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Introduction

Given an analytic space X, the Douady space D(X) parametrizes all compact an-
alytic subspaces of X. In his 1965’s thesis, Douady constructed on it a natural complex
structure. The relative version of the Douady space is due to Pourcin. When X is projective,
Douady space coincides with Hilbert scheme and this construction is due to Grothendieck.
We can also define Douady spaces variants which parametrize some special subspaces,
e.g. the space D' (X) (resp. D),(X)) of all connected and compact submanifolds of X (resp.
of the same dimension ). We can also embed the morphism spaces in some suitable
Douady spaces.

On the other hand, Kobayashi introduced in 1967 an intrinsic pseudo-distance dx
on every analytic space X. If dx is a distance, X is called hyperbolic. It is called Brody-
hyperbolic if it doesn’t contain any non-constant holomorphic entire curve f : C — X.
Brody-hyperbolicity is weaker than Kobayashi hyperbolicity. The two notions coincide on
compact analytic spaces. Moreover, Eisenman introduced on every analytic space X of di-
mension 7 a k-dimensional measure (1 < k < n) generalizing the Kobayashi metric. X is
said to be k-measure hyperbolic if the Eisenman k-measure has positive volume over all k-
dimensional analytic subspaces of X. It is strongly k-measure hyperbolic if the Eisenman
k-measure has locally a lower bound.

In this context, the hyperbolicity of Douady spaces looks as a natural problem. The
solution to this problem is negative in general even if X itself is hyperbolic. We will give
two counter-examples for this. However, some interesting subspaces of the Douady space
seem to be hyperbolic (at least for Brody-hyperbolicity). The first main result of this paper
is the Brody-hyperbolicity of the Douady subspace D (X) parametrizing all subspaces of
X which are algebraic curves. Explicitly, we have

Theorem 3.4. — Let X be a 2-measure hyperbolic analytic space, then D} (X) is
Brody-hyperbolic.



The proof of this theorem is based on the hyperbolicity of the Teichmiiller space. In
fact, we will construct for every g > 1, a holomorphic mapping W, : [N){,g(X) — Tg from
the universal covering space of the Douady space of genus g algebraic curves embedded
in X into the Torelli space Té’, (which admits the Teichmiiller space Ty as universal covering
space). When X is 2-measure hyperbolic, the fibres of W are all Brody-hyperbolic. So
we can lift the property of Brody-hyperbolicity from Ty to 5{,g (X) and we conclude for
D ¢ (X) by covering. Note that for the special cases g = 0 and g = 1, Dj 4,(X) is discreet. It
should be also noted that the Brody-hyperbolicity of the fibres of W is deduced from the
next general result on locally trivial analytic families which might have other applications:

Theorem 2.3. — LetX = (),f,S) a locally trivial analytic family of k-dimensional
analytic subspaces of an analytic space X. Suppose X (k+1)-measure hyperbolic, then S
is Brody-hyperbolic.

The techniques used to prove the theorem 3.4 (more precisely the case of the genus
g = 1) can be generalized to study the subspace D} (X) of the Douady space D(X) of
a projective analytic space X, which parametrizes all d-dimensional connected compact
submanifolds of X being complex tori (so abelian varieties). Here we use the Siegel moduli
space in place of Torelli space in the case of curves. We obtain the following theorem:

Theorem 4.2. — Let X be a projective analytic space. Suppose that X is (d+1)-
measure hyperbolic, then D] (X) is discreet.

We also prove the hyperbolicity of certain special subspaces of D} (X) and D} (X)
when X is non singular but without any condition of hyperbolicity on it.

The moduli space of holomorphic mappings.

Let X and Y be analytic spaces. X is supposed to be compact. Then the set
Hol(X,Y) of all holomorphic mappings f : X — Y carries a natural complex structure
induced by the one on Douady space D(X X Y). In fact, Hol(X,Y) can be realized as a
Zariski open subspace of D(X x Y) by identifying every mapping f : X — Y with its
graph [ f which is an analytic subspace of X x Y isomorphic to X and so it is compact.

When Y is (compact) hyperbolic, then Hol(X,Y) is (compact) hyperbolic. This is
a theorem of Kobayashi. More generally, if we assume Y strongly k-measure hyperbolic,
then we obtain the same property on Hol(X,Y) for strongly measure hyperbolic:

Theorem 5.3. — Let X be a strongly measure hyperbolic compact analytic space
and Y a strongly k-measure hyperbolic analytic space. Then Hol(X,Y) is also strongly k-
measure hyperbolic.



This theorem is a corollary of a more general result on locally trivial analytic fami-
lies. Namely:

Theorem 2.4. — Let X an analytic space and X = (), m,S) a locally trivial analytic
family of k-dimensional compact complex subspaces of X. Suppose X strongly (k+p)-
measure hyperbolic and the fibres of the family are measure hyperbolic. Then S is strongly
p-measure hyperbolic.

In particular, when p = 1, Sis then hyperbolic. The proof of this theorem is based
on an estimation on the Eisenman p-measure of S, the Eisenman-Kobayashi measure of
one fibre and the Eisenman (k+ p)-measure of X.

Next we consider the open subspace Holy(X,Y) C Hol(X,Y) of holomorphic map-
pings f : X — Y such thatrank f > k. We obtain the following:

Theorem 5.2. — Let X a compact analytic space and Y an analytic space. Suppose
Y (k+1)-measure hyperbolic, then Holi(X,Y ) is Brody-hyperbolic.

In particular, when Y is compact and of dimension k—1, we conclude that Aut(Y)
is Brody-hyperbolic and then discreet because it is a complex Lie group. So, we find again
a theorem of Kobayashi (see [K2], theorem 9.7).

I am grateful to express my sincere gratitude to Professor S. Kosarew for suggestions
and useful discussions.

1. Preliminaries and examples

1.1. — We understand every analytic space to be complex, Hausdorff and of finite
dimension. The existence of Douady spaces can be formulated as follows:

Theorem 1.1 (Douady [D]). — Let X an analytic space. Then there exists an ana-
Iytic space D(X) and a subspace R — D(X) x X such that:
(a) R is flat over D(X) and pr, | is proper.

(b) If S is an analytic space, Z < S X X a subspace having the properties stated in

(a), then there exists an uniquemap f : S — D(X) suchthatZ ~ S X R.
D(X)

The analytic space D(X) parametrizes compact subspaces of X and is called the
Douady space of X. R is called the universal family over D(X).
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We have to consider some variants of D(X) realized as open subspaces of it (see
Grothendieck [Gr], IX, Corollaire 1.2). Namely, we define:

1) the subspace D’ (X) parametrizing compact connected complex submanifolds
of X;

2) the subspace D), (X) of D'(X) parametrizing submanifolds of the same dimen-

sion m.

In particular, D} (X) parametrizes submanifolds of X which are algebraic curves. It
is called Douady space of embedded curves in X and can be written as follows:

Dy (x) = [ Dig(x)

§20

where D] ,(X) is the subspace of D; (X) parametrizing genus g curves in X.

1.2. — We remind the definition of the Eisenman measures. First, let X be an ana-
lytic space of dimension 7, p a regular point of X, T, X the holomorphic tangent space of X

at p; /k\ TpX is the k-th exterior power of T, X; D’;X is the set of decomposable elements in
/k\ TpX. 1f (, ) is a Hermitian metric on 7}, X, then it can be extended to a Hermitian metric
on /k\ T, X by putting

(a,B) = det{(v;w;)}

wherex = 1y A--- Avgand B = uy A--- A wg from D’;X and extending this definition

k k
by linearity to arbitrary elements of A\ T,X. Let ||y|| be the Hermitian metric on A TBF
(where BF is the unit ball in C*) generated by the Bergman metric, and let 0 be the origin
in BF. Then (cf. Graham-Wu [G-W]):

Definition 1.2. — For every o € D’;X (1 < k < n) the intrinsic Eisenman k-
measure of o is Ef (p,x) = inf {||y||/y € D¥B* and there exists a holomorphic mapping
f: B¥ = X with f(0) = pand f,(y) = «}.

These measures can be also defined in the following way: Ef(p,&) = inf {R=2k/
there exists a holomorphic mapping f : B* — X with f(0) = p and f, (8571 Ao A
aaTk(o)) = R**a}.
Observe that Ey is just the square of the Kobayashi-Royden infinitesimal metric
(cf. Royden [R1]). In the following, we make a trivial but important observation; it is a
consequence of the triviality of Eé :



Proposition 1.2. — Let X be a n-dimensional analytic space and Y a k-measure
hyperbolic analytic space where k < n+1, is an integer. Then, every holomorphic map
F:C x X — Y hasrankless than k i.e.rank F < k—1.

ExampLE 1.3. — Let X and Y analytic spaces of dimensions 7 and m respectively.
Suppose that X is hyperbolic and Y is strongly measure hyperbolic but not hyperbolic.
Then X X Y is strongly k-measure hyperbolic for every k > m-+1 (see [G-W]). In this
way, we can construct analytic spaces which are k-measure hyperbolic for k neither 1 nor
the top dimension. For instance, B” X F(d) is strongly (n+1)-measure hyperbolic of
dimension m+ n, where B is the unit ball in C”*, m > 1, and F(d) is the Fermat variety of
degree d > n+2inP""(C), n > 2.

1.3. — We now give two examples showing that the Douady space D(X) of an an-
alytic space X is not in general hyperbolic even if X itself is hyperbolic.

ExampLE 1.4. — Let C be a compact Riemann surface of genus g > 2, and let
j: C — J(C) be a fixed Abel-Jacobi embedding of C into its Jacobian variety J(C) =
Pic(C). Let k be a positive integer. The k-th symmetric power Sym*(C) is a connected
complex manifold and can be identified with the space of effective divisors of degree k on
C. So it can be considered as a connected component of the Douady space D(C) of C. Let

@i : SymF(C) — Jac(C)

be the k-th Abel-Jacobi map defined by (D) = j(p1) + -+ + j(px) for D = p; + ---
+pr € SymF(C). Then (see [G-HI, p. 228):
i) @ is holomorphic.
i) @7 (pr(D)) = |D| = P(H*(C,0([D)]))) = P4mIPl where D is an effective di-
visor of degree k of C and |D| the set of effective divisors of C, which are linearly
equivalent to D.

iii) If k > 2g—2, then @ is an algebraic projective bundle (see [Ma]).

From iii), we conclude that Sym* (C) can't be hyperbolic for k > 2g—2 because of
the non-hyperbolicity of Jac(C) and of the @y fibres.

However, the subspace of Symk(C) parametrizing the 0-folds of C is hyperbolic.
Indeed, consider the natural projection
k fois

ke ro o k
M : C*:= C x--- Xx C — Sym"(C),
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then 11y is a branched covering and the branch locus is the set D :=  |J  D;; where
1<i#j<k

Dij = {(pr,--..px) € Cck/p; = pi} C C*. Moreover, (D) is the set of elements
of Symk(C) corresponding to 0-dimensional analytic subspaces of C which are singular.
Now, as C¥ . D is hyperbolic and rr| ck- p is an unbranched covering, then Symk (C) ~
(D) is hyperbolic.

ExampLE 1.5. — Let X be an analytic space. We recall that a Cartier divisor on X
is an analytic subspace of X whose sheaf of ideals is locally generated by a single element
which is not a zero divisor.

Let Div(X) = {d € D(X)/Y, is a Cartier divisor on X}, where Yy is the subspace
of X corresponding to d. Then, Div(X) is Zariski open in D(X), and is union of D(X)
connected components when X is non singular (see Fujiki [Fu]). Let’s define the map:
F:Div(X) — Pic(X)
d +—— associated line bundle.
Then F is projective and the fibre over L € Pic(X) is identified with the projective space
P(I"(X,L)), where I" (X,L) is the set of global sections of the sheaf associated to L. Conse-
quently, Div(X) can’t be hyperbolic even if X is so.

2. Locally trivial analytic families

2.1. — We will first recall a sufficient condition for a family to be locally trivial. It
is a generalization to Grauert-Fischer theorem [G-F] (see Bingener [Bin]):

Theorem 2.1. — Let X := ()),f,S) an analytic family of compact analytic spaces.
Suppose that S is reduced and that the fibres of f are all isomorphic to a fixed analytic
space Y,. Then the family X is locally trivial.

Moreover, if the base S is a Stein space and is contractible, then the local triviality of
any family over S is equivalent to global triviality by the next consequence of the Grauert-
Oka principle:

Proposition 2.2. — Let X = (),f,S) a locally trivial analytic family of compact
analytic spaces. Suppose that S is a contractible Stein space. Then X is trivial,

Proof. — Let Y, the fibre of f over a point 0 € S. Then the space Isomg(),S X
Yp) of S-isomorphisms from ) onto S X Yy is defined as a relative space over S (in fact it
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is a subspace of the Douady space Ds() X S X Yp)). In our case Isomg(),S X Yp) is a
principal holomorphic fibre bundle over S. The structure group is the complex Lie group
Aut(Yy) of automorphisms of Y,. But S is Stein, so by Grauert theorem (see for instance
Cartan [C1], theorems A and B), Isomg(),S X Yp) is holomorphically trivial if and only
if it is topologically trivial. But the last property is verified because of the contractibility
of S (see Steenrod [S], corollary 11.6, p. 53). Then we conclude that Isoms(y,S X Yo) is
holomorphically trivial. This implies that the morphism Isomg(),S x Y;) — S has a
holomorphic section, which means that there exists an S-isomorphism ) ~ S X Y;. In
other words, ) is trivial over S, as desired. [ ]

2.2, — Consider locally trivial analytic families of compact analytic subspaces of
an analytic space X. Our goal is to study the hyperbolicity of the basis. We obtain the
following theorem for Brody-hyperbolicity:

Theorem 2.3. — LetX = (),f,S) alocally trivial analytic family of k-dimensional
compact analytic subspaces of an analytic space X. Suppose X (k+1)-measure hyperbolic.
Then S is Brody hyperbolic.

Proof. — 1If S is not Brody-hyperbolic, then it exists a non-constant holomophic

map

g=C—S

If we make the base-change corresponding to g : C — S to the family X. We obtain a new

family X’ = (),p,C) where )’ = C x Yandp : )’ — C the projection. X’ is also locally
S

trivial and because C is Stein and contractible then X’ is trivial by proposition 2.2. Let Y

be any fibre of p, then it exists an isomorphism )’ ~ C x Y and we obtain the following

cartesian diagram

CxYy — Y < 8§xX
nl O fl O/l
C ? S X

Letsnote F : C X Y — X the mapping induced by this diagram. As g is non-
constant, F must be of a rank greater than k (rank F > k+1). But X is (k+1)-measure
hyperbolic, so by the proposition 1.2. This leads to a contradiction. Consequently, g is
constant and S is Brody-hyperbolic.

2.3. — Inthis section, We will prove the following theorem:
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Theorem 2.4. — Let X be an analytic space and X = (Y,m,S) a locally trivial an-
alytic family of k-dimensional compact analytic subspaces of X. Suppose X is strongly
(k+p)-measure hyperbolic and the fibres of Tt are measure hyperbolic. Then S is strongly
p-measure hyperbolic.

In particular, when p = 1, S is hyperbolic.

The proofis based on an estimation on Eisenman p-measure of S. To show this, let
first the following commutative diagram defined by X:

Yy <L> Sx X

O .
1 < Im
S X

where i is an embedding and proj,, proj, are the projections. Let h : }J — X be the

composition proj; oi, s aregular point of S and Y a fibre of 1t over s. Finally,let y € Y bea
k p
regular point, v € A T, Y and & € A T;S. Then:

Lemma 2.5.
k+p

P (h(y)i \ dnlyive®)) < BE(viv) - Ei(s®)

Proof. — Leté > 0. By definition of Eg' and E¥, it exists:
p p
—aholomorphic map f : B — Ssuchthat f(0) = Sand A df (0; A ep) = 1° - &,
where e, = (6671 lo;-- - 667k|0) € ToBP and r a positive real number verifying:

7P < El(sE) +e

k k
— a holomorphic map g : B¥ — Y such that g(0) = yand A dg(0; A ex) = R* - v,

_ 0 . .0
where ¢ = (ﬁ|°""’ﬁ|

0) € TpBP and r a positive real number verifying:
P < El(y;v) + e
BP and B¥ are respectively the p-dimensional and the k-dimensional unit balls.

Making the base change f : B? — S to the family X = (),m,S), we obtain the
following cartesian diagram:

BPxy v ¥y < sxx
S

W0 o] S e
BP 7> S X



where p, 1, are the projections. If we put )); = B” x ), then the family X, = ()),m,B")
S

is locally trivial (because X is so). But B? is Stein and contractible, thus by proposition 2.2,
X is (globally) trivial. So we have an isomorphism

Y, =Y x BP.
Consequently, we obtain the following exact sequence
0— T, Y — )y — TyB? — 0. (1)
Immediately we have
dim T, Y\ = dim T, Y + dim TyB” = k+p.

Let hy = Y1 — X be the composition p o hand dhy(y-) : Ty) — T(y)X its jacobian
map at the point y (here h (y) is identified with h(y)). From the exact sequence (1) we

obtain an isomorphism
k+p k p
w: \ 0= A,y e \ LB
We define a linear map

k p k+p
Q: /\ T,Y ® /\ ToB? —> /\ Trp X

k+p

by puttingep = A dh; o , then @ is injective and we have

(%)
p k+p
<P<V®/\ep> =r. /\ dh(y; v ® E).

p
In particular, (v @A e,,) is independent of f.

On the other hand, because X; is trivial, we can find a holomorphic map G :
B*P — X such that G(0) = h(y) and

k+p k+p 14
/\ aG (0; /\ ek+p> = Rk-qJ (v@/\e,,)
k+p
=Rk /7. /\ dh(y;v ® E)

(we can take G = G |pi+p» where G, : B¥ x BP defined by g(a,b) = (g(a),b)). Thus

k+p
B (h(y); N any;ve E)) < Ey(y;v) - E{(58) + ¢
where ¢ = e(¢ + EX(y; v) + Ef (s; E). Finally, when ¢ — 0, we obtain the lemma, [
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Proof of theorem 2.4. — Let 0 € S be a regular point and Y the fibre of 1 over 0.
Because X is locally trivial, we can find a smooth neighbourhood ¢/ of 0 in S such that Y
is the fibre of 1 over every point of /. Let y € Y be a regular point and v a decomposable

k
element of A\ T} Y such that E’lﬁ (; v) > 0. According to lemma 2.5, we have for every s € U

and & € TS:
k+p

ExP(h(y); \ dh(y;v ® ) < Ef(y;v) - EL(S;E).

k+p
As X is strongly (k+p)-measure hyperbolic and A dh(y; v ® &) # 0, we can easily find

alower bound of E£ (s; £) on a small neigbourhood U’ C U of 0 in S. The theorem is then
proved. |

3. Brody-hyperbolicity of embedded curves Douady spaces

3.1. — In all this section, X is an analytic space of dimension n. Our goal is to
prove that if X is 2-measure hyperbolic, then Dj (X) is Brody-hyperbolic. To do this, we will
first construct for every g > 1 a holomorphic mapping defined on the universal covering
space D, (X) of Dj 4(X) into the Torelli space Tg.

Theorem 3.1. — The universality of Té furnishes a natural holomorphic map
Wg : D (X) — T}

for every g > 1, defined by: yg¢(d) = the isomorphism class of the curve parametrized
byd.

Proof. — Let

Y = Dig(X)xX
"l o _—
Dj g(X)
be the universal family over D o(X). It's locally a genus g Torelli curve. The local Torelli
structures make the sheaf R'm,(C) a local system over D] ,(X). If we make the base

change, corresponding to the universal covering 5’1 g(X) = Dj¢(X), to the universal fam-
ily over Dj 4(X), then we obtain a new family over 51, ¢(X) according to the following com-
mutative diagram:
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Y — Yy —  Dj(X)
. l ,,l o l
Di’g(X) — Di,g(X) X
The R'm, (C) pre-image is isomorphic to the sheaf R!1r,(C) over D] ¢(X) (see Grothen-

dieck [Gr], VIII, corollaire 1.4). So, R' 7, (C) is also a local system over 5i,g(X). According

to Deligne ([De], chap. 1, corollaire 1.4), such sheafis given by a complex representation of
finite dimension of the fundamental group 11 (5’ (X)). But D}, ¢(X) is simply connected;
thus (D), ¢(X)) is trivial and the local system R' 1, (C) is constant. By the universal coef-
ficient theorem, we deduce that the sheaf R'1’, (Z) over D, ¢(X) isisomorphic to the sheaf
Z*8. The choice of such an isomorphism defines a Torelli structure on )’ over 5{,g(X)

(except for the special case of the genus g = 1). By the universality property of the Torelli
space T, it exists a unique (up to isomorphism) holomorphic map

Wg : D (X) — T}
defined by g, (d) = the isomorphism class of the fibre 7'~ (d) € T of i’ over d.

Returning now to the special case when the genus g = 1, and considering a cover-
ing (U;)ie1 of Dy, (X) such that w'~1(U;) carries a Torelli structure over U; for every i € I,
we can construct for every i € I a holomorphic map

Wi U — T
by the universality of the Torelli space 77. Thus, to obtain a global holomorphic map on
D11 (X) into T} it suffices to prove that for every i,j € I we have

(,Ul (,Ul on U,ﬂ U]

Let’s put (7,] = (7,0[7], Vi =1m'"YU;), V; = w~Y(U;) and V;; = ViNV;. Lete; : V; — U;
(resp &j: V U ;) be the section defined by the genus 1 curve V; (resp. V) over U; (resp
U]). Then V;; ; is in two ways (corresponding to ¢; and ¢;) a genus 1 Torelli curve over Uij e
These two structures are equivalent. To show this, let’s define the holomorphic map
Tij: ‘7, . ‘71 i
b +— “b—¢gomj(b)+¢gjom(b)”
where 17;; : Vl i U, jis therestriction of ™ to Vl j- Wesee that T;jis an U, j-automorphism
of Vl j and that on every fibre of 11;j, T;; is a translation. In particular, it induces the iden-
tity on the first cohomology groups of the fibres. Thus T;; is an automorphism of genus 1
Torelli curves over Ul j» which implies that ¢/; = ¢/; on Ul ;- We then obtain a holomorphic
mapping
1 : D, (X) — T

defined by y; = (//1 on Ul for every i € I. This concludes the proof. [ |
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Proposition 3.2. — Suppose that X is 2-measure hyperbolic. Then the fibres of ¢/
are Brody-hyperbolic for every g > 1.

Proof. — Let H be any fibre of ¢, (H = g ' (d) for d € Ty) and let C be a genus
g algebraic curve representing the isomorphism class d. Making the base change, cor-
responding to the natural embedding H — 5{,g(X ), to the family )’ over 51, g(X), we
obtain a genus g curve )Yy over H. The fibres of this curve are all isomorphic to C so Yy
constitutes a locally trivial family over H by theorem 2.1. Now, we apply the theorem 2.3 to
conclude. |

Furthermore, if X is strongly 2-measure hyperbolic and g > 2 then Yy (see the
proof of proposition 3.2) is a locally trivial family with hyperbolic fibres (so, they are in
particular measure-hyperbolic). Applying the theorem 2.4, we obtain:

Proposition 3.3. — Suppose that g > 2 and X strongly 2-measure hyperbolic.
Then the fibres of ¢ are hyperbolic.

3.2. — We now prove the following main theorem:

Theorem 3.4. — Let X be a 2-measure hyperbolic analytic space. Then D;(X) is
Brody-hyperbolic

Proof. — We have

Dy(x) = [ D20

8§20
So we only have to prove that for every g > 0, D} g(X ) is Brody-hyperbolic. Let
Y = D (X)xX
ﬂgJ{ E)p/rojl lprojz 1)
D} o(X) X

be the universal family over D; o (X). It is easy to see that the map F : J) — X induced by
the diagram (1) is of rank at least 2.
Casel: g=0

We will prove that Di,o (X) is discreet. The map Ty is a proper flat morphism with
all its fibres isomorphic to P! (C). Then by theorem 2.1, (¥,m,D] 4(X)) is a locally trivial
family. Assume that D; (X) is not discreet, then there exists a non-constant holomorphic
map f : A — D;,(X) from the unit disc A of C to D; ,(X). Without loss of generality, we
can suppose that the pull-back X' = (),m(,A) of X = (Y, 110, D1 (X)) by the base change
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f, is trivial, i.e. ) is isomorphic to P! (C) x A. Let G : P'(C) x A — )Y be the map induced
by the base change f. Then F o G is of rank 2. By Proposition 1.2, this cannot hold because
X is 2-measure hyperbolic. Consequently, D o(X) is discreet.

Case2:g =1

D} ,(X) is also discreet. Indeed, suppose the opposite, then there exists a non-
constant holomorphic map f : A — Dj,(X). Since X = (),mm,D,(X)) is locally a
Torelli curve of genus 1, then we can choose [ such that the pull-back X' = ()”,71,A) of
X by the base change f, is a Torelli curve of genus 1. By the construction of the universal
family over the Torelli space 77, there exists a surjective holomorphicmap g : Cx A — ).
Furthermore, the map f*F : )’ — X, induced from F by the base change f, has the rank
atleast 2. Thus f*F o G: C x A — X is of rank 2, which is impossible by proposition 2.1
since X is 2-measure hyperbolic. Then Dj ; (X) is discreet.

Case3:g > 2

Suppose that there exists a holomorphic map of C — 5{’ g (X). Then the compo-
sition g o f is constant because Té is hyperbolic. So the image of f belongs to one fibre
of . But according to proposition 3.2, the y, fibres are Brody-hyperbolic. Then f must
be constant. Consequently, 5i’g (X) is Brody-hyperbolic and we conclude for D; ,(X) by
covering. |

ExampLE 3.5. — Let S be a complex surface of general type. It’s well known that S
is measure hyperbolic (see Lang [L] or Kobayashi [K2]). So theorem 3.4 proves that D} (S)
is Brody-hyperbolic.

3.3. — In this section, we suppose that X is a complex manifold. Let Y be a com-
pact complex submanifold of X. 7,7y and Ny, x are respectively the sheaves of holomor-
phic sections germs of the tengent bundles TX, TY and of the normal bundle Ny,x. The
exact sequence

0—TY — TXjy — Ny,;x —0

induces the following cohomology exact sequence

00— HO(Y,Ty) — HO(Y,TX/Y) — HO(Y,Ny/x) ﬂ) HI(Y,Ty) —_— .-

On the other hand, H°(Y,Ny,x) coincides with the tangent space of the Douady
space D(X) at the point [Y], corresponding to Y in D(X). H'(Y,7y) is canonically iso-

morphic to the tangent space at 0 of the local moduli variety (M,0) of Y (cf. [Gr], IX, Propo-
sition 2.2).
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Definition 3.6. — Wesay that [Y] € D(X) verifies the condition (P) if:
1. themap dv is injective.

2. the semi-universal deformation of Y is universal.

Lemme 3.7. — (P) is an open condition in D(X) i.e. the subset of D(X) corre-
sponding to submanifolds Y of X verifying the condition (P), is open in D(X).

Proof. — The second part of (P) is open by [Bin], Satz 7.1. Let

Y «— D(X)xX
pl _—
D(X)
be the universal family over D(X). Let Y be a compact complex submanifold of
X and note 0 := [Y] € D(X) (we use the same notation as for the point corresponding
to Y in the local moduli variety (M,0) of Y). The universality of (M,0) provides us with a
holomorphic map of germs @ : (D(X),0) — (M,0) from the germ (D(X),0) of D(X) at 0
into (M,0). Then the differential Ty, at 0 is nothing other than the map &y defined above.
Since dy is injective, @ is an embedding. Thus there exists an open neigbourhood U of 0
in D(X) such that for every a € U, the map @, : (D(X),a) — (M,a) is an embedding.
Now by [Bin], Satz 7.1, the universality property is open, so the differential T, @, of p, ata
coincides with dy,, where Y, is the fibre of p over a. Consequently, 6y, : H 0 ( Yo N Ya/X ) —
H'(Y,,Ty,) is injective. This proves the lemma. u

Let now Ry be the subset of D (X) which parametrizes algebraic curves Y of genus
g embedded in X such that 6y is injective. Since semi-universal deformation of such
curves are universal, then every element of R, verifies the condition (P) and consequently,
Rg is open in D ,(X). Furthermore, we have:

Theorem 3.8. — Let X be a complex manifold and g > 1 an integer. Then Ry is
hyperbolic.

Proof. — Let g : [N){,g(X) — Tg be the holomorphic map defined in theorem
3.1. Since 6y is injective for all Y in R, the restriction "’gﬁ ‘R — Té, is a local embedding

where R is the pre-image of R by the universal covering 5{1g(X) — Djg(X). But Ty is
hyperbolic, then by [K2], Theorem 3.4, 1) R (and consequently R) is hyperbolic. |
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4. Brody-hyperbolicity of embedded
abelian varieties Douady spaces

4.1. — The techniques used to prove theorem 3.4 are valid to be used also in the
case of Douady space of a projective analytic space X submanifolds which are abelian vari-
eties of the same dimension d (let’s call this Douady space of d-dimensional abelian subva-
rieties of X and note it Dg (X )). By Grothendieck [Gr], IV, proposition 5.9, and using a result
of Mumford ([M1], proposition 6.16), D] (X) is an open analytic subspace of the Douady
space D(X) which is identified with the Hilbert scheme Hilb(X).

4.2. — As for the theorem 3.4, we first construct a holomorphic mapping with
Brody hyperbolic fibres from the universal covering space D} (X) of D] (X) into the Siegel
moduli space S;. By definition S; = {Z € My;(C)/'Z = ZandIm Z > 0} where M,(C)
is the vector space of complex (d,d)-matrices. Sy is a fine moduli space of d-dimensional
polarized abelian varieties with a fixed type D and symplectic basis and there is a universal
family over it (see [L.B] for definitions and details).

Proposition 4.1. — The universality of S; furnishes a natural holomorphic map-
ping
®q: DY (X) — Su

defined by p4(Z) = the isomorphism class of the abelian variety parametrized by Z.

Proof., — Let

be the universal family over D, (X). Making the base change corresponding to the univer-
sal covering D} (X) — DJ (X) to this family, we obtain a new family X’ = (),7,DJ (X)).
X’ islocally a family of polarized abelian varieties with fixed type and symplectic basis. This
is a consequence of theorem 6.14 of Mumford [M1] and because R' 7, (Z) is alocal system.

In the same way as in the proof of theorem 3.4, we can show that R' 1, (Z) is constant. So

the types and the symplectic bases of over local families are the same. Consequently, there
exist, locally on 55 (X), holomorphic maps into the Siegel space S; being a moduli space of
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polarized d-dimensional abelian varieties with the same type and symplectic basis. Glue-
ing them by the same method as in the proof of theorem 3.4 (case g = 1), we obtain a
global holomorphic map

(pd:bvg(X)—)Sd. ]

4.2. — Let X a projective complex manifold and Ry the subset of D} (X) parame-
trizing abelian varieties Y embedded in X such that the map 6y defined in 3.3 is injective.
Since semi-universal deformation fo complex tori are universal, then every element of R,
verifies the condition (P) defined in 3.3. Consequently, R; is open in Dg (X) by lemma 3.7.
The following theorem is an immediate application of proposition 4.1.

Theorem 4.2. — Let X be a projective complex manifold. Then Ry is hyperbolic.
Proof. — Letgg: 55 (X) — S; the holomorphic map defined by proposition 4.2
and R, the pre-image of R4 by the universal covering D} (X) — DJ(X). By the injectivity

of 8y forall Y in Ry, the map (pdl R, R; — Sgis alocal embedding. But Sy is hyperbolic,
then R (and consequently R) is hyperbolic by [K2], theorem 3.4, 1). [ ]

4.3. — We now prove that D} (X) is discreet:

Theorem 4.3. — Let X be a projective analytic space. Suppose that X is (d+1)-
measure hyperbolic, then D} (X) is discreet.

Proof. — Let
Y «— DI(X)xX
Dg (X) X

the universal family over D} (X). The map F : JJ — X induced by the diagram (1) is of
rank at least k + 1.

Suppose that D;(X ) is not discreet, then there exists a non-constant holomorphic
map f : A — D} (X) from the unit disc A in C into D} (X). Since the universal family
X = (Y74, D} (X)) over D} (X) is locally a family of polarized abelian varieties of a certain
type D with symplectic base (because X is projective), then we can choose f such that
the pull-back X = ()’,m/;,A) of X by the base change f is a family of polarized abelian
varieties of type D with symplectic base. By the construction of the universal family over
the siegel space Sz, we can construct a surjective holomorphic map G : C4 x A — Y.
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Furthermore, the pull-back f*F : )’ — X of F by the base change f is of rank at least
k+1,thus f*Fo G: A x C* — X is ofrank d + 1, which is impossible by the proposition
2.1since X is (d + 1)-measure hyperbolic. Consequently, D} (X) is discreet. [

Remark 4.3. — If we take d = 1 in the last theorem, we find again the part of
the theorem 3.4 concerning the special case of genus 1. In fact, the condition for X to be
projective is not necessary (see Grothendieck [Gr], VIII, corollaire 2.2).

5. Moduli spaces of holomorphic mappings

5.1. — Let X be a compact analytic space and Y an analytic space. According to
Douady [D], the space Hol(X,Y) of holomorphic mapping f : X — Y carries a structure
of an open analytic subspace of the Douady space D(X X Y) and has the following two

universal properties:

— the canonical mapping ® : X x Hol(X,Y) — Y is holomorphic.
(x.f) — f(x)
-if @ : X x T — Y is holomorphic for analytic space T, then themap @ : T —
Hol(X,Y) defined by () = @(-,¢) € Hol(X,Y) is holomorphic.

Y hyperbolicity gives us some informations about the space Hol(X,Y). We recall
the following Kobayashi theorem [K2]:

Theorem 5.1.

1) If Y is (complete) hyperbolic, then each connected component of Hol(X,Y) is
(complete) hyperbolic.

2) If Y is compact hyperbolic, then Hol(X,Y') is compact.

5.2. — More generally, suppose that Y is (k+1)-measure hyperbolic for an integer
k and consider the open subspace of Hol(X, Y') of holomorphic mappings f : X — Y with
rank at least k, which we note Holx(X,Y). Then we have:

Theorem 5.2. — If X is a compact analytic space and Y a (k+1)-measure hyper-
bolic analytic space, then Holy(X,Y) is Brody-hyperbolic.

Proof. — Suppose that there exists a non-constant holomorphic mapping

f:C— Holg(X,Y).
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Let F : CxX — Y bethe induced mapping defined by F(t,x) = f(t)(x). Accordingto 5.1,
F is holomorphic. Let’s fix a regular point (f,%) € C x X such that rank(, ) F = rank F
and rank,, f () = rank f(f). Choosing connected smooth neighbourhoods U C C of #
and V C X of xyp and noting G := F| uxv,then G is of constant rank on U X V. So by the
constant rank theorem, F(U X V) = G(U x V) is a connected complex manifold. As f is
non-constant, f (%) (V) is properly contained in F(U x V). Thus

dimp(tolxo) f(w)(V) < dimF(tg,xo) F(U x V),

which implies that
k < rank f (%) < rank F

But this is impossible because Y is (k+1)-measure hyperbolic (F : C x X — Y must
have rank less than (k+1)). So f must be constant and consequently, Holx(X,Y) is Brody-
hyperbolic. ]

In particular, when Y is compact measure hyperbolic of dimension k, Holx(Y,Y)
coincides with the group Aut(Y) of Y automorphisms. Theorem 5.2 implies that
Holx—1(Y,Y) (and so Holg(Y,Y)) is Brody-hyperbolic. But Aut(Y) is a complex Lie group.
Thus Aut(Y) is discreet. So we find again theorem 9.7 in [K2] and theorem 1 in [Wo].

5.3. — In this section, we assume that Y is strongly k-measure hyperbolic. Then
we obtain the same property on Hol(X,Y) for X strongly measure hyperbolic. Namely we
have:

Theorem 5.3. — Let X be a strongly measure hyperbolic compact analytic space
of dimension n and Y a strongly k-measure hyperbolic analytic space. Then Hol(X,Y) is
strongly k-measure hyperbolic.

Proof. — The embedding of Hol(X,Y) in the Douady space D(X x Y) induces
an analytic family of n-dimensional compact analytic subspaces of X x Y over Hol(X,Y).
The fibres of this family are all isomorphic to X, thus it is a locally trivial family. Moreover,
X X Y is strongly (n + k)-measure hyperbolic. Then by theorem 2.4, Hol(X,Y) is strongly
k-measure hyperbolic, as desired. [ ]
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