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1 Introduction

We prove the following result (stated with standard definitions and notations
recalled in Section 2):

Theorem 1.1 If H, and H are two integral homology spheres which have the
same Casson invariant, then H can be obtained from Hy by surgery on a framed
boundary link (K;,e; € {1,—1})i=1,...n such that for any i € {1,...,n}, the
Alexzander polynomial A(K;) of K; is 1.

(Equivalently, H can be obtained from Hy by a sequence of (£1)-surgeries on
knots with trivial Alexander polynomial.)

I thank Andrew Casson for telling me that he thought that this result should
be true. This statement is his.
I also thank Lucien Guillou and Alexis Marin for their accurate remarks.

2 Background

In this section, we introduce all our notations and conventions and we point out
all the standard facts that we will use throughout the paper.

Here, all the manifolds are compact and oriented. The homology is always
with coefficients in Z; and when it does not seem to cause confusion, the curves
are denoted like their homology classes. An integral homology sphere or homology
sphere is a 3-manifold with the same (integral) homology as the usual sphere S°.
In such a manifold, every knot K bounds a (compact, oriented) connected embed-
ded surface, which is oriented according to the ‘outward normal first convention’.
Such a surface is called a Seifert surface of K. The linking number kg (J, K) of
two disjoint knots J and K in a homology sphere H is the algebraic intersection
number of K and of a Seifert surface of J. It is symmetric. For a surface X,
< .,.>y denotes the symplectic intersection form on Hy ().

Definition 2.1 The Seifert form Vy of a Seifert surface ¥ of a knot in a homology
sphere is the bilinear form defined on Hy(X) by:
For any two curves z and y of X

Va([2], [y]) = lk(z*, y)

where the brackets stand for the homology classes and zT denotes the curve =z
pushed off Y2 in the direction of the positive normal to >. We also denote by Vy
the matrix of Vx with respect to some basis of Hy(X), and by VET its transposed.

The Seifert form Vx may be used to define the following knot invariant.

Definition 2.2 Let K be a knot in a homology sphere and let ¥ be a Seifert
surface of K. The Alexander polynomial A(K) of K is the determinant of
(t'?Vy — =12V, 1t is a well-defined invariant of K which belongs to Z[t,t'].
(See [G] or [L, Appendix] for example.)



Definition 2.3 Let H be a homology sphere. A (&1)-framed link of H is a
link I = (Kz')z‘e{l,...,n} each component of which is equipped by an integer ¢; €
{-1,+1}.

The manifold xg (L) = x(H ;L) obtained by surgery on this framed link L =
(Kisei)ieqa,.,n) 18 defined as follows.

Let T(K;) denote a tubular neighborhood of K; and let 0T (K;) denote its
boundary. Let {; C 0T (K;) denote the preferred parallel of K;, that is the parallel
which satisfies (k({;, K;) = 0. Let m; C 0T (kK;) denote the oriented meridian of
K, that is the meridian such that lk(m;, K;) = 1. Let u; be the curve of 9T (K;)
such that

i = m; +eil; (2.4)

in Hy(0T(K;)). Then

xu (L) = H\T(L) Usrry [T Pi x S*

=1

where T°(L) is the union of the T'(K;), D; is a 2-disk, and 9(D; x S*') is glued with
0T (K;) by a homeomorphism which maps d(D; x {1}) to p;.

We denote by K; the core of the surgery performed on K; that is the core
{0} x S of the solid torus D; x S'. IE'Z- is oriented so that p; is its oriented
meridian in yz (L) which inherits its orientation from H.

The link L is said to be a boundary link if its components bound pairwise
disjoint Seifert surfaces.

We call e-surgery a surgery on a knot with coefficient €.

In this paper, we will often consider surgeries on (£1)-framed boundary links.
We first point out some standard facts about these links.

Until Remark 2.8, we retain the notation from Definition 2.3 and we further
assume that L is a (£1)-framed boundary link.

Remark 2.5 Any Seifert surface of (K; C H) disjoint of L \ K; may also be
considered as a Seifert surface of (K; C x#(L)). Indeed an obvious small iso-
topy supported near T(K;) moves such a surface to a Seifert surface of the
preferred parallel {; of K; embedded in H \1(L) = xu (L) \7(L). Now, since
l; C 0T (K;) = 0T (K;) is also the preferred parallel of K;, this surface may be
considered as a Seifert surface of Igz

It is easy to see that yz (L) is a homology sphere. Note also that if K is a
knot disjoint of I such that lkgy (K, K;) = 0 for all 7, and if J is a knot disjoint of
LUK,

lku(J, K) = lkyn.1)(J, K)

(Indeed, in this case, K bounds a Seifert surface disjoint of L.) Therefore, from
Remark 2.5, we get:



Remark 2.6 For any i € {1,...,n}, (K; C H) and (K; C xg(L)) bound Seifert
surfaces which carry the same Seifert form. Hence,

A(K; C H) = A(K; C xu(L))

Remark 2.7 Similarly, if K is a knot of H such that I U K is a boundary link,
it can also be viewed as a knot in g (L) and we have:

A(K C H)=A(K C xx (L))

Remark 2.8 The surgery on the framed link

~

L = (Ki, —€)ie{1,..n} C Xt (L)
transforms xg (L) into H. (See Equation 2.4 and Remark 2.5.) It is called the

inverse of the surgery on L.

Lemma 2.9 Let S be a sequence of (+1)-surgeries on knots from a homology
sphere Hy to another one Hyyq, that is a sequence (H;, K;,&;)i=1,....n Such that:

e H; is a homology sphere,

o K is a knot of H; which bounds a Seifert surface 32; in H;

o g, =41

o Hiy1 = x(Hi; (Kiye4)), fori=1,...,n

Such a sequence § is equivalent to a surgery on a (£1)-framed boundary link
L = (K; = 0%i,)i=1,...n C Hy such that:

o The X; are pairwise disjoint Seifert surfaces in Hy,

o With the notation H; = x(H;; U;-;ll(lg'j,aj)), the pair (H;, ;) is homeomor-

phic to the pair (H;,%;) for i = 1,...,n, and H,,, is homeomorphic to
H,41 (by orientation-preserving homeomorphisms).

In particular, Y and Y; have the same genus; and (K; C H;) and (IZ}; C Hy)
have the same Alexander polynomial.

Of course, two sequences of surgeries starting from a homology sphere H; are said
to be equivalent if they transform H; into the same manifold.

ProOOF OF LEMMA 2.9: Proceed by induction on n. There is nothing to say if n =
1. According to the induction hypothesis, there are (n—1) disjoint Seifert surfaces
$4,..., 5,1 in Hy such that (with the notations of the statement) (H;,%;) =
(H;,%;) fori=1,...,n—1, and,

H, 2= x(Hy; UIZ] (K = 055, ¢5))



The surfaces Y1, ...,¥,_1 may be seen in H, where they are still disjoint. (See
Remark 2.5.) Perform an isotopy of H,, to move ¥, to a surface 3, which is
disjoint of them. (This is possible because all these Seifert surfaces are nothing
but regular neighborhoods of wedges of circles. See Figure 5.) Of course, this
isotopy has changed neither the homeomorphism type of (H,,3,) nor the home-
omorphism type of x(H,;9%,,,). Now, ¥, may be seen in H; and it is easy to
see that the 3; satisfy the required properties.

O

The following fact is well-known (see [G-M, Lemme 2.1, p.238]):

Fact 2.10 Any two homology spheres can be obtained from each other by a se-
quence of (£1)-surgeries on knots.

Recall now the following theorem (see [G-M] or [A-M]):

Theorem 2.11 (Casson, 1985) There exists a unique integral topological in-
variant X of oriented homology spheres such that

1. A(S%) =0

2. For any knot K in a homology sphere H, for any e = 1,

M (K,€)) = MH) + SA(K)"(1) (2.12)

Because of this Casson surgery formula the knot invariant A(K)"(1)/2is called
the Casson Invariant of K and is denoted by N (K).

3 Sketch of the proof

We will first prove the following proposition:

Proposition 3.1 Let Hy and H be two homology spheres. Then H can be 0b-
tained from Hy by surgery on a (£1)-framed boundary link L = (K; = 0%;,€i)i=1,....n
such that:

1. The Seifert surfaces 3; of the K; are pairwise disjoint, and,
2. Foranyi€ {1,...,n},

o cither A(K;) =1,

e or the genus of ¥; is one and XN (K;) = —1.

Then we will eliminate the knots with non trivial Alexander polynomial from
this statement, when their contributions to the Casson invariant cancel each other.
This will be possible because of the following lemma:



Lemma 3.2 Let H be a homology sphere. Let
L= ((I(l = 321, 1), (I(g = 822, —1))

be a framed link in H such that ¥ and Xy are two disjoint genus one Seifert
surfaces, and N'(Ky) = XN(Kg) = —1. Then the surgery on L is equivalent to a
sequence of (+1)-surgeries on knots with Alexander polynomial 1.

PROOF OF THE THEOREM ASSUMING PROPOSITION 3.1 AND LEMMA 3.2: We
obtain H from H; by performing the surgeries prescribed by the framed link L
given by Proposition 3.1 one by one in any order. By Remark 2.7, the Alexander
polynomial of a component K; of L is the same in H and in any manifold obtained
from H by surgery on a sublink of L. Thus, we can obtain H from H; by a
sequence of surgeries on knots with Alexander polynomial 1 followed by a sequence
of surgeries on genus one knots for which X' = —1. Since A(H;) = XA(H) and
because of the Casson surgery formula, we can perform the surgeries of the latter
sequence two by two, and view this latter sequence as a sequence of surgeries on
two component boundary links satisfying the hypotheses of Lemma 3.2. Now, this
lemma makes clear that the whole sequence of surgeries transforming H; into H
can be replaced by a sequence of surgeries on knots with Alexander polynomial 1;
and by Lemma 2.9, we can replace the obtained sequence of surgeries by a single
surgery on a boundary link each component of which has Alexander polynomial
1.

O

4 Proof of Proposition 3.1

With the help of Lemma 2.9, the proposition is the consequence of the two fol-
lowing lemmas:

Lemma 4.1 Any two integral homology spheres can be obtained one from the
other by a sequence of (£1)-surgeries on knots such that every knot of the sequence
has a trivial Alexander polynomial or bounds a genus one Seifert surface.

Lemma 4.2 A (+1)-surgery on a genus one knot is equivalent to a sequence
of (£1)-surgeries on genus one knots with Alexander polynomial 1 or Casson
invariant (—1).

In order to prove them, we recall some standard facts about changes of cross-
ings and Seifert surfaces.
4.1 About changes of crossings and Seifert surfaces

Definition 4.3 A positive (respectively negative) change of crossings of a knot
K in a homology sphere is the effect on K of a positive twist ¢ (respectively of
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Figure 1: K and the cylinder

a negative twist t=') of a solid cylinder intersecting K as in Figure 1 around its
axis. See Figure 2. (K is unchanged outside the cylinder.)

We call disk of the change of crossings the base D of the solid cylinder. The
change of crossings is said to be surrounded by the unknot U which is the boundary

of D. (See Figure 1.)
vy Y tur) + 1,1
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Figure 2: Effect of the two kinds of changes of crossings surrounded by U on K.

(Note the symbols that we will use to avoid drawing the results of twists of cylin-

ders).

Of course, this definition of change of crossings is equivalent to the standard
definition where a change of crossings transforms a knot K which intersects a
3-ball along two strands as in Figure 3 by making the two strands pass through
each other.

Notice the following homeomorphism of pairs:

(xa(U,e € {-1,41}),K) = (H,t™°(K)) (4.4)

Note also that U bounds a genus one surface in H \ K, namely the surface
obtained by tubing the disk D, that is by replacing two disks neighborhoods of
KnNDin D by a tube around a connected component of K\ (KND). See Figure 4.
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Figure 3: Effect of a change of crossings.

Figure 4: Tubing D.

Because of the well-known transitivity of the action of the group of homeomor-

phisms (up to isotopy) of a Seifert surface ¥ on the symplectic bases of Hy(3;Z),
we have the following standard fact:

Fact 4.5 Let X be a Seifert surface of K in H. For any symplectic basis B =
(T1, 91,22, Y2, - -, g, Yg) of (H1(X),< .,. >x), ¥ is isotopic to a neighborhood
of representatives of the x; and the y; of the form shown in Figure 5. The sur-

face is represented as 2g one-handles hy,,hy,, ..., kg, hy, with respective cores
T, Y1,y g, Yy attached to a disk.
i
UQ - — — Z
Y1 T2 Y2 T,
L1 Yg
K
7

Figure 5: Standard representation of a Seifert surface.



4.2 Proof of Lemma 4.1

Proposition 4.6 Any knot K in a homology sphere H can be tranformed into a
knot with Alexander polynomial 1 by changes of crossings.

PRroOOF: Let X be a Seifert surface of K. Let B = (21,41, 2,2, ...,%4,Yy) be a
symplectic basis of (Hy(Xk), < .,. >x,) and view X as in Figure 5.

For any pair {z,t} of elements of B and for any ¢ = +1, we can pass the
handles A, and h; through each other by four changes of crossings (see Figure 6)
so that ¢ is added to Vx, (z,t) and Vx,.(t,2), and the other coefficients of the
matrix of Vs, with respect to B are unchanged.

g Vi

SIS,
hz Ehz j
S FLAK

Figure 6: Passing the handles through each other.

hy

Bt
|

For any element z of B and for any ¢ = &1, we can twist the handle A, by one
change of crossings so that € is added to Vx, (2, z), and the other coefficients of
the matrix of Vy, with respect to B are unchanged.

Note that (VZK - VETK) represents the intersection form on Xg.

These three remarks make clear that K may be transformed by (a finite num-
ber of) changes of crossings into a knot K® which bounds a Seifert surface ¥
homeomorphic to Y i and such that:

o Vy,(z;y;) =1foranyie{l,...,g}
e Vx,(z,t) = 0 for any other (z,t) of B2

Thus, A(K") =1 and we are done.
a

Thus, K is obtained from a knot K° with A(K°) = 1 by a finite number of
changes of crossings. The disks of the changes of crossings which transform K°
into K may be assumed to be pairwise disjoint. Indeed, such a disk D is only
a regular neighborhood of an arc joining the two points of K° N D. Thus, the
proposition may be rewritten as follows:

Statement 4.7 For any knot K in a homology sphere H, there exist a knot K°
of H, a collection (D;)i=1,..., of pairwise disjoint disks and a collection (;)i=1,...n
of elements of {1} such that:



1. A(KY) =1,

0
2. Bvery D; intersects K transversally at exactly two points in D; with oppo-
site signs.

3. The pair (H, K) is homeomorphic to (xuy((U; = 0D, €i)i=1,..n), K°)
In particular, for e = %1, if we set
L = ((K%¢), (Ui ¢i)i=t,..n)

XH(I(,S) = XH(L)

where U; bounds the genus one surface obtained by tubing D; in H\(K°U(U;2:U;))
and therefore in any manifold obtained from H by surgery on a sublink of L.

Thus, we have proved that any (£1)-surgery on a knot K in H is equivalent
to a sequence of (+1)-surgeries such that:

e The first surgery is performed on a knot K% with Alexander polynomial one
e The following ones are performed on genus one knots.

Of course, by Fact 2.10, this implies Lemma 4.1. |

4.3 Proof of Lemma 4.2

Let K be a knot bounding a genus one Seifert surface ¥ in a homology sphere.
In any symplectic basis of Hq(X), the matrix of Vx has the form

w5 (45)

where a, b, ¢ € Z. In particular, A(K) = 14 det(Vs) (t'/? — t=1/2)2; thus

N(K) = det(Vs) (4.9)

and the Alexander polynomial of genus one knots is determined by the Casson
invariant, namely:

A(K) =1+ N(K)(t'/? — =122 (4.10)

Lemma 4.11 Let V be a Seifert form on Z?, (i.e. V is an integral bilinear form
on Z* such that det(V — V1) =1). If det(V) # 0, then there exists x € Z?\ {0}
such that:

V2, 2)| < |det(V)|

If |det(V)| > 1, then there exists x € Z*\ {0} such that:

|V (z,2)| < |det(V)]

10



PROOF: Let a = mingeza\ 03|V (2, z)[. The statement is clear if « < 2. Assume
a> 2
and after possibly changing V into —V, assume that there exists = such that:
V(z,z)=a

Let Y be the set of y of Z% such that V(z,y) = V(y,z) + 1. (For such an y,
(z,y) is a basis of Z?.) Y is non-empty.

If there exists y € Y such that V(y,y) < 0, then set b = V(y,y), observe
b < —a, set also ¢ = V(z,y), and observe ¢(c — 1) > 0. Thus,

det(V)=ab—c(c—1)<ab< -2a < —a
and we are done. Hence, we assume that V (y,y) > 0 for all y of Y. Set
b= minyeyV(y,y) (> a)

and choose y € Y such that
b=V(y,y)

Set,
c=V(z,y)

Since (ytz) €Y, V(yxa,y+z)>b. Hence,
1
btat2c— ) >

This implies

e—5l<t
“T2l=3
Therefore
1 1 a® 1
det(V) = ab — ¢? —ab—(c— 24+ —->ab— — 4+~
et(V)=ab—c*+c=uab— (c 2)+4_a 4—}—4
where b — a/4 > %(1, > % Hence
det(V) > a

O

Lemma 4.12 Let K be a knot bounding a genus one Seifert surface 3> in a ho-
mology sphere. Assume that X'(K) = +1. Then there exists a symplectic basis of
H,(X) where the matriz of Vy has the form:

€ 1
( 0 eMN(K) )

with e = +1; and if N'(K) = —1, then € may be arbitrarily chosen in {—1,+1}.

11



PRrooF: Because of the form of the Seifert matrix (4.8), since A'(K) is odd, there
can be no primitive element z of H;(X) such that Vg(z,2) = 0. Thus, according
to Lemma 4.11, there exists a nonzero 2 such that Vg(z,2) = 1. Choose such
an z and set ¢ = Vy(z,z). Now, choose y such that

<Ly >e=eVa(.,2)

Clearly, (z,y) is a symplectic basis of Hy(X) in which Vx has the desired form;
and if M'(K) =

—1, then € could have been arbitrarily chosen. |

Lemma 4.13 Let K be a knot bounding a genus one Seifert surface ¥ in a ho-

a c
/=
Vs (c—l b)

be the matriz of Vx, in a symplectic basis (z,y) of Hi(X). Then for n = £1 and
€ = %1, the surgery on (K:, n) is equivalent to a sequence 0f~tw0 surgeries on two
genus one framed knots (K,n) C H and (U,e) C Hy = xu(K,n) such that:

mology sphere H. Let

1. K bounds a Seifert surface 3 whose Seifert matriz is

a c
e —
Vs (c—l b+€)

in some symplectic basis of Hy ().

In particular,

N(K C H)=N(K) +ea

N(U C Hy) =—na

Proor: View X as in Figure 5. Let U be an unknot surrounding hy.
Let ¥ be such that (yg (U, —¢),X) = (H,X) as in Subsection 4.1. Vi has the

desired form. Let K = d%. Since ¥) 2 (xg(U,€),%), we have

(H,
xu (K, n) = xu((K,n), (U,¢))
(

Now, the Casson surgery formula (2.12) or a direct computation (as in the proof
of Sublemma 5.2 below) yields:

N(U C Hy) = —na
and since U bounds a genus one surface in Hp, we are done. a
We can now prove:

Lemma 4.14 A (£1)-surgery on a genus one knot is equivalent to a sequence of
(£1)-surgeries on genus one knots with Casson invariant 0, 1 or —1.

12



Proor: Let K be a knot bounding a genus one Seifert surface ¥ in a homology
sphere H such that |M'(K)| > 1. Let n = +1. We are about to prove that an
n-surgery on K is equivalent to a (finite) sequence of (£1)-surgeries on genus one
knots with |A’| < |X(K)|. This clearly proves the lemma.

1. If there exists z such that 0 < |Vx(z, z)| < |N(K)|, then choose a symplectic
basis (z,y) of Hy(X) starting with such an z and apply Lemma 4.13 with
this basis, with @ = Vx (2, z), and with an € such that

IN(E)] < [N (K))|

2. Otherwise, according to Lemma 4.11, there is a primitive z such that Vy(z, 2) =
0. Then there is a symplectic basis (z,y) of Hy(X) in which:

0 c
Ve = ( c—1 b )
Several applications of Lemma 4.13 transform the surgery on (K, n) into a

sequence of (£1)-surgeries on genus one knots such that

e the first knot K’ has a Seifert matrix of the form

0 c
V_(c—l 1)

and satisfies N'(K') = N (K),

e all the other knots have Casson invariant 0.

Now, K' satisfies the hypotheses of the first case of the proof, and we are
done.

To conclude the proof of Lemma 4.2, it suffices to prove:

Lemma 4.15 Let K be a genus one knot in a homology sphere H such that
N(K) = +1. Let n = £1. The surgery on (K,n) is equivalent to a sequence of
(£1)-surgeries on genus one knots with Casson invariant 0 or (—1).

PRrROOF: Let X be a genus one Seifert surface of K. Recall from Lemma 4.12 that
there is a symplectic basis of H;(X) in which:

, a1

a==+1

where

13



Thus, if » = a, we may apply Lemma 4.13 with ¢ = —a to transform the
surgery on (K, 7n) into a sequence of two (41)-surgeries on genus one knots with
Casson invariant 0 and (—1).

Now, if = —a, H is obtained from yy(K,n) by surgery on (K,—n) C
xu(K,n) (see Remark 2.8). By Remark 2.6, K and K bound Seifert surfaces
with identical Seifert forms, and X(K) = M(K) = 1. Thus, (K, —7) satisfies the
hypotheses of the previous case. Therefore, H can be obtained from g (K,n)
by a sequence of (£1)-surgeries on genus one knots with Casson invariant 0 and
(=1). Hence, xg (K, n) can be obtained from H by the inverse sequence which is
also a sequence of (£1)-surgeries on genus one knots with Casson invariant 0 and
(-1). ]

5 Proof of Lemma 3.2

Lemma 3.2
Let H be a homology sphere. Let

L= (K= 0%,,1), (K3 = 85, —1))

be a framed link in H such that X1 and X9 are two disjoint genus one Seifert sur-
faces, N (K1) = N (K3y) = —1. Then the surgery on L is equivalent to a sequence
of two (£1)-surgeries on knots with Alezander polynomial 1.

Proor: To prove this, we isotope K; to a knot K in yz (K3, —1) so that K,
satisfies:

1. K; is disjoint from Ko in xi (K2, —1)
2. lky (K, K) =0
3. A(Kyc H)=1
4. A(Ky C xg(Ki,1)) =1
These properties of K ensure that
xm (K2, =1), (K1, 1)) = xm (L)

and that performing first the surgery on (K1, 1) and next on ((Kq, —1) C xg (K1, 1))
yields the desired sequence.

Now, let us describe our isotopy and prove that it satisfies the required prop-
erties.

Let (z,y) be a symplectic basis of 3; and let (z,¢) be a symplectic basis of X
such that with respect to these bases:

1 1

14



(See Lemma 4.12.) View X as the union of a disk Dy with two handles h, and hy
and Y as the union of a disk D, with two handles A, and h; as usually. Denote
Hy; = xu (K3, —1). See Figure 7.

_1/ y
ha K
, ¥
)
+1 T

Figure 7: ¥y and X5 in Hy before the isotopy

Move ¥; to a surface (f]l 2 %) by an isotopy of Hj so that in Hy:

e Y, intersects ¥y only in the interior of ¥y and exactly along one arc of 3
separating h, as in Figure 8. The core 2 of h, intersects ¥y exactly at one
point transversally and kg, (z, K9) = —1.

o lkm,(y,z) =0, lkp,(y,t) =1

Figure 8 3 and ¥, in H, after the isotopy

Since il does not intersect Iﬁtg, it can be seen in H and we have:

15



Sublemma 5.1 With respect to the basis (z,y) of Hy (%),

0 1
Vich:(o —1)

Vi‘,chQ = VEICH2 = VEICH

Proor: Of course,

Thus, since lky, (y C Xy, KA'Q) =0, Vs cy(y,-) = Vu,cu(y,.); and we are left with
the computation of lky (2%, z) for  C Y1: Let m, and my denote the meridians
of ¢ and Ky in (H\ (zUK,) = Hy\ (zUK3)), and let £; be the preferred parallel
of Ky in H. The following equalities take place in Hy(H \ (zUK3)). The oriented
meridian pgy of KA'Q satisfies:
pa = my — £y
Since lky(Kq,z) = —1,
ly = —my,

Since lkp, (z%,2) = 1 and lkp, (Kq,2) = —1,

et = —py +my = —mg + Ly + my = —my
Thus, lkg(zt,z) = 0 and the sublemma is proved. O
Let K, = 0%;. By the sublemma,
A(Ky) =1

Let H, = XH(Rl, 1). In (H\ Ii'l), K, bounds a genus 2 Seifert surface X,
obtained by tubing >, as in Figure 9: The neighborhood of Y2 N i)l in X is first
isotoped towards D;. Next, 3, is tubed along a part of K7 which is parallel to
y C 1. Denote by m the meridian of the tube which is also a meridian of K.

Then (z,t,m,y) is a symplectic basis of H;(X;), and we have the following
sublemma:

Sublemma 5.2 With respect to (z,t,m,y), the Seifert matriz of Sy in Hy is:

o O =
|
—
o
_—— O

VizCH1 =
0 1 0 -1

PRrOOF: The computation of the coefficients involving z, ¢ or y is easy after the
two following remarks:

1. Since ) ) )
lk‘H(Z, I(l) = lk‘H(t, I(l) = lk‘H(y, I(l)

= lk‘H(Z, 1(2) = lk‘H(t, 1(2) = lk‘H(y, 1(2) =0

the linking numbers involving z, ¢, y (or their parallels) are the same in H,
in Hy and in Hs.
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Figure 9: NP

2. Let £; denote the preferred parallel of K, on 3;. Then m is homologous to
—/; inside the tubular neighborhood of K, in H,.

Thus, we are left with the computation of

kg, (m™,m) = lkg,(m*, =) = -1

Now, A(K3) =1 and we are done. O
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