the morphism $\tau_1 : X_1 \to X$ coïncides with the blowing-up of *E* over a neighborhood of *E*, so the restriction of $\overline{\pi}_1$ to a neighborhood of \overline{F}_1 is an isomorphism. \Box

1.8. Therefore, depending on whether the family \mathcal{L}_E is a first order family or not, the set T_E of tangent lines to $\Gamma \in \mathcal{L}_E$ consists of all but possibly finitely many special lines through *O* on an irreducible component of $C_{S,O}$ or of a single special line of this tangent cone.

Note that in the first case, T_E may contain special lines of $C_{S,O}$. In the last case, let $O_1 \in S_1$ be the common tangent direction to every $\Gamma \in \mathcal{L}_E$ and let E_1 be the irreducible exceptional curve on the minimal desingularization X_1 of \overline{S}_1 (or S_1) containing $\Phi_{X_1}(\mathcal{L}_E)$; according to 1.3, E_1 gives rise to a family of smooth curves \mathcal{L}_1 on (S_1, O_1) which contains the strict transform of every $\Gamma \in \mathcal{L}_E$. If \mathcal{L}_1 is not a first order family, the strict transform E_2 of E_1 on the minimal desingularization X_2 of the surface S_2 obtained by blowing up O_1 in S_1 is contracted to a point $O_2 \in S_2$ which is the common tangent direction to every $\Gamma \in \mathcal{L}_1$ and corresponds to a family of smooth curves \mathcal{L}_2 on (S_2, O_2) which contains the strict transform on S_2 of every $\Gamma \in \mathcal{L}_1$, hence of every $\Gamma \in \mathcal{L}_E$. And so on... so long as a first order family \mathcal{L}_i does not show up. Note that none of the \mathcal{L}_i , $i \geq 1$, is small. This leads to the following definition and "dévissage" of \mathcal{L}_E .

1.9. DEFINITION. — A chain of infinitely near points of O on (S,O) (i.e. a sequence (finite or infinite) of points $\{O_0 = O, O_1, \dots, O_i, \dots\}$ such that for each i > 0, O_i is mapped to O_{i-1} by the blowing-up $\sigma_i : S_i \to S_{i-1}$ of O_{i-1} and $S_0 = S$) will be said to be *special* if for each i > 0, O_i is the direction of a special line on $C_{S_{i-1},O_{i-1}}$.

1.10. THEOREM. — Let \mathcal{L}_E be a family of smooth curves. There exists a finite special chain of infinitely near points $\{O_i\}_{0 \le i \le \ell}$ of O on (S, O) and a reduced component $\overline{F}_{\ell+1}$ of

the maximal cycle $\overline{Z}_{\ell+1}$ of $\sigma_1 \circ \cdots \circ \overline{\sigma}_{\ell+1}$, $\overline{\sigma}_{\ell+1} : \overline{S}_{\ell+1} \to S_{\ell}$ being the normalized blowing-up of O_{ℓ} , such that:

i)
$$\Phi_{S_i}(\mathcal{L}_E) = O_i, \quad 1 \leq i \leq \ell,$$

ii) $\Phi_{\overline{S}_{\ell+1}}(\mathcal{L}_E) = \overline{F}_{\ell+1} \cap \operatorname{Reg} \overline{S}_{\ell+1} \cap \operatorname{Reg} |\overline{Z}_{\ell+1}|.$

In addition, if \mathcal{L}_E is not small, the birational map $\pi^{-1} \circ \sigma_1 \circ \cdots \circ \overline{\sigma}_{\ell+1}$ identifies neighborhoods of $\Phi_{\overline{S}_{\ell+1}}(\mathcal{L}_E)$ and $\Phi_X(\mathcal{L}_E)$.

Proof. — Pick a curve Γ in \mathcal{L}_E and let $\{O_i\}_{i \in \mathbb{N}}$ be the chain of infinitely near points of O lying on Γ . Since Γ is smooth and generically contained in Reg *S*, there exists an integer N such that $O_N \in \text{Reg } S_N$ ([L] Proposition 1.28, [L/T] Chap II, Theorem 2.13). So C_{S_N,O_N} carries no special lines at all and the infinite chain $\{O_i\}_{i \in \mathbb{N}}$ may not be special.

Therefore the smallest *i* such that the family \mathcal{L}_i of 1.8 is a first order family (or equivalently the strict transform E_{i+1} of E_1 on the minimal desingularization X_{i+1} of S_{i+1} is not contracted to a point on S_{i+1}) is an integer $\ell \geq 0$. As a consequence of Proposition 1.5, the chain $\{O_i\}_{0 < i < \ell}$ is special and *i*) holds.

Let us now prove *ii*). The minimal desingularizations $\pi_i : X_i \to S_i, 1 \le i \le \ell$ and $\overline{\pi}_{\ell+1} : X_{\ell+1} \to \overline{S}_{\ell+1}$ are the vertical arrows of a sequence of commutative diagrams:

where τ_{i+1} is the sequence of point blowing-ups with minimal length making the inverse image ideal sheaf $\mathfrak{m}_i \mathcal{O}_{X_i}$ of the maximal ideal \mathfrak{m}_i of \mathcal{O}_{S_i,O_i} invertible, $0 \leq i \leq \ell$.

Applying 1.1 *ii*) to π_i , we get that $\mathfrak{m}_i \mathcal{O}_{X_i}$ is invertible at any $Q \in \Phi_{X_i}(\mathcal{L}_i)$ for $1 \leq i \leq \ell$. Since $\Phi_{X_i}(\mathcal{L}_E) \subset \Phi_{X_i}(\mathcal{L}_i)$, the strict transform $E_{\ell+1}$ of E_1 is the only irreducible component of the support of the maximal cycle $Z_{X_{\ell+1}}$ of $\pi \circ \tau_1 \circ \cdots \circ \tau_{\ell+1}$ containing $\Phi_{X_{\ell+1}}(\mathcal{L}_E)$ and moreover $\tau_{\ell+1} \circ \cdots \circ \tau_2$ is an isomorphism on a neighborhood of $\Phi_{X_{\ell+1}}(\mathcal{L}_E)$. Now E_1 being a reduced component of the maximal cycle Z_{X_1} of $\pi \circ \tau_1$, $E_{\ell+1}$ is a reduced component of $Z_{X_{\ell+1}}$. In addition, applying 1.1 *ii*) to $\pi \circ \tau_1 \circ \cdots \circ \tau_{\ell+1}$, we get that $\Phi_{X_{\ell+1}}(\mathcal{L}_E) = E_{\ell+1} \cap \operatorname{Reg} |Z_{\ell+1}|$.

But the image $\overline{F}_{\ell+1}$ of $E_{\ell+1}$ on $\overline{S}_{\ell+1}$ being a curve, this equality forces $\overline{\pi}_{\ell+1}$ to be an isomorphism on a neighborhood of $\Phi_{X_{\ell+1}}(\mathcal{L}_E)$. Consequently $\overline{F}_{\ell+1}$ is a reduced component of the maximal cycle $\overline{Z}_{\ell+1}$ of $\sigma_1 \circ \cdots \circ \overline{\sigma}_{\ell+1}$ and *ii*) holds.

To complete the proof of the theorem, it is enough to observe that τ_1 is an isomorphism at any $Q \in \Phi_{X_1}(\mathcal{L}_E)$ if \mathcal{L}_E is not small.

1.11. Remark. — Since the first order family \mathcal{L}_{ℓ} on (S_{ℓ}, O_{ℓ}) contains the strict transform of every $\Gamma \in \mathcal{L}_E$, the description of $\Phi_{\overline{S}_{\ell+1}}(\mathcal{L}_E)$ inside $\overline{F}_{\ell+1}$ given above combined with that of $\Phi_{\overline{S}_{\ell+1}}(\mathcal{L}_{\ell})$ given in Proposition 1.5 implies that $\overline{F}_{\ell+1}$ is also a reduced component of the maximal cycle of $\overline{\sigma}_{\ell+1}$. Moreover, it shows that the strict transform on S_{ℓ} of almost all $\Gamma \in \mathcal{L}_E$ is a smooth branch of a general hypersurface section of (S_{ℓ}, O_{ℓ}) . We will say that *the family* \mathcal{L}_E *has order* $\ell + 1$.

In view of the universal property of normalization, any chain $C = \{O_i\}_{0 \le i \le \ell}$ of infinitely near points of *O* on (*S*, *O*) yields a commutative diagram:

where σ_i is the blowing-up of O_{i-1} , $1 \leq i \leq \ell$, $\overline{\sigma}_{\ell+1}$ is the normalized blowing-up of O_ℓ and the vertical arrows are normalizations. More precisely, \mathfrak{m}_i being the maximal ideal of \mathcal{O}_{S_i,O_i} , the map from \overline{S}_{i+1} to \overline{S}_i is the normalized blowing-up of $\mathfrak{m}_i \mathcal{O}_{\overline{S}_i}$.

We have the following characterization of the families of order $\ell + 1$ going through a given special chain with $\ell + 1$ points in terms of the maximal cycle $Z_{\sigma_1 \circ \cdots \circ \overline{\sigma}_{\ell+1}}$ parallel to corollary 1.7.

1.12. COROLLARY. — Given a special chain $C = \{O_i\}_{0 \le i \le \ell}$ of infinitely near points of O on (S, O), the fiber map $\Phi_{\overline{S}_{\ell+1}}$ induces a one to one correspondence between families of smooth curves of order $\ell + 1$ going through the points of C and reduced components of the maximal cycle $\overline{Z}_{\ell+1}$ of $\sigma_1 \circ \cdots \circ \overline{\sigma}_{\ell+1}$ contracted to a singular point \overline{O}_i of \overline{S}_i above O_i , $1 \le i \le \ell$.

Such a component comes from a small family if and only if $\overline{F}_{\ell+1}$ is contracted to a regular point \overline{O} of \overline{S} .

Proof. — Let X_i (resp. $X_0 = X$) be the minimal desingularization of \overline{S}_i , $1 \le i \le \ell + 1$, (resp. $\overline{S}_0 := \overline{S}$).

The reduced component $\overline{F}_{\ell+1}$ of $\overline{Z}_{\ell+1}$ associated to the family \mathcal{L}_E in theorem 1.10 has the required property since the Zariski closure of its image on X_i (resp. X) is a curve E_i contracted to O_i for $1 \le i \le \ell$ (resp. E).

Conversely, consider a reduced component $\overline{F}_{\ell+1}$ of $\overline{Z}_{\ell+1}$ contracted to a point $\overline{O}_{\ell} \in \overline{S}_{\ell}$ above O_{ℓ} and let E_i be the Zariski closure of its image on X_i , $0 \leq i \leq \ell + 1$. Now pick a curve $\Gamma_0 \in \mathcal{L}$ whose strict transform on $X_{\ell+1}$ intersects $E_{\ell+1}$ and no other exceptional curve of $X_{\ell+1}$ over O. Such a curve exists by Proposition 1.1 *ii*). For any *i*,

 $0 \le i \le \ell$, the strict transform Γ_i of Γ_0 on S_i is smooth, generically contained in Reg S_i and it goes through O_i . The exceptional point of its strict transform on X_i , $\Phi_{X_i}(\Gamma_i)$, lies on E_i and projects to the image \overline{O}_i of \overline{O}_ℓ on \overline{S}_i .

Now observe that for any such *i*, if $\overline{O}_i \in \text{Sing }\overline{S}_i$ and E_i is a point, then E_{i+1} is also a point. Indeed, if so, E_i is not an isolated point of the exceptional fiber of $X_i \to S_i$ over O_i and by Proposition 1.1 *ii*) applied to (S_i, O_i) and $E_i = \Phi_{X_i}(\Gamma_i)$, the morphism $\tau_{i+1} : X_{i+1} \to X_i$ does not factor through the blowing-up of E_i ; hence E_{i+1} may not be a curve.

Therefore, $E_{\ell+1}$ being a curve, if we assume that $\overline{O}_i \in \operatorname{Sing} \overline{S}_i$, $1 \leq i \leq \ell$, then E_1 is a curve and E_0 is a curve or a point depending on whether $\overline{O} \in \operatorname{Sing} \overline{S}$ or not. In any case, E_0 is an irreducible component of the exceptional fiber of $X \to S$ over O, which gives rise to a family of smooth curves \mathcal{L}_{E_0} containing Γ_0 .

Now if k + 1 denotes its order, we may not have $k + 1 < \ell + 1$ since theorem 1.10 *ii*) would imply that $\overline{O}_{k+1} \in \operatorname{Reg} \overline{S}_{k+1}$, but by assumption this is a singular point. We may not have either $\ell + 1 < k + 1$ since by the direct analysis just settled, we would have that $\overline{O}_{\ell+1} \in \operatorname{Sing} \overline{S}_{\ell+1}$ but this is a regular point by construction. Therefore $k = \ell$ and the given chain \mathcal{C} is the one associated to \mathcal{L}_{E_0} . Finally, since no point of $\Phi_{\overline{S}_{\ell+1}}(\mathcal{L}_{E_0})$ lies on two distinct irreducible components of $|\overline{Z}_{\ell+1}|$ and $\Phi_{\overline{S}_{\ell+1}}(\Gamma_0) \in \overline{F}_{\ell+1}$, the reduced component of $|\overline{Z}_{\ell+1}|$ attached to \mathcal{L}_{E_0} is $\overline{F}_{\ell+1}$. \Box

We close this section by one remark and some examples.

1.13. Any chain (finite or infinite) of infinitely near points of O on (S, O) may also be regarded as a chain of infinitely near points of O on a formal non singular space (Z, O)containing (S, O). The points in the chain lie on a smooth formal curve on (Z, O) if and only if any $Q \in C$ distinct from O is proximate to exactly one point in C, its antecedent. Recall that according to Enriques terminology, Q is said to be proximate to P if Q is infinitely near P and lies on the strict transform of the exceptional divisor created by blowing up P. We will say that such a chain is regular.

If (S,O) has an isolated singularity at O, any chain of infinitely near points of O on (S,O) which is both special and regular is finite, once again by [L/T] or [L], hence there exists only finitely many such chains.

1.14. The families of smooth curves on a normal surface singularity are in one to one correspondence with the reduced components of the maximal cycle of its minimal desingularization π by 1.2. For a *rational* surface singularity, the maximal cycle of π and the fundamental cycle of its weighted dual graph Γ coïncide [A]. Among rational surface singularities, we have three increasingly restrictive conditions:

sandwiched $\not\supseteq$ minimal $\not\supseteq$ cyclic quotients

depending only on F; see [S]. Minimal ones are those having a reduced fundamental cycle.

The fundamental cycle of a *sandwiched* singularity has at least one reduced component. Indeed, there exists a non singular graph Γ^* containing Γ such that the curves represented by vertices in $\Gamma^* \setminus \Gamma$ are exactly those with self-intersection -1; Γ^* is the weighted dual graph of a configuration of curves which blow down to a non singular point *O*. Blowing up *O*, creates a component represented by a vertex in Γ and having multiplicity one in the fundamental cycle Z^* of Γ^* . The minimality property of the fundamental cycle *Z* of Γ implies that the cycle obtained from Z^* by deleting the (-1) curves is greater or equal than *Z*.

1.15. COROLLARY. — Any sandwiched singularity contains a smooth curve.

The rational double points D_n , E_n are not sandwiched. By inspecting their fundamental cycles, one finds respectively, 3, 2, 1 families of smooth curves on D_n , E_6 , E_7 .

Among non rational singularities, the complete intersection defined by (d-2) general elements of a finitely supported ideal in $\mathbb{C}[[X_1, \ldots, X_d]]$ provides an example of surface singularity whose general hypersurface section is a union of smooth branches.

A small family of smooth curves appears on the germ at the origin of the Whitney umbrella $x^2 - y^2 z = 0$ since its normalization is given by $x = uv, y = v, z = v^2$.

2. Wedges centered at a smooth curve

2.1. Following freely a classical terminology (compare for example with [W] I.5) we will say that a local continuous morphism φ from $\mathcal{O}_{S,O}$ to a formal power series ring in two variables R with coefficients in the residue field k of S at O is a *wedge* on (S,O) if the kernel of φ is a minimal prime ideal of $\mathcal{O}_{S,O}$. This is also equivalent to saying that the image of the associated morphism $(B_2,0) := \operatorname{spec} R \to (S,O)$ is Zariski dense in some sheet, (or analytically irreducible component) of (S,O).

We will say that the wedge φ is *centered at a parametrized curve on* (*S*,*O*) given by $h : \mathcal{O}_{S,O} \to k[[t]]$ if *h* factors through φ , that is, if it can be lifted to B_2 .

This section is aimed at proving that a morphism $(B_2, 0) \rightarrow (S, O)$ given by a wedge centered at a curve in \mathcal{L} factors through the minimal desingularization of (S, O). This will be an easy consequence of the analysis in Section 1 and of the following observation.

2.2. PROPOSITION. — Let $p : (B_2, o) \rightarrow (S, O)$ be given by a wedge centered at a curve Γ in \mathcal{L} .

i) If $p^{-1}(O)$ is a curve, then p factors through the blowing-up of O.

ii) If $p^{-1}(O) = 0$, then the normalization of the sheet of (S,O) on which Γ lies is non singular.

Proof. — The argument already used to prove Proposition 1.1 *ii*) remains valid if $\varphi^{-1}(O)$ is a curve. So, \mathfrak{m} denoting the maximal ideal of $\mathcal{O}_{S,O}$, $\mathfrak{m}R$ is generated by one of the elements in a regular system of parameters of *R*, hence *i*).

Assume now that $p^{-1}(O) = 0$ and let \overline{S} denote the normalization of S. The curve Γ being smooth and generically contained in Reg S, the same holds for its strict transform $\overline{\Gamma}$ on \overline{S} . Now by the universal property of normalization, the wedge defining p factors through the local ring B of \overline{S} at the exceptional point Q of $\overline{\Gamma}$, giving rise to an injective wedge $\overline{\varphi}$: $B \to R$ on (\overline{S}, Q) which is centered at $\overline{\Gamma}$. The local ring $\mathcal{O}_{S,O}$ being complete by hypothesis, B is a complete local domain, hence R is a finite B-module. So the morphism $\overline{p} : (B_2, o) \to (\overline{S}, Q)$ given by $\overline{\varphi}$ is finite and surjective and \overline{p} induces an isomorphism from a smooth curve Δ on (B_2, o) to $\overline{\Gamma}$.

The ring *R* being factorial, Δ is a principal divisor on (B_2, o) . Here as in the algebraic context, the rational equivalence of cycles pushes forward; the induced morphism $\overline{p}_{|\Delta}$: $\Delta \rightarrow \overline{\Gamma}$ being unramified, $\overline{\Gamma}$ is also a principal divisor. In fact, *K* being the fraction field of *B*, $R \otimes_B K$ is a finite dimensional vector space over *K* and if $\Delta = \operatorname{div} s$, one can check that $\overline{\Gamma} = \operatorname{div} N(s)$ where N(s) is the determinant of the *K*-linear endomorphism of $R \otimes_B K$ given by multiplication by $s \otimes 1$. As a consequence, the multiplicity of $\overline{\Gamma}$, which is one by assumption, is not smaller than the multiplicity of *B*. Therefore *B* is regular. In other words, the normalization of the sheet of (S, O) on which Γ lies is non singular. \Box

Observe that in case *ii*), the family of smooth curves containing Γ is small. We are now ready to prove:

2.3. THEOREM. — If a morphism $p : (B_2, o) \rightarrow (S, O)$ is given by a wedge centered at a smooth curve Γ whose generic point lies in Reg *S*, then *p* factors through the minimal desingularization *X* of (*S*, *O*).

Proof. — Let \mathcal{L}_E be the family of smooth curves on (S,O) which contains Γ . If \mathcal{L}_E is small, the claim follows immediately from the universal property of normalization, since the normalization of the sheet containing \mathcal{L}_E is non singular. If not, let $\ell + 1 \ge 1$ be the order of the family \mathcal{L}_E ; if $Q := \Phi_X(\Gamma)$, theorem 1.10 asserts that the morphism $\mathcal{O}_{S,O} \to \mathcal{O}_{X,Q}$ coïncides (up to $\mathcal{O}_{S,O}$ -isomorphism) with the composed morphism:

$$\mathcal{O}_{S,O} \longrightarrow \mathcal{O}_{S_1,O_1} \longrightarrow \cdots \longrightarrow \mathcal{O}_{S_\ell,O_\ell} \longrightarrow \mathcal{O}_{\overline{S_{\ell+1}},H}$$

where $\{O_i\}_{0 \le i \le \ell}$ is the finite special chain of infinitely near points of O provided by \mathcal{L}_E , $\sigma_i : S_i \to S_{i-1}, 1 \le i \le \ell$, is the blowing-up of $O_i, \overline{\sigma}_{\ell+1}$ is the normalized blowing-up of O_ℓ and $P := \Phi_{\sigma_1 \circ \cdots \circ \overline{\sigma}_{\ell+1}}(\Gamma)$. Here the claim follows from Proposition 2.2 and once again from the universal property of normalization, since \mathcal{L}_E is not small and for any $i, 1 \le i \le \ell$, the family of smooth curves \mathcal{L}_i on (S_i, O_i) containing the strict transform of Γ on S_i is not small either by 1.8.

References

- [A] ARTIN M. On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136.
- [E] EISENBUD D. Open problems in computational algebraic geometry, In "Computational Algebraic Geometry and Commutative Algebra", Eisenbud, Robbiano Editors Cambridge Univ. Press (1993), 49–70.
- [G-S] GONZALEZ-SPRINBERG G. Cycle maximal et invariant d'Euler local des singularités isolées de surface, Topology 21 n⁰ 4 (1982), 401–408.
- [G/L1] GONZALEZ-SPRINBERG G., LEJEUNE-JALABERT M. Courbes lisses sur les singularités de surface, C.R.A.S., Série I 318 (1994), 653–656.
- [G/L2] GONZALEZ-SPRINBERG G., LEJEUNE-JALABERT M. Sur l'espace des courbes tracées sur une singularité, In Algebraic Geometry and Singularities Campillo, Narvaez Editors Progress in Math. Birkhauser 134 (1996), 9–32.
- [L] LIPMAN J. Desingularization of two-dimensional schemes, Annals of Math. 107 (1978), 151–207.
- [L-J] LEJEUNE-JALABERT M. Arcs analytiques et résolution minimale des singularités des surfaces quasihomogènes, Lecture Notes Springer Verlag 777 (1980), 303–336.
- [L/T] LEJEUNE-JALABERT M., TEISSIER B. Contributions à l'étude des singularités du point de vue du polygone de Newton, Thèse Université Paris 7, 1973.
- [N] NASH J. Are structure of singularities, Préprint (1968), Duke math. Journal 81 n⁰ 1 (1995), 31–38.
- [S] SPIVAKOVSKY M. Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Annals of Math. 131 (1990), 411–491.
- [W] WALKER R. Reduction of the singularities of an algebraic surface, Annals of Math. 36 n⁰ 2 (1935), 336– 365.

- 🔷 -

Monique LEJEUNE-JALABERT & Gérard GONZALEZ-SPRINBERG Université de Grenoble I **Institut Fourier** UMR 5582 du CNRS et de l'UJF UFR de Mathématiques B.P. 74 38402 ST MARTIN D'HÈRES Cedex (France) e-mail : gonsprin@fourier.ujf-grenoble.fr e-mail : lejeune@fourier.ujf-grenoble.fr

(1^{er} juillet 1996)