GEOMETRY OF CENTERS OF ANALYTIC
DISCS AND DOMAINS OF DEPENDENCE

RoMAN DwiLEwWICZ AND C. DENSON HILL

ABSTRACT. In this paper we introduce a new technique of spinning analytic discs,
which allows us to control the direction of CR extension of CR functions from rigid
CR manifolds.

1. INTRODUCTION

In this paper we study the geometry of centers of analytic discs for rigid CR
manifolds, and domains of dependence for the CR extension of CR functions from
such manifolds.

Let M be a real (2n + k)—dimensional manifold which has a locally closed em-
bedding in C¥*". Then M is said to be a generically embedded CR manifold of type
(n, k), provided that dimc(T,M N JT,M) = n, where J is the complex structure
operator on R2(F+m) ~ Ck+n  Note that M has real codimension k. Associated
with such a manifold, there is the system of tangential CR equations, Oy f = 0,
which define the CR functions f on M. For a detailed discussion of these concepts,
the reader can consult [HN1], [HN2].

There is a sizable literature devoted to the study of the local holomorphic, or CR,
extension of CR functions f, which are defined and CR in a small neighborhood of a
point p € M. For example one can consult Baouendi and Rothschild [BR1], [BR2],
[BR3], [BR4], Baouendi, Rothschild and Trépreau [BRTp], Baouendi, Rothschild
and Tréves [BRTv], Boggess and Pitts [BPi], Hanges and Treéves [HaT], Trépreau
[Tr1], [Tr2], [Tr3], and Tumanov [Tul], [Tu2], as well as the many references found
there to earlier work. Insofar as the local extension of CR functions is concerned, a
main issue has been to attempt to gain some control over the “directions”, “size”
and “shape” of the place where the CR functions extend.

In this paper we take a slightly different point of view: Given a direction in which
it might be possible to expect CR extension, we investigate just when it is possible,
and determine a “domain of dependence” for the extension; i.e., a region on M
of a specific size and shape, where the given Cauchy data f suffices to accomplish
the extension in the given direction. Thus we are taking here a semi-global, rather
than a local approach to the CR extension problem. Actually in this paper we
consider manifolds M which have a global presentation as M: y = h(w), where
(z,w) €CF xC", 2=z 41y, 2 = (21, ,2k), Y= (Y1, Yk), h = (h1,... ,hg)
and w = (wq,... ,w,). Such manifolds have been called rigid in [BRTv].
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Our approach is to use analytic discs, with boundaries on M, and to study the
influence of their centers. An analytic disc is a holomorphic mapping ¢ of the unit
disc of the complex plane (in some smoothness class on the closure) into C*+". By
the center of an analytic disc we mean ¢(0).

We now describe briefly our main results: Let ¢ = ¢g(0) be a center which lies in
N, M = R¥ the normal space to M at p € M, and consider the line segment pq in
Ny M. Then we can find an arc v, in N M, which starts at p, and whose tangent
direction at p makes an arbitrarily small angle with pg. Each point of v, lies on
the image of some analytic disc with its boundary on M. As p’ moves around on
M, so as to sweep out some open neighborhood of p, these arcs v, sweep out a
“rib” ]\Zp attached to M mnear p (see Theorem 6.4). This means that ]\Zp is a real
(2n + k + 1)-dimensional generically embedded CR manifold of type (n+ 1,k — 1),
which has M as its (partial) boundary. The analytic discs used in the construction
of the rib l\kp all have their boundaries contained in an open neighborhood D, of
p, which is “thin” in the w-directions, and “long” in the z-directions. Moreover,
we show that any f which is CR on this domain of dependence D, has a unique
CR extension to the rib .7\~1p (see Theorem 7.3). Suppose next that we have [ such
centers g1, ¢z, ... ,q in NyM with pgr,paz, . .. ,pqi linearly independent. Then the
same CR function f has a unique CR extension to a “thin wedge”, of real dimension
2n + k + 1, whose intersection with N, M is a curved [-dimensional simplex spanned
by the arcs 71(,1),71(,2), e ,’y](gl) (see Theorem 8.1). Finally assume that at p € M,
every open half-space in NV}, M contains such a center g. Then our same CR function
f has a unique holomorphic extension to a full open neighborhood of p in CFt™
(see Theorem 9.1).

We introduce here a new technique, that of spinning analytic discs (see Section
5). It is used in Section 6 in the construction of a typical rib, and allows control
over the direction of the rib, while at the same time giving a domain of dependence.

The first author would like to thank the Institut Fourier of the Université de
Grenoble and particularly Professor Christine Laurent for their hospitality during
the time when partially this paper was written.

2. PRELIMINARIES

Let M be a rigid CR manifold of type (n,k) which is generically embedded in
C*t". This means that CR-dimcM = n and codimpM = k. Consider a point p on
M, and let us assume that p is the origin, and the defining equations for M are

= h(w
(2.1) M: { z(o) :( 0>, dh(0) = 0,

where h is a smooth map : C* — RF defined near the origin.

Next we consider a point p on M near the origin. We note that A depends on w
only. In a small neighborhood of the origin we can fix a mapping Q: M > p — Q, €
AU(Ckm), which depends smoothly on p, where AU(CF™) is the space of affine
unitary transformations, such that for each p € M, Q,: Cktm 5 C*" arranges
that

(2-2) QP(P) = (070)7 QP*(TP‘M[) = {y = 0}7 Qp*(Hp‘M) = {Z = 0}7
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where (2, w) € C¥ x C* and z = 2 +iy. The map Q can be given explicitly in terms
of h, but in this paper we need only some of its properties, not explicit formulas.

Using the standard inner product on C* x C*, we have a natural choice of normal
space at p, with

(2.3) Ny M = Q5 ({z =0, w=0}).

Then for each p € M we can express ,M locally as a graph over its tangent space
{y = 0} at the origin:

= hP(w
(2.4) 2,M: {%p(o) ! o>, dn?(0) = 0,

where hP is a smooth map : C* — R¥, defined near the origin.

Here we collect in a condensed form some essential background material. For
more complete details see [HT].

Fix an a with 0 < a < 1; we use the standard Holder spaces: let K be a compact
subset of R™, then

CK)={u: K—R; |u|la = sup |u(z)|+ sup M

< 0O7.
r€EK z,yeK |T - yl" }

Then C*(K) is a Banach algebra with respect to the |- |, norm.

We use D to denote the unit disc {¢ € C; [{| < 1}, S' = 9D, and O(D) to
denote the space of holomorphic functions in D. When K = S' we indicate the
norm by | - |a, and when K = D we indicate it by | - |?. For u € O(D) n C*(D)
these two norms are equivalent:

lula < Jul < Calula.

The operator

. 1 2 0 it
(2.5) (Tx)(e') = Q—p.v./ z(e') %(:i) de,
0y o -

el ezt

is known as the Hilbert transform on S'. It is a bounded linear operator T :
C*(S') — C*(S'). The significance of T is as follows. Let y = Ta with z €
C*(S') and let U be the unique harmonic function in D having boundary values .
Then U € C*(D). Construct the unique conjugate harmonic function V' such that
V(0) = 0. Then also V € C*(D). It follows that f = U +:V € O(D) n C*(D),
3£(0) = 0, and on S has the boundary values z + 1y.

We denote by E¢(z), ¢ € D, the value of the Poisson integral at (, i.e.,

(2.6) Ee(x) l/oﬂ:c(em)ﬂdﬂ.

G 7~ CP?

For ¢ € S' we have that E;(z) = x({), provided that z(-) is continuous at (. In
particular, if ( = 0, we obtain the mean value operator

(2.7) Eo(x) = E(z) = — /Oﬂm(em)dﬁ.

T o

Later we need a modified operator T¢, namely T =T — E.T.
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3. LIFTED ANALYTIC DISCS

A map g: D — C**" with each component belonging to O(D) and to some
differentiability class on D, such as C(D), will be called an analytic disc in CF*™.
The restriction of g to S! will be called the boundary of the disc, and the point g(0)
will be called the center of the disc.

We shall be interested in analytic discs whose boundaries lie on M, where M
is as in (2.1). By a parameter disc we mean a pair (¢, w(-)), where ¢ is a column

vector of constants in R* and w(-) belongs to [O(D) N C*(D)]". We measure the

D

o )
Euclidean norm. In the rigid case, to lift a parameter disc to M, i.e., the boundary

of the lifted disc g(¢) = (2(¢),w(()) is on M, is a simple process. Namely we have

size of a parameter disc in a natural way by |¢| + |w(+) where |¢| denotes the

%Z(ew)

%z(ew)

y(e'’) = h(w(e)),
(') = ¢ = [Th(w(-))(e")

1 27 . eit + €i9

In this standard lifting we have

I
=

(3.1)

(3.2) Rz(0) = z(0) = c.

To get a parameter disc from a lifted disc g(¢) = (2(¢), w(()) is very easy. Simply
we take (Rz(0), w(-)). So we see that lifted discs are in one-to-one correspondence
with parameter discs.

The center of a lifted analytic disc g(¢) = (2(¢),w(()) is the point (2(0),w(0)).
If additionally we assume that ¢ = 0 and w(0) = 0, then the center of the lifted
disc is of the form (iy(0),0), i.e., it lies on the space iR* x {0}. In an equivalent
way, the center (i1y(0),0) is given by the formula

1

(3.3) y(0) = ﬁ/o " h(w(ei®)) b,

We denote by B the Banach space

B={w()e[0D)nC*D)" | w(0)=0},
(3.4)
Bs={w(:)€eB | |w|a <}

4. SWINGING ANALYTIC DISCS

Now we take a real parameter 0 < A < 1 and consider the parameter disc

¢ = w(¢) — w(N). We lift this disc in a modified way (see [BPo]), so as to have
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Rz(\) = ¢ = 0:
(4.1)

S2a(e®) = ya(e’®) = hlw(e®) - w()))

Rea(el?) = aa(e®) = ~[Tah(w() — w(N)]()

1 o it el et et 4
= _ﬂp-v'/o h(w(e") — w(A))3 eit — il eit — )\ i

where T is the operator defined at the very end of §2.
We note that the image in C" of w(-) — w(A) is simply a rigid translation of the
image of w(-). We denote the lifted disc given in (4.1) by

9O = (2a(€); w(() —w(N)).

We have that zx(A) = 0. If A = 0 and w(0) = 0, then we obtain the analytic
disc which was discussed just before (3.3). If A = 1, then the boundary of the disc
g1(() passes through the origin, namely g;(1) = 0. Note that this corresponds to a
swinging of the original lifted disc.

For each such w(() we consider the mapping A — gx(A), 0 < A < 1. Since
w(A) —w(A) = 0 and zx(\) = 0, the mapping takes the form A — (iyx(}),0) and
can be considered as a mapping from [0, 1] x B into R* (here and in what follows,
we abuse notation; e.g., by ¢: B — R¥ the reader should understand it is meant
that ¢ may be only defined in a suitably small neighborhood of the origin in B.)
For each A we denote this mapping by Fy, Fx: B — RF; it is given by the formula

(4.2) Fr(w) = ya(\) = % /0 o h<w|(::j>_—/\t|f;(k)) 46,

obtained by plugging yx(-) = h(w(-) — w(})) into (2.6).

For each fixed w € B, the mapping A — (iF)\(w), 0) gives a curve in the normal
space to M at p = 0. This mapping will be used in construction of “ribs” of one
dimension higher than dimpM.

5. SPINNING ANALYTIC DISCS

Consider the holomorphic mapping ¢ = (v, z) of the unit disc D onto itself
given by

JE
(5.1) (v, z) = | Y—— .

z+1
1z+1 + 1

We note that the mapping 9 (1, z) is a conformal mapping of the unit disc D onto
Dy = D—[0,1), and ¢)(1,1) = 0. Moreover, (1, z) can be holomorphically extended
to a neighborhood of D\ {#£:}. Obviously also we have v)(v, z) = [)(1, 2)]”, therefore
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the image ¢ (v, D) can be considered as a v-fold covering of the unit disc. We denote
by S, the boundary of the image ¢ (v, D) (in the corresponding Riemann surface)
oriented counterclockwise. S, consists of the segment from 0 to 1, counted twice
with opposite orientations, and the boundary of the unit disc counted v-times with
orientation counterclockwise.

We prove the following lemma.

Lemma 5.1. Let H = H(¢) € CY(V) N C%D) with H(0) = 0, where V is a
newghborhood of 0 1n C. Then

27 16
(5.2) B ) go = L[ g [5—% — 5—} %df.

0 |€7'9 — 12 8y S,

Proof. First we note that the integral on the left hand side of (5.2) converges since
H(0) =0, ¢¥(r,1) =0, and %(J/, 1)=0.

The inverse of the map (v, z), considered from the Riemann surface onto the
unit disc, is

1+Z~<1+£%>
_ 1—¢320
28 =97 (v, &) = —i — 2
1— g e
1—¢2

(5.3)

_ 142i¢w ¢
1— 2w +¢v

The integral on the left-hand side of (5.2) can be rewritten as

df = -

|ei9_1|2 7 o |ei9_1|2 ett

/2" H(Y(v, em)) 1 [ H()(v, em)) de'?

L[ HE®:)

i Jor |z —1)%z

H(w2) |

- s1 (2—1)2

After the change of variables £ = (v, z), the last integral becomes

. H(&)  dz(§)
(5:4) / G- a ©
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Before we calculate the above integral, we would like to simplify the expression

1 d=(e)
(2(6) — 1 d

From the form of z(£) = (v, £) in (5.3), we have

B 4i¢ %
1 —2i¢% £

2(§) -1

and hence
de 202, Ew—(w
d¢ v [1—2ifz +£4)2

Consequently, we obtain

1 de(9)  Ferlew —gw] 1
(2(6) —1)* d¢ —42¢ 8ivé

ret]
Now coming back to the integral (5.4), we get

i s [ mOler e o

as we wanted to prove. [

Lemma 5.2. Let H = H({) € CY(V)NC°(D) and |H(¢)| < al(| for some constant
a, where V 1s a neighborhood of 0 in C. Then

27 H 26 1 2m ] 2
/ H(: ) 10 _/ H(e“g)dé)‘ < LZG_
0 27 Jo v

(5.5) e

In particular,

(5.6) b [ HW0) LT H(e') d6.

V—00 0 |€“9 — ]_|2 - 277 0

Proof. Using the equation from Lemma 5.1 the integral on the right-hand side of
(5.2) can be considered as the sum of three integrals: one over the segment from 0
to 1, the second over the same segment in the opposite direction (with a different
branch of the root), and the third is over the unit circle (counted v-times).
We parametrize the curve of the first integral by ¢ = ¢, where 0 < ¢ < 1. So the

first integral becomes

I 1 a7l

~ [ HE) [t % —t%} - dt.

8v Jo t
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We note that this integral converges because H(0) = 0 and H is C'" in a neighbor-
hood of 0. Moreover, if |H(¢)| < a|(|, we have

I 1 !
— || H@[t » —tw]=dt| < i/ [t~ 2% — ¢77]d¢
8v 0 8v 0
(5.7) _ 1
82 (1 - 5,)(1+ 35)
< @
~ 4%
For the second integral, we parametrize the curve by ¢ = te?™, where t is
running from 1 to 0. The second integral becomes
1 f° . . a1 I L a1
— | H(t {t 2T T o — (2T —u} —dt=_— [ H(t [t__v—t_v} — dt
& [ #w [ enF] La = o [ H0 [0 -]

so we see that the first two integrals are the same.
To compute the third integral, we parametrize the remaining part of the bound-
ary by
€= ¢’ where 0 <60 <2,

So the third integral becomes

(5.8)
: 2vm ) ; ; 1 2vm ) 9
L H(ew) {e_£ —e%} df = — H(e’e)sin—de
8v /o 4v [/, 2v
v—=1 L2(j+1)7 v—1 Lon .
1 . g 1 . 6+ 2
= —Z H(ele)sin—dez — H(ew)sin + 2w dé
4y £ Qv 4y 0 v

1 v 1 ] 27 9 1 v 1 7 2m 9
U 19y . AL 160
=0 ]E y cos — /0 H(e )sm o do + o ]E y sin — /0 H(e )cos 2, do

The first sum on the very right-hand side of (5.8) converges to 0. To see this,
we have a sequence of estimates:

1 ' 6 1 [ . 6
—Zcos]—ﬂ- H(e’e)sm—de =|— H(ele)sin—de
4v s v Jo 2v v /o 2v

59 2w )
4v? J,
w2a
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Now we find the limit of the second sum on the very right-hand side of (5.8) as
v — oo. First we estimate

e P L 6 1S e
- in 2" H{(e? 4o — — in 2 H(c%)do
sin (e'”) cos 5, » j_zosm » /0 (')

4v = v Jo
v—1 . 27 - -
1 : 0
=|— sin 17 H(ele) cos — — 1| df
4v — v Jo | 2v |
1 &2 B [ 6]
= |— sin 2~ H( 19) —2sin? —| d#f
dv v Jo | 4v
_ 1 v—1 T 27r|H( 0 | 20 p
(5.10) ~ 4y = Y 0 ) 1612
1 g [T oo T
< — qln—/ |H(e")| = df
4y = v Jo 20?2
7_‘_2 v—1 2m
117
< [
j=070
71'2 2w )
< [ |H(?)|df
8v? J,
< w3a
~ 4?2

From the above estimates we have that

v—1 . 27 27 v—I1 .
. 1 . T 0 0 0 . 1 . T
uli)n;lo ™ ]Ezo sin — /0 H(e'") cos o doy = ; H(e")do uli>nolo ™ ]Ezo sin —

But the last limit can be easily calculated:

1
o2
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Now we calculate how fast the last sequence converges:

(5.11) 1 osimp 1) |1 gt 1|1
. T - T2 T4 —
4v1—cosZ 27 v Lz LTy 27 v?

Combining (5.7) and (5.9) - (5.11), we obtain

T H@G ) o1 [

0 |€i6 — 1|2 B 27T 0

and consequently (5.5). O

6. CONSTRUCTION OF A RIB

In this section we assume that a manifold M is given as in (2.1) with the function
h of class C®. For each point p € M we make a change of coordinates by using ,
as in (2.2) and then consider the manifold Q,M as in (2.4).

We recall that (1, z) defined in (5.1) can be holomorphically extended to a
neighborhood of D\ {#i} in C. At 4= the function ¥(1, z) is of class C'z. Moreover,
the half circle, which corresponds to —7 < argz < 7 is mapped onto the segment
[0, 1] twice. The same is true for ¥ (v,z) = [¢(1,2)]”. From the form of ¢ (v, z) we
see that

B dy(1,1) d*p(1,1)
¢(1a1)_0a T_Oa T#Oa
(6.1)
dy(v,z) _ d v_ vt dP(1,2)
dz - %[77&(1”2)] - I/[LZ)(I,Z)] ! dz :
Now we consider the function
1= X2 27 b2 (w(y(v, e'?)) — w(t(v, A
(6.2) Fx(v,p,w) = o /0 (w(( |ei0>>_ /\|2( ( >>>d9.

Proposition 6.1. Let w = w(¢) € [O(D) N C°(D)]™ with w(0) = 0 and |w|s
sufficiently small. Then the function (p,\) — Fx(v,p,w) is C' on M x [0, 1] and
C? on M x [0,1). Moreover, there is a constant C, which depends on |h|3 only,
such that for v =1,2,... we have

1—)\? 2T P (w(ih (v, et
(6.3) Fx(v,p,w) = o [/() (|e(i2b(_’1|2 )>)d9 + Rx(v,p,w) |,

where

(6.4) |Rx(v, p,w)| < Clw|?, (1 —))log

1
S o<
—x  (g=A<D

Proof. The property that the mapping (p,\) — F\(v,p,w) is of class C? on
M x [0, 1) immediately follows from the formula (6.2). If A\ approaches 1, then C'
dependence follows from (6.3) and from the estimate (6.4).
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Now we prove the formula (6.3) with the estimate (6.4). Throughout the proof,
C1,C5, ... denote constants which depend on |h|3. To simplify the notation, we
drop the dependence on p.

We consider

)= /2” h(w(¥(v,e?)) —w ()

) A :
(6.5) e(v, ) e — A2 ’

and use a ' to denote —.

oA
For 0 < A < 1, the derivative ¢'(v, \) is

(6.6) ¢ (1)) = _/0 " hu(w( (v, €)) —wﬁiﬁ(i’ i?g)w’(zb(u, MY 4y

[ ) el T )T )
0 e — A2

N / P, ) = w(p(r, V) (A = = =)

leif — A4
To estimate |p'(v, A)| as A approaches 1, we need estimates of all expressions in
the integrand.

In what follows A will be taken sufficiently close to 1.
We start with an estimate for |w’(¢ (v, A)) ¥’ (v, A)|. We have

(6.7) |w! (¥ (v, A))" (v, N)] = |[w (v, V))]'] < Ct|w]se,
by the Cauchy-Schwarz estimate which may be used because (v, z) has a holo-
morphic extension to a neighborhood of D\ {#:} in C.

The next estimate is of |, (w(¢(v, ew)) —w(y(v, N)))|. After applying the Taylor

formula, we use the form of derivatives for ¢ with respect to z (6.1) and again the
Cauchy-Schwarz estimate:

[huw(w( (v, ) = w(i(r,\)] <
< [ (0) (w(th (v, €)= w(w (v, X)) +
+ huw(0) (@( (v ) = W (v, )] + Ow(p(v, €)= w(tb(v, A) )
< Colw(¥(v,e”)) = w(th(v, N))] < Calwlos e = A|.
So we have

(6.8) s (w (1 (v, €¥%)) = w(tb(w, )] < Cslw]oo [ = Al
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Next, we estimate |h(w(¥(v,e?)) — w(p(v,N)))|. Using the same arguments as
in the proof of (6.8), we have

[B(w(p(, %)) = w(ip(w, \)))] =

< (75|w|?>o|e“9 — /\|2.

So we have

(6.9 (0§, ) — (v, W] < Colol, |6 - AP
And finally we need an estimate of (2\ — e’ — e7%%) /| — A\|*. We have
2\ — 18 _—if 9
(6.10) [22 = e — e

. < — .
|619_/\|4 — |619_/\|3
Now we can estimate ¢'(v, \) from (6.6). Combining (6.7) - (6.10), we obtain
(v, M) <

2 |w|oo|w|oo|ei9_/\| 27 |w|2 |e"’9—/\|2
< . 0 =
_CG/O |e“9_/\|2 d9+07/0 |e“9—/\|3 dé

2m
1
= (Cs + C wio/ ——_d6.
( )| | o |€le _ A|
To complete the proof of the proposition, we should consider the last integral
just above. Using the elementary estimates

. 62 62

e — A2 =1—2\cosf+ N\ > 1—2/\(1—§)+/\2 > (1 - \)? + 16

for—7r§9§7rand/\>i,wehave

1 1
€ = AL T [(1 =02+ (D2
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Consequently, we obtain

/2”71 d9—2/ﬂ71 i <
0 |€m—/\| B 0 |€m—/\| N

™ 1
< 2/0 T 8 < —Cxlog(1 — ).

So we obtained

<A< 1.

| =

/(1 )] < ~CalwlZlog(1 = A)  for

Consequently,

1
o(n, \) — o(1,1)] < /A ()| dt
1
< —Cg|w|io/ log(1 —t)dt < Ciolw]?, (N —1)log(1 — ).
A

The proposition is proved. [

For each v we define a mapping G(v, A\, p,w) by

G(v,): [0,1] x M x B — N(M)

(6.11) I
G(v, \,p,w) = Q, (0 + iF\(v,p,w), 0).

We should make it clear that actually the mapping G is defined for p from a
neighborhood of the origin. We hope it does not lead to a confusion and keeps the
notation simpler.

Corollary 6.2. (a) If |w|s is sufficiently small, then the mapping [0, 1] x M >
(\,p) = G(v,\,p,w) is of class C".
(b) If |w|s is sufficiently small, then M > p — G(v, A\, p,w) has mazimal rank.
(¢) If |w|s is sufficiently small, foh h(w(e'®))df # 0, and v is sufficiently large,
then the mapping [0, 1] x M > (X, p) — G(v, A\, p,w) has mazimal rank for X close
to 1.

Proof of Corollary 6.2. The property that the map (\,p) — G(v,\,p,w) is of
class C'! follows immediately from Proposition 6.1. If w = 0, then G(v, \, p,w) = p,
consequently the rank of the map p — G(v, A, p, w) is maximal if |w]|s is sufficiently
small.

The derivative of G(v, A, p,w) with respect to A at A = 1 is, up to a nonzero
T %}{r;)))d& Using Lemma 5.2, this integral converges to the

2
constant, fo e

integral fo% hP(w(e'?)) df, which is nonzero if p is sufficiently close to the origin.
This gives (c). O

The following corollary is an immediate consequence of Corollary 6.2.
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Corollary 6.3. If |w|s is sufficiently small, v is sufficiently large, and if the
integral foh h(w(e®))dd # 0, then the image of the map [0, 1] x M > (\,p) —
G(v,\,p,w) € N(M) is a C' submanifold MY of C**™ of real dimension equal to
dimpM + 1.

Theorem 6.4 (existence of a rib). For any v € N sufficiently large and w € B
there exists a C1 manifold MY with the following properties:

(1) dimpM}’ = dimpM + 1;

(1) U C OM, where U is a neighborhood of 0 in M;

(iii) The distance between the two following vectors which lie in NyM, p € M, namely

1 27T .
Q' (i— [ K 9)) do
» (127r/0 (w(e )) ,0>

and the vector tangent to MY NN, (M)

o i

p |ei9_1|2

the vector

18 less than const:—2|w|go. In particular, if v — oo, then the angle between these
two vectors can be made arbitrarily small.

Proof of Theorem 6.4. Actually the manifold M}’ is constructed in Corollary 6.3,
and the properties (i) and (ii) are obvious from the construction and from Corollary
6.2.

The estimate of the distance between the tangent vectors immediately follows
from Lemma 5.2. Namely we have |h?(w(¢))| < const|w|,|¢| and we apply (5.5)
for a = const|w|?, . We obtain

/ (w(?v/)(V;e >)>(]9 - hp(U)(ew))de‘ < Ocons |w|2
0

let? — 1]2 27 Jo v? oo

7. EXTENSION OF CR FUNCTIONS TO A RIB

For eachw € Bandv = 1,2,..., Theorem 6.4 gives a rib with edge M. From the
construction, the rib consists of some points of a family of analytic discs gx(v, p, () =
(za(vyp, (), w((v, () —w(y(v, A))), namely the points are given in terms of Fy. Of
course z and gy depend on the analytic disc w(-), but in order not to complicate the
notation, we do not include w there. In §6 we discussed the behavior of Sz (v, p, ()
at some points. For ( = ¢ we have Szy(v, p, ') = hP(w (¢ (v, €'?)) — w(w(v, \)))
and the |- | norm of this function can be controlled by const |w|%,. However,
to have a control over the size of the analytic discs gx, we need an estimate of
Rza(v,p,-). We prove the following lemma.

Lemma 7.1. There s a constant C' such that for any o, 0 < o < 1, we have the
estimate

(7.1) PP (w((v;)]g < Clw|g v*
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Proof. We have the following sequence of inequalities (Cy,Cy, ... are constants):

[P (w($(, Q) = hP(w((v,0)))]

PP (w (i (v, )|y < Cilw]Z, + sup

¢,neSt |C—7]|%

< il + Colht, (w((w, D)oo sup 12LEEO)) = (0]
¢mes? ¢ —nlz
< Cylw|% + Cslw|oe sup [w(® (¥, <) —uy(vw)ﬂ
¢mes! |C_77|2
(¥ (v,¢)) — w(p(vsm)] [ (v Q) = (v.n)|®
<C w2 C W|ae SU S
< Chlwli, + Cslw] C,ne%l (v, ) — (v, )| e
< CylwlZ + Cslwlso|w]a sup -|¢(U’C>_¢1(V’77>|}a
¢,meSt L |C—77|§
— Cyfwl% + Calwlwlwla sup WLW—w(l,n)m]“
- ¢,mest L |C—77|%

[e)

<Chlw|?, 4 Cslw]oso]w]a sup {[d)(l, Ol = [»(1,n)]] i (1, )| (1, )P~

¢neSt |C—77|% j=0
< Cilwl, + Calwlo|wla v®

< C5|w|i ve

The lemma is proved. [J
Since Rzx(v,p, ) = =ThP(w(y (v, )) —w(y(v, \))), therefore we have the follow-
ing
Corollary 7.2. There is a constant C' such that
(72) |'SRZ)\(V7P7'>|Q < CHTH% |w|i ve

5 =

Theorem 7.3 (Extension of CR functions to a rib). Let M be given as in
(2.1) and is of class C®. Then any CR function defined on M (globally, not locally)
can be CR extended to the rib M)’ constructed in Theorem 6.4.

Proof. 1t is enough to show that any CR function defined globally on M can be
uniformly approximated by entire functions. The manifold M is given asin (2.1). In
the proof we assume that |[Rw]|| <30, ||Sw|| < 3§, where d > 0 is sufficiently small

and || - || means the max norm of coordinates. More precisely, for any CR function
defined on M and for any compact set K C {(z,w) € M | |[Rw| < ¢, ||Sw| <
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§} C M C C*™ there is a sequence of entire functions F,: C¥+" — C such that F),
converges to f uniformly on K. Then the sequence will converge on the analytic
discs constructed in §6 and will give the extension of f to the rib constructed in
Theorem 6.4. The construction of such sequence F), is the same as in the paper
of Baouendi-Treves [BT| and also in [DG1]. In these two mentioned papers, the
approximation is local, however when applied to the manifold M considered in this
paper, the same formulas work semiglobally. Actually the formula in [DG1] for
the approximation is invariant and because of that can be considered also as a
global formula under some additional assumptions, which actually are satisfied in
the present paper. We are not going to repeat all the calculations given in [BT]
and [DG1], only we show the crucial steps and give precise references where to find
complete computations.
We counsider a family of totally real submanifolds N" of M that are given by

(7.3)

N ={(s +ih(t +in),t+in) | s=(s1,...,s%) € RF,
t=(t1,...,tn) € R", ||| < 35}, In|l < 36,
where 6 > 0 is sufficiently small. Here ||| = max |¢;] in the corresponding space.

Let ¢ be a smooth real-valued function with compact support defined on M. More
precisely the properties of the function ¢ will be given later. Let f be any CR
function defined on M. We consider the following sequence of entire functions

Fu(-5m): CH" — C
(7.4)

k+n
Feon) = (L2) [ slesol-sliz) - i) dp

where p = (p1,... ,pk+n), dp = dp1 A ... A dpgtn, and [£]* denotes £F + ...+ §i+n
for £ € CF*™, Using the parametrization of N7 from (7.3), the integral in (7.4) can
be written as:

(7.5) Fu(z,w,n) =
k+n
—(Le) [ P em o) ~ (st il in) o+ i)
X f(s+ih(t + ), t 4+ in)A(s,t)ds dt,

where A(s,t) is the Jacobian of the parametrization of N7, i.e., A(s,t) =

det (8(8+ih((9t(rl;)’)’t+in)>. Here the function ¢ is smooth, depends on (s,t) only, has

compact support which is contained in {(s,t) | ||t|| < 346}, its values are in the
interval [0, 1], and the function is 1 on the set {(s,t) | ||s|| < R+ 1, ||t]| <26}. The
number R is large enough such that, for the compact set chosen at the beginning of
the proof, we have K NN, ||n|| < 26, is contained in {(s+th(t+1in),t+in) | ||s|| <
R, 4] < 9).

Using the arguments from [BT, p. 396], we have

(7.6) lim F,(z 4 th(u+1in), u+in; n) = f(z + th(u+1in), u + in)

n—00
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for ||z|| < R, ||u]| < 4, and is uniform on this set. To see that, it is enough to make

the substitution (s,t) — (z — 5, u— ﬁ) in the integral (7.5), and, at the limit, the
integral becomes

()" Lo et}

X Az, u)f(z 4+ th(u+1in),u +in) =

= f(z +ih(u+in),u +in),

where A(z,u) = det {a(x“hg(t;fg)’u“n) , l.e., it is the determinant of the matrix

from the exponent of the exponential function.
In particular, the limit (7.6) holds for n = 0. Using again the arguments of [BT,
p. 397] or [DG1], we have

(T7)  lim Byl + ib(u+ in), u+ in: n) = Fu(e + ih(u), u; 0)] = 0
n—roc

uniformly with respect to ||z|| < R, ||u|| < é and ||n]| < . To give a rough argument
to prove (7.7) (for detailed calculations the reader is refered to [BT, p. 395 - 397]),
the difference under the limit in (7.7) is given by an integral of the form

(7.8)

k+n
<%> / / exp{— [+ i(u+i€), uti€) — (s+ih(t), )]} A(s,t,€) ds di d€,
[0, n] RE+n

where A(s,t,£) = 0 for ||s|| < R+ 1, ||t]] < 24, ||§|| < 6, and [0, n] means the
straight segment joining 0 with n. Moreover, the function A has compact support.
Consequently, in the integral it is enough to integrate over |[s|| > R+ 1, 2§ < ||t]| <
30. If ||z|| < R, ||u]| <4, ||n|| <4, we have

Rl(e + ih(u + i€), w + i€) — (s + ih(t), )] = %

if § is small enough (it can be chosen once at the beginning, depending on k). Since
the function A(s,t,£) has compact support, the sequence in (7.8) converges to 0

faster than const e=3#". The theorem is proved. [

8. EXTENSION OF CR FUNCTIONS TO A WEDGE

In this section we consider a CR submanifold in C¥*" of codimension k given

like in (2.1). Let B and Bs be as in (3.4). We consider the data (0,w(-)), w € B,
and solve the Bishop equation (3.1), and get (z(+),w(-)) with z(0) = 0. We denote
the mean operator by

1 2w .
(8.1) E(w) = 2—/ h(w(ew))de, E = (Ey,... ,E),
T Jo
which is a vector-valued function defined on B. Actually (1E(w), 0) is a vector in

NoM. We use the notation E(p,w) if h is replaced by h?.

We prove the following theorem.
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Theorem 8.1 (Extension of CR functions to a wedge). Assume that M is
as in (2.1) and of class C®, and suppose that there are analytic discs w',... w!
with | - |o norms sufficiently small and such that the vectors E(w'),... , E(w')
are R-linearly independent. Then any CR function defined globally on M can be
CR exstended (in a neighborhood of the origin) to a (curved) wedge spanned by
E(wY),... ,E(wh).

More precisely, any CR function defined on M can be CR extended to a wedge

spanned by the ribs M = MY, j=1,...,1, v =1,2,..., which were constructed
in §6. If v — oo, then the angle between each rib M} and E(w?) can be made
arbitrarily small. In particular, if the vectors E(w'),... , E(w') span an open cone

(in the normal space NoM ), then the extension is holomorphic.

Proof. The vectors E(w'),... , E(w') represent the centers of the lifted discs. From
Lemma 5.2, we have

27 hp / 10 )
lim Q" [z/o Md&, 0} = QT (B(p,w’)),  j=1,...,1,

Bt leif — 1|2 P

uniformly with respect to p. For any ¢ > 0 we can find such v that

2r pp i0 |
‘Q;l {i/o %dé’, 0] —Q;l(E(p’w]»‘ <e, =11

This actually easily follows from (5.5). We fix such a v.

For this fixed v we consider the mapping G(\, p,w?) = G(v, A\, p,w?) defined
in (6.11). The image of this mapping is a C' manifold M; with edge M and of
real dimension dimpM + 1. From §7 we know that CR functions on M can be
CR extended to M;. For a fixed p, NyM N M; is a curve. Without any loss of
generality, and to simplify the arguments, we can assume that p = 0. This curve
can be parametrized by

0,1] 3t — m/(¢) = (mI(t),... ,mi(¢), w(0)=0, j=1,...,1

The curve is of class C? on (0, 1] and C*! on [0, 1]. For each j = 1,... ,] we denote
by a; a vector in No(M) that is tangent to M at the origin.

To get an extension to a wedge (we follow the argument of [A, p. 114]), we divide
the unit circle S' into [ equal arcs 4;, j = 1,...,1. Let ¢; be a fixed C™ function
defined on S' such that ¢; € C§°(A4;) and ¢; =0 on S'\ 4;, and $;(0) = 1, where
©;(0) is the harmonic extension of ¢; onto the disc.

We consider the following mapping

S'3 e — ml(tipi(e) + ...+ ml(tipi(e)) € | M.
J

We note that this mapping is of class C? and can be extended to an analytic disc
with boundary on U;M;. Since the value at 0 of the real parts of the analytic disc
can be assigned arbitrarily (the manifold is rigid), we are interested at the value at
0 of the imaginary parts. The values of the centers of the imaginary parts for ¢; > 0
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fill out the wedge spanned by the ribs Mj. To see this, it is enough to consider the
first approximation of the ribs, namely by the “straight” ribs ¢ — a,t. Then the
imaginary parts of the centers of lifted discs are

1 2 l
Zt]-a]-/ pi(e?)db =) " tjaj,
j=1 v

i=1

which gives the simplex spanned by the vectors ay,... ,q.
The theorem is proved. [

9. EXTENSION TO A FULL NEIGHBORHOOD

In this section we prove the following theorem.

Theorem 9.1 (Extension of CR functions to a full neighborhood). Let M
be as in (2.1) and of class C', and assume that for any vector n = (ny,... ,ng)
there is an analytic disc w € Bs (8 is sufficiently small) such that n- E(0,w) =
n1E1(0,w)+...+nkEx(0,w) > 0 in the normal space NoM. Then any CR function
defined globally on M can be holomorphically extended to a full neighborhood of
p=0 in Ckt",

Proof. Let S = {E(0;w) | w € Bs} C NoM and let ch(S) be the convex hull of S
in No(M). We note that the interior Int(ch(S)) contains p = 0 because otherwise
we get a contradiction with the assumptions of the theorem. Consequently, there
are analytic discs w', ... ,w!, I > k + 1, such that the smallest convex set spanned

by the vectors
E(wl) = E(O,wl), e ,E(wl) = E(O,wl)

contains the origin in its interior, which is taken in NoM.

To complete the proof of the theorem, we apply Theorem 8.1 to the ribs which

are determined by the analytic discs w',... ,w!, and v sufficiently large.

The theorem is proved. [
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