SMOOTHING OF ISOLATED HYPERSURFACE
SINGULARITIES AND THE QUILLEN METRICS

by Ken-Ichi YOSHIKAWA

dedicated to Atsuko

ABsTrACT. — Letmm: X — D = {t € G; || < 1} be a holomorphic map of complex

manifolds which is smooth outside of finite number of points of Xy = m1(0). Let gx be a
Kédhler metric of X, gx /D the induced metricon TX/D = Ker . Set A = det R, Oy for the
determinant of direct images, and || - || g for the Quillen metric of A associated to gx/p.
The purpose of this article is to study the behavior of | - || as ¢ — 0. We show that logarith-
mic singularity appears, and its coefficient is essentially determined by the Milnor number of
Sing Xj. Vector bundle case is also treated when the family is locally projective. Our method of
computing the singularity of the Quillen metric heavily depends on the works of Bismut, Gillet
and Soulé [B-G-S, 1-3], and Bismut, Bost [B-B], but an ideal of Morsification, which is familiar
in the classical Picard-Lefschetz theory, is also crucial.

0. Introduction

In [Q], Quillen introduced a metric on the determinant of cohomology, which is
called Quillen metric today, and calculated the curvature of the determinant in some cases.
After Quillen, in the celebrated work [B-G-S 1], [B-G-S 2] and [B-G-S 3], Bismut, Gillet and
Soulé generalized his result to arbitrary smooth morphism of Kdhler manifolds, and es-
tablished the Riemann-Roch-Grothendieck formula at the differential form level. Subse-
quently, their work has been developed in the context of Arakelov Geometry ([B-Ll, [FI,
[G-S 2], [S], etc.).

The other generalization was studied by Bismut and Bost ([B-B]). They established
the curvature formula of the determinant bundle for degenerating family of Riemann sur-
faces with logarithmically divergent metrics, and obtained a refinement of Mumford’s for-
mula. In the different context, similar problem was treated by Wolpert [W]. As the Quillen
metric is essentially a product of the Ray-Singer analytic torsion ([R-S]) and the L?-inner
product via the Hodge theory, it is also important to study the singularity of analytic tor-
sion. He studied the case of degenerating family of Riemann surfaces with the Poincaré
metric, and obtain the asymptotic formula of analytic torsion.

In studying the case of higher relative dimension, unfortunately not every family
admits either logarithmically divergent or Einstein Kédhler metrics, and therefore, it looks
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natural to consider the degenerating problem of the Quillen metric for the family equipped
with the induced Kéhler metric from the ambient space. In [B], Bismut studies this prob-
lem when the family is ordinary singular, and obtains a generalization of [B-B]. The pur-
pose of this article is to study the problem for the other types of degenerating family.

Letw : X — D = {t € G|t| < 1} be a proper surjective holomorphic map of

complex manifolds.

DErINITION 0.1. — A family (1, X, D) is said to be a smoothing of isolated hyper-
surface singularities (IHS), if 77 is of maximal rank outside of finite number of points in
Xo = 1 1(0). In particular, Sing X, consists of isolated hypersurface singularities. When
Sing X, consists of A, -singularities, i.e., the singularity whose defining equation is given by
{z5 + -+ 22 =0} in C"*!, the family is said to be A, -singular.

In case n = 1, A;-singular family is called f.s.o. in [B-B], and A, -singular family is
one of the natural higher dimensional generalization of f.s.o.

DEFINITION 0.2, — Let (m, X, D) be a smoothing of IHS and 77 : X — D? a proper
holomorphic surjection of Kihler manifolds. Then (77, X, D?) is said to be a Morsification
of (m, X, D) if the following conditions are satisfied:

DIfi : D < D x {0} stands for an embedding of D into D?, then *X = X,
i*7t = 17, and X is reduced in X.

2) Forany s € D* — {0}, Sing X; (X; = 7 !(s)) consists of either empty set or
A, -singularities.

Our theorem is as follows:

Main THEOREM. — Let (, X, D) be a smoothing of IHS which admits a Morsifi-
cation gx a Kdhler metric of X, and gx,p the induced metric on TX/D = Kerm,. Let
A(Ox) = det R, Ox be the determinant of direct images, and || - || the Quillen metric
associated to gx/p. Then,

1) ||+|| ¢ is a singular Hermitian metric of A(Ox ), and its curvature current is given by

(_ )n+1

a(A(Ox). [ - llo) = mﬂ(smgxo)% + 1, (Td(TX/D, gx/p))™""
where n = dimX/D, pu(SingXy) = Y. wu(p), u(p) the Milnor number of p €
pesing Xo

Sing Xy, and & is the Dirac measure at 0. Furthermore, 1, (Td(TX/D))("V) is d-closed in
the sense of current, and there exists r > 1 such that

m,(Td(TX/D, gx/p)) ") € Ly (D).
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2) Let (E, h) be a holomorphic Hermitian vector bundle on X, A(E) = det R, O(E)
the determinant bundle, and || - || the Quillen metric of A(E) associated to gx,p and h.
Suppose that there exists a Morsification (T, X, D?) which is locally projective, and an ex-
tension E of E to X. Then, || - || is a singular Hermitian metric of A(E) and its curvature
current is given by
(_ 1) n+1

(w2 "E)H(Sing Xo)d0 + . (Td(TX/D, gx/)ch(E, 7))

a(A(E),

llo) =

where r(E) = rank E, and ,(Td(TX/D)ch(E))("Y) is d-closed in the sense of current
and there exists r > 1 such that

m, (Td(TX/D, gx/p)ch(E, )" € L (D).

We remark that the same sign conventions as [S] are used in the theorem for deter-
minants of direct images and analytic torsions.

CoroLLARY 0.1. — In the situation of Main Theorem 1) let o € ' (D, A) be a holo-
morphic section of determinant bundle such that o(0) # 0. Then, as t — 0,
-1N"
D",
(n+2)

where ay € R and o > 0. Similar formula also hods in the case 2).

log [|o| () = (Sing Xo) log|¢]* + a + O(]¢]%)

Combining Corollary 0.1 and Proposition 4.3, we have the following:

CoroLLARY 0.2. — In the situation of Main Theorem 1), we assume that Sing X
consists of rational singularities. Let T(X;) be the Ray-Singer analytic torsion of (X, g;).

Then, ast — 0,
n

(n+2)
If every nontrivial root of Bernstein-Sato polynomial of Sing X, is strictly smaller than —1,
then,ast — 0,

1
log T(X;) = u(Sing X,) log |t|* + O(loglog —)

7]

1" o
log T(X;) = mu(SmgXo) log [t]* + a0 + O(|£|*)
where ay € R and & > 0 as above.

We mention the relation of our theorem and classical Picard-Lefschetz theory for
monodromy. In the Picard-Lefschetz theory, one can calculate the Milnor monodromy of
IHS as follows. First take a nearby equation so that singularity of any singular fiber is of type
A;. (Such a process is originally called the Morsification). Then, the monodromy is given
by a certain composition of each monodromy arising from the A; -singularities. In this way,
the problem reduces to A, -singular case by considering a Morsification. Surprisingly, this
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idea works in computing the singularity of the Quillen metrics also, combined with the
argument developed by Bismut and Bost ([B-B], § 10-12). In this sense, our theorem is an
analogy of the Picard-Lefschetz theory for the Quillen metric.

We do not know whether there exist some obstructions for a smoothing of IHS to
admit a Morsification. In view of Corollary 0.2 and our previous result [Y 1], it looks inter-
esting to study the following value:

(1)
(n+2)!
for A; -singular family, where T(Xp) is the analytic torsion of X; in the sense of [Y 1]. In the

log T(X;) — #Sing X, log|t|* — log T(Xy) (¢ — 0)

case dim X/D = 1, itis treated in [B]. In view of [Br-Le], it also seems interesting to study
the same problem when dim X/D = 1, but Sing X, does not necessaryly consists of nodes,
because T(X) has a sense also in this case ([Br-Le]). For the n-dimensional A, -singularity,
its contribution to the singularity of the Quillen metric is equal to (—1)""1/(n + 2)! by
Main Theorem, and therefore its generating function is given by

l—x—e "
x? ’
The author does not know the intrinsic reason of this formula, which must exist, and leave

it for the future study.

This article is arranged as follows. In section 1, we study the relative Todd form for
arbitrary family of hypersurfaces in the Euclidean space, and establish the vanishment of
degree (n+1, n+1)-part. This s crucial to apply the argument of Bismut and Bost, which is
done in section 3. In section 2, we recall some basic results of Morsification. From section 4
to 9, we prepare several techniques to establish Main Theorem for A; -singular families. In
section 4, we establish the continuity of eigenvalues of Laplacians in the parameter, which
is a generalization of [J-W] and [Y 2]. In section 5, by a slight modification of the argument
due to Cheng, Li and Yau ([C-L-Y], [L-Y]), we establish a Duhamel’s principle applicable
to degenerating family. In section 6, we establish an upper bound of the “trace” of the
heat kernel under certain Sobolev type inequality. In general, it looks difficult to obtain
an upper bound of the heat kernel itself for Schrodinger operators, only assuming Sobolev
type inequality. In section 7, we establish an estimate of the error between the heat kernel
and its parametrix, and in section 8 and 9, an asymptotic formula of analytic torsion for
conic degenerating family, which refines [Y 1] is established. Using the result of section 8
and 9, we prove Main Theorem for special case in section 10-12, and general case in 13.
In section 14, we treat examples. For the reader who does not have interest in technical
details of analysis, we recommend to ship sections 4-9.

Acknowledgement. — The author is grateful to the Nishiaki Foundation and JAMS
for financial support, and to I'Institut Fourier for the hospitality where crucial parts of this
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article have been done. Finally, he would like to express his thanks to professors A. Bondal,
1. Biswas and S. Kosarew for conversations, and J.-P. Demailly, R. Kobayashi, S. Mukai, T.
Ohsawa and H. Umemura for helpful advices and encouragements.

1. Morsification and relative Todd form

LemMmaA 1.1. — Let V be a vector space over R, J a complex structure on V, Vg =
V ® C its complexification, Vo = V; @ V_ the decomposition into eigenspaces of J.
Clearly V_ = V. by the complex conjugation. For A = (ay,...,a,) € Vi ® C", set
A* ="' (@y,..., ayn). Then,

det(I + xA* N A) = (1 + xAA A*)Z) (€ AVe[x)).

Here we consider A* A A € M(n, AV¢), the metrix of type (n, n) with values in
A\ Vg, and use a convention:

X)<n = Z aix; (f(x) = Z aiXxi).

Proof. — Noting (A A A*)F = —Tr(A* A A)¥, we obtain

o0
(L1) (1+xAnA)™h =D "(Tra* A A)F
k=0
and
(1.2)
det(I + xA* A A)| ,
d

1
)k|x:0— sgn o (815(1) + X1 A ay(1)) A+ A (Sno(n) + X8n A Gg(n))
k!

(_
dx ey

= O D SENOB0) ) ol N o) A ATy Aoy (10T =)
|I| ko€Gn

= 5 30 3 st Ay A AT A
|1| kTEG
= (Tra* A A,

where det(I + xA* A A) |xk stands for the coefficient of x* of the polynomial. Compairing
(1.1) and (1.2), we get the formula. [



LemMa 1.2, — ForanyF(x) =1+ Y a;x' € Q[[x]] andA € V; ® C",
i>1

det F(A* ANA) = F(AAN A*)"H1 — (1 — F(AA A*)"T1)

Proof. — Put F(A* AA) = I + yA* ANA, y = > ai(AA A*)""1, Then, by
i>1
Lemma 1.1, we get
det F(A* A A) = (1+yANA A*)CL

n

(—1)*(yananF
0

(13)

=~
s |l

(—D*{F(ana*) - 1}f

F(ANA*)™M1— (1 - F(AAAY)" )

Put
U:=D"""'xDcC"™?, x=(x...,xn) €D"!, e€D
For F(x, &) € O(U), anonconstant holomorphic function, put
p:U>3(x¢e) —»e€ D,
m:U > (x,6) = (F(x ¢€),¢) € D?

n
TDVH-l = Kerp* = {U c TU,V — Zglaixl} — T(C?H—l‘U’
i=0

TX = TU/D* :=Kerm, = {v € TU;v = f‘ag,-a%i, f%gl-g—; =0} C D",
i= i=

Ny ,pn+1 := Ker ps/ Ker m,,

X, :=mY(y) C D" x {y}foranyy € D*.

Then, forany x € X,

(TX)x = (TU/D?)x = TxXn(x)

(NX/D"‘H)X == (NX.,T(x)/D’H'l)x'

Consider the following exact sequence:
(1.4) 0 — TU/D* — TD™' — Nx,pns1 — 0.
Let gy be the Euclidean metric of U, grpn+1 the Euclidean metric on TD"!, and define
gu/2 = 8u| ru/p2 — 8D |1y pe
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a Hermitian metric of TU/D? induced by the ambient Euclidean metric. Denote by
Rry,pe the curvature form of (TU/D?, gy,p2) defined on U — X, where

n

oF

— . — healily® T SN
> ={(x¢) € Updpn1 F := Z O = 0}.
i=0
ProposiTiON 1.1. — [Td(Rpy,p2)] ") =00onU — 3.
Proof. — Let Ry be the curvature form of Ny,pn+1 with respect to the metric in-

duced by the identification:
Ny/pnt1 = (TU/D?)*.

Then we get
8rpnt1 = gU/D2 D h.
Let A € AY(End(TU/D? (TU/D?)1)) be the second fundamental form of (1.4).

By the curvature formula ([K], I (6.1)), we obtain

_ RTU/DZ - A* /\ A —DIA*
(L5) Rrpn+i)y = ( D'A Ry —ANA* )T
Since (TD"*'|x, grpn+1) is a flat vector bundle, we find Rypn+1), = 0 which implies
(1.6) Rrympe =A*NA, Ry=AANA*, D'A=DA*"=0.
Apply Lemma 1.2 for Ryyy/p2 and F(x) = Td(x) = 7—,—=. Then we have

= Td(Ry) {1 — (1 - Td(Ry))""'}.
In particular,

[Td(RTU/Dz)](”"'L”"'l) — [Td(RN)—l](nﬂ,n—H) _ [Td(RN)_I(l . Td(RN))n+1](n+1,n+1)

(L8) _ (_1)n+1{ 1 1 }(iRN>n+1.

(n+2)  2n1f\2n

Consider the dual of (1.4):

(1.9) 0—> N;/Dn+1 — Qan+1 — Q}J/Dz — 0.

As is easily verified, N ;

1 is generated by

"\ 3F
(1.10) s =dpnF = lz_; a—xi(x, £)dx’
and therefore Ry is given by

(1.11) Ry = —R}, = —00log|dpnt1 F[?,

Nx/Dn+l



2

" |oF
(112) ldpnsr FP? =S :‘ﬁ(x, £)
i=0 !

Letv: U — £ — P" be the Grauss map:
oF oF

(1.13) v:U—-Z5 (x¢) — [a(x,e):---:a(x,f)] e pn.

Then, by (1.11) and (1.12), we find

(L14) éRN = v wpn,

where wpr = 5-093 log ||||? is the Fubini-Study form of P,

Therefore by (1.8), putting C(n) = (—1)"!{ (n}rz)l — 5T }» We get

(1.15) [Td(Rpyp)) "D = C(m)v wfit = 0 .

Let m : X — D be a smoothing of IHS, 77 : X — D?its Morsification, and gy a
Kédhler metric of X such that Rx = 0 on a neighborhood of Sing Xy. Then, for any p €
Sing Xj, there exists a coordinate neighborhood (U, (%, ..., X)) such that, on Up, gx =

n

> |dxil*.

i=0

ProposiTION 1.2. — Choosing U), sufficiently small, there exists a Kdhler metric
gz and (U, (%, ..., %n, €)), a coordinate neighborhood of p € Sing X, in X, such that

n ~
1) gy= > |d%i* + |de|* on Uy,
i=0
2) Up=U,N{e=0} and %|x=x (inparticular, gglu, = gx),

3) fi(fe) = (F(Xe),e) on U,

Proof. — Let (¢, €) be the coordinates of A%. Since X = 7~ !({e = 0}) is reduced
and smooth, dft*¢ # 0 on a neighborhood of X in X, and 7r* € becomes one of the coor-
dinates functions. Let Y7p be a small Stein neighborhood around p, and %; € (’)(17,,) an
extension of x; to 17,,.

By the construction, choosing ﬁp « 17,, if necessary, we may assume that
(Up, (%o, .-, %, €)) becomes a local coordinates around p.

Since 7t* ¢ = ¢, 7t is represented as follows
(% €) = (F(X, €), €)
where F € O(U,). This proves 2) and 3).

10



Let g)% be a Kihler metric of X (which exists by the definition of Morsification), @,
its potential on V,:

(1.16) gz = 00wp.
By the Kihlerness, there is a coordinate (z, . . ., z,) such that
(117) g = Y61+ O(|2|P) dziaz;

ij
Therefore, the potential ¢, may be chosen as follows:
(1.18) Pp(2) = |Iz]1* + O(lz]").

By Morse’s lemma, there is a real coordinate (uy, . .., Upn+4) such that:

2n+4

(1.19) Pp(z) = > (u)’ =7

i=0
Put B:(p) := {u € Vy;r<e}.

Let x. () be a nonnegative convex increasing function such that:

(1.20) xe(8), xe(1), xc(1) >0
(L21) xX:(£) =0 (t<e¢), xt)=1 (t>2e).

Then, 93X:(@,) > 0on V, and

= 0@y, = g~ on X — {7,”
1.22 00 = X
(1.22) Xe(®p) { 0 on Bp(e).

Let p, be a cut-off function such that:

1 on B,(2¢)
(1.23) Pe = {0 on X- B,(3¢).

Put
n
(1.24) ges = 00pe( D15 + [l ) + 57 100xc(@p):
i=0
Then,
8y on XV — W/p
1.25 = yan
(1.25) Bes aa(z % + |g|2) on  By(e).
i=0
Choosing 6 < 1, we may assume g5 > 0 on X, and obtain a Kihler metric which
satisfies 1). |
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Remark 1.1. — In view of the construction of g in Proposition 1.2, we may as-
sume that g satisfies the conditions 1), 2) and 3) of Proposition 1.2 on a neighborhood of
Sing X)), since the construction is local.

ProrosiTioN 1.3. — Letm : X — D be a smoothing of IHS which admits a Mor-
sification it : X — D?, gx a Kéhler metric of X such that Rx = 0 on a neighborhood of
Sing Xy, and g; an extension of gx to X constructed in Proposition 1.2 for any p € Sing Xj.

Then, Td(TX/D?, gf/Dz)(”“'”“) extends to a smooth (n + 1, n + 1)-form on X.
In particular, ., (Td(TX/D?, 8%/ Dz))(l’l) extends to a smooth d-closed (1, 1)-form
on D?.
Proof. — Let U be a neighborhood of Sing X; in X for which there is a coordinates
satisfying conditions 1), 2) and 3) of Proposition 1.2. Then, by Proposition 1.1,
(1.26) [Td(Rpy,pe)] " = 0
on U — 2. Therefore, by setting zero on 2, it extends smoothly to U.

Since

(1.27) n*(Td(TX”/D2,gy/Dz))“’”(t,f):/X( >Td(Tf/ D%, ggpe) "
e

_ / Td(TXV/Dz, gf{/Dz)(nJrl,nJrl)
X(te)—U
for (t,€) € D*> — 11(Z), we have

(1.28) "*(Td(Tf/DZ. g)’{/Dz))(l'l) = ,/)7_ - Td(T)A(:/DZ, gf/Dz)(nH’nH)

on D? — m(X). As 7t : X — U — D? is a differentiably trivial family of complex manifolds
with boundary, the right hand side extends to a smooth (1, 1)-form on D? because of (1.26).
Sinceitis d-closedon D?— % by the curvature theorem ([B-G-S 1], Theorem 0.1), its smooth
extension must also be d-closed. ]

2. Local description of Morsification

Let 1 : X — D be a smoothing of IHS, 77 : X — D? its Morsification. Put
(2.1) S ={xeX;x¢€ Sing)?n(x) 1.

By the definition of Morsification, codimg 2 = n + 1.
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Lemma 2.1. — 2 — Sing Xy is a manifold.

Proof. — Let (z, €) be the coordinate of Prop. 1.2. Then

,71(2,€)=(F(z, €), €). Since
F

p € Z — Sing X is a nondegenerate critical point of F(-, €), (%, e %, e) is also a local
coordinate in X around p. Clearly, ¥ N By(p) = % =.-.= aaT,, = 0} isamanifold.

LEMMA 2.2, — 1T : 2 — Sing Xy — 7r(Z — Sing Xp) is of maximal rank.

Proof. — By lemma 2.1, there exists a local coordinate (w, ¢) around p € Z —
Sing X, such that

NB={(we);w=0}, m(we)=(F(we)e).
Therefore, rank 71, = 1. -

Let
(2.2) =z #(E)=Js;
il jej

be the irreducible decompositions. Put

(2.3) I = {i € I;ﬁ(Z,-) = Ak},
(2.4) I=hU---Uly, LkN=0 (k#%),
(2.5) Z(]) = U Zi.

i€l

Then, fr : Z(;) — A is an analytic covering. As fr : ;) — SingXo — A; — {0} is
unbranched by lemma 2.2, #7t~"'(x)(x € A; — {0}) is constant. Set

(2.6) nj:=#it"'(x) (x€h;—{0}),

and define a divisor of D? by

(2.7) A= Z njAj.
j€J
ProposITION 2.1. — For0 < |¢| < 1,
#AND = nj-#D;ND) = Y u(p)
jel p€eSing X,

where D, = D x {¢}, and u(p) is the Milnor number.
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Proof. — As

(2.8) > nj#(B;N D) =Y #(Z(N7(Dy))

3 JjE€J
=#(ZNa (D)),

it is sufficient to show

(29) HENR(D) = Y ulp)

p€ESing Xy

But, for any p € Sing Xy, there is a small neighborhood U(p) in X and & > 0 such that, if
0 < |¢| < &,

(2.10) #Z N7 (D) N U(P)) = u(p),
because 7t : X — D? is a Morsification (cf. [D] and [L]). Clearly, (2.9) follows from (2.10). m

Let fj € O(D?) (prime in O ) be a defining equation of A ;:

(2.11) A= {(t,€) € D% fi(t,e) = 0}.
Then,
(212) r=T11"eow?

J€J

is a defining equation of A.

Since |A| N (D x {0}) = (0, 0), there exists an integer a € Z such that
(2.13) f(t,0) = b(t)-t* (b(0) # 0).
PROPOSITION 2.2.
= u(singXo) = > u(p)

pESing X,

Proof. — Letaj € Z be the integer such that

(214) £i(1,0) = b1 (b5(0) #0).
Clearly
(2.15) a= Z n;aj.

j€J

By Weierstrass preparation theorem, we may assume that each f;(z, €) is a Weierstrass poly-

nomial in ¢:
(2.16) fi(t &) = t9 + ¢j(e)t=1 + - -+ + cjq,(€) € Ocolt].
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Let d;(¢) be the discriminant of f;(¢, €). Suppose d;(¢) = 0in Ogy. Then,

d
(2.17) Nj:={(t,¢€); fi(te) = Ef](t €) =0}
is a divisor of D?, i.e., dim N; = 1. This contradicts that f; is prime in O .

Therefore, d;(¢) # 0in Ocg and, for generice € D, |¢| < 1, the equation f;(z, €) =
0 has mutually different a;-th roots. Thus we have
(2.18) a=Y_ n#(A;NDy)
JEJ
— u(Sing Xy). .

3. Reduction to the A;-singular family

We assume the following proposition in this section:

PROPOSITION 3.1. — Let 7w : X"™' — D be an A, -singular family, gx a Kahler
metric of X such that Rx = 0 on a neighborhood of Sing Xy, gx,;p the Hermitian metric of
TX/D induced by gx. Let (E, h) be a holomorphic Hermitian vector bundle on X such that
Rg = 0 on a neighborhood of Sing Xy. Let A(E) := det R, E be the determinant bundle
and || - || the Quillen metric associated to gx,p and h. If dim H(X,, E;) is a constant
function and dim H%(Xy, O(E,)) = dim H(Oz’;’ (Xo, Eo) forany q > 0, then ||- || g is a singular
Hermitian metric on A(E) and

(3.1) a(A(E),

where a(n) € Q is a constant which depends only on n. Here H(OZ’;I(XO, Ey) is defined as

o) = a(n)r(E)#Sing Xo8o + 1. (Td(TX/D)ch(E))"Y

follows:
L?;)] (Xo, Ey): the Hilbert space of L? (0, q)-forms with values in E,
B (X, Bo) = {f € L3)(Xo, o) Binf = (" Jminf = 0}

is the space of L? -harmonic (0, ) -forms.

Assuming Proposition 3.1, we prove the following theorem.

THEOREM 3.1. — Letm : X — D be a smoothing of IHS which admits a Morsi-
fication 7t : X — D?, gx a Kéhler metric of X such that Rx = 0 on a neighborhood of
Sing(Xp), and gx,p the induced metric on TX/D. Let (E, h) be a holomorphic Hermitian
vector bundle on X whose curvature vanishes around Sing Xy. Suppose (E, h) admits an
extension (E, h) to X such that
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1) dim H9(X,, E,) is a constant function on D* — {0}.
2) dim H9(X,, E,) = dim H&?(}"{'y, E,) foranyy € D* — {0}.

LetA(E) and || - || be the same as before. Then,

1) || - ||lq is a singular Hermitian metric on D,
2) a@A(B) |l llQ) = a(n)r(E)u(Sing Xo)8o + m.(Td(TX/D)ch(E))™"
where u(Sing Xp) :== >, u(p).
p€ESing Xy

By the anomaly formula (|B-G-S 1], Theorem 0.3, Theorem 1.29), if gx and g)’( are
Kihler metrics of X such that gx = gy on a neighborhood of Sing X, then

a(A(E), || - llo: 8x/p) — el (A(E),

is represented by a smooth (1, 1)-form on D (cf. [B-B], Theorem 5.1). Therefore, by Propo-

: ||Q; g)l(/D)

sition 1.2, itis sufficient to prove the assertion when gy admits an extension g5 to X so that
it satisfies the conditions of Proposition 1.2. In the sequel, we fix such an extension g and
consider A(E) := det R, E, and || -

||Q, 7 the Quillen metric of A(E) associated to 8%/

and h.
ProrosITION 3.2. — Under the situation of Theorem 3.1,
n |- ||Q & Is a singular Hermitian metric on D?,
2) cl(A(E), . ||Q§) = a(n)r(E)ép + n*(Td(T)?/Dz)ch(E))(l'l)

where A is the divisor defined in section 2.

For the proof, we need the following lemma:

Lemma 3.1. — Letp € L. (D* — {0}),  a d-closed real C* (1,1)-form on D?,
and A a divisor of D?. Suppose the following equation holds as currents on D* — {0}:

i —
—30p = as € R).
5 00¢=abp+y (a€R)

Then, @ € L. (D?) and the above equation holds as currents on D*.

Proof. — By the 90-Poincaré lemma, thereis f € C*°(D? R) such that

(3.1) W= —00f.

21
Let g € O(D?) be a defining equation of A. Then,

i —
3.2 Sp=——2001 2,
(3.2) a=—5-00logg|
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Therefore, on D> — {0},

(3.3) 20{p +alog|gl* — f} =o0.
By Hartogus’s theorem, @ + alog|g|?> — f has a smooth extension to D?, and (3.3) holds
on D?, [ |

Proof of Proposition 3.2. — Leto € A(E) be a holomorphic section which does
not vanish at 0. Let A be the divisor defined in section 2. Then, on D? — |A\, the following
equality holds by the curvature formula ([B-G-S], Theorem 0.1):

i 2 _ =2 S\ (L1)
(3.4) Znaalog||o||Q,E . (Td(TX/D”)ch(E))\".

By Proposition 1.3, Proposition 3.1 and [B-B], Proposition 10.2, the following equality holds
as currents on D* — {0}:

(3.5) Ziaa log|lo]f?, 3 = a(n)r(E)sn + m.(Td(TR/D?)ch(E)) ™.
m .
Then, by Lemma 3.1, log||o]| , - € L} .(D?) and the above equality holds on D*. ]

Proof of Theorem 3.1. — Leto € (D, A(E)),0(0) # 0and & € ' (D? A(E)) its
extension. Since || || o, coincides with || - || o restricted on D x {0}, we obtain, on D x {0}

(3.6) lolle = lloll oz

Let f € O(D?) be the defining equation of A. By Proposition 3.2,

(3.7) log [|o]|G = —a(n)r(E)log|f(1,0)* + g (g € C*(D)).
By Proposition 2.2, we have

(3.8) log |f(£,0)|* = u(Sing Xo) log |¢|* + (k€ C*°(D)).
Therefore, combining (3.8), (3.9) and (3.10), we get

(39)  loglloll} = —a(n)r(E)u(Sing Xo)log | + @ (¢ € C=(D)). .

4. Smoothing of IHS and spectrum of Laplacians

As before, let m : X"t — D be a smoothing of IHS, gx a Kéhler metric of X,
& = gx|x, the induced metric on X;, and 09 (resp. AY) the Laplacian acting on (p, q)-
forms (resp. r-forms) on (X;, g;). Let

o(DPT) = (AP(1) < AP9(r) < -}, o(A]) = {A{(1) < A3() < )
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be the spectrum of (/" and A’ respectively. When ¢ = 0, we consider (17’7 (resp. A})
to be the Friedrichs extension of the Laplacian acting on forms on Xg reg. Put H(’;)q (X) ==
Ker 0" and H(rz) (Xo) == Ker Aj.

THEOREM 4.1. — Under the above situation,

1) o(A}) isdiscrete forr < n,

2) lim,,o0(A]) =o(8y) (r<n),

3) lim,00(077) = o(@F)  (p+q<n),
4) dimH/ )(XO) =dimH (X;) (r<n-1),
5) dlme)q(XO) =dim HP9(X;) (r<n-—1).

CoroLrary4.1. — For p, q with p 4+ q < n — 1, there exists C > 0 such that
API (t)>C for t€D

hpa+1
where h?9 = dim HP9(X;).

Lemma 4.1 ([0 1]). — Set §(x) := dis(x, Sing Xy) for x € X. Then for any r-forms
(r<n)y of Xy,

_— < Cl||d 6
st ¢, < Cllawle + Iolec + 1410

where A, and C > 0 are constants independent of t.

Proof. — For simplicity, we prove the case when gx = 99 ||z||? on a neighborhood
U of Sing Xy, where z = (z, ..., z,) is alocal coordinates centered at each p € Sing X,. Put
Up(r) :== {z € Up;||2|| < r}. We may assume U, N Uy = Qif p # p'. As 6(z) = ||z]| for
z € Uy, by the argument of cut off function, it is sufficient to show the following inequality:

(41) ol|,, < cllawla: + lsewle)

PEr——
12[[? 10g 11
fory € A7(X, N UW(3)) (r<n).

Using the Jacobi identity (cf. [O-T1, Proposition 1.5, for F = log(— log||z||?)), we
have

(42)  (V-1[0dlog(—logs®), Aly, ) Hal g5

where A stands for the adjoint of exterior multiplication of 1/—133]| z||*.

(lagllze + [18:0]l2)

The eigenvalues of A := 93 log(— log || z||?) with respect to 20| z||* are given by
—1 1

43 Ag=A= — A= =A== ——
(43) 0 &(logs)2" ! n=H= S210gs
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LetV = TéXt C TQ(C”+1 be an n-dimensional subspace, and Ay, Ay 1 the restriction of
Ato V- respectively. Clearly

(4.4) TrA = TrAy + TrAy+

by the identification of quadratic forms with the Hermitian matrix corresponding to them.
By the above formula, we get

(4.5) —TrAy > (n—1)(—p) + (-A).

LetA;(f) < --- < A,(¢) be the eigenvalues of Ay. Then,

(4.6) [ (V) = l;lrifp{zm(t) +3 a5(0) —Z)\k(t)}
=g i€l j€l k=1

2 (n=1)(=p) + (=4) + (p + q) nfAi(z).

Ifp+ g < n—1,by(4.3) and (4.6), we obtain

1
4.7 I V)> —.
( ) P.q( ) = 62(log 5)2
Combining (4.2) and (4.7), we have the desired estimate, since (cf. [De])
(19) (VIIRBE N, ) > (V1T (V)0 0). .

LEMMA 4.2 (The Rellich lemma). — Let L] ,(Xp) be the completion of Aj(Xo reg) by

the norm ||@|[3, == ||@|3 + ||d®||5 + ||6®||3. Then, the inclusion

Ly, (X0) < Ly (Xo)

is compact.
Proof. — Put
(4.9) (Xo)e = Xo — (Sing Xo)., (SingXo)e:= | ] Up(e).
peSing Xy
Let {fn}nen C L{,(Xo) be abounded sequence:
(4.10) | fnll,2 < M < +o0.
In view of [Y 2], Prop. 5.1, it is sufficient to show
(411) [ £all 12 (sing x0)e) < CEloge™".
But this follows from Lemma 4.1. |
Cororiary 4.2. — o(A}) and o(OF%)(p + q = r < n) consists of discrete eigen-

values with finite multiplicities.

The following is a slight generalization of [Y 2], Theorem 1.1.
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Lemma 4.3. — For every small ¢ < 1, there exists 0 < y(¢) < & and a family of
into-diffeomorphisms for | t| < y(¢):

Jer  Xog & Xy
by which the following conditions are satisfied:
1) OnXoe |fo:8 — &l < Clt|g.
2) Xi— fer(Xoe) C (SIng Xp)2e N X;
3) Forg € Aj(Xoe), sllolRax, < () @l 2x, < 2@l
Let {p } (¢ < 1) be a family of cut-off functions on Xy:
1 (z€X.)

o lel g,
(a.12) pl= | o [ e U lal 2 9

0 (2€ Up(v/ahllzll < o).
For any r-form ¢ € A"(X;), put
(4.13) Pei = Pefey® € Co(Xoe) N Lip(Xo)
if |7] < y(¢).

Let {t;}, t; — 0 be a given sequence. For simplicity, we use X; instead of X;,. Let
{®k(i) }ren be a complete orthonormal system of L] (X;) which consists of eigenfunction
of Al:

(4.14) Aioi()) = AL (D)ee(d),  (@i(d), Pe(i))i = dke

where (-, -); stands for the inner product of L} (X;). In the sequel of the proof, we use the
same notations as [Y 2], § 5.

ProposITION 4.1. — For every N > 0, there is a subsequence {i(v)} such that the
followings hold for0 < k < N:

1) limy_ 0 AL(i(v)) = A%
2) |tiw)| < y(5) and

s— lim gr(i(v)) =@r in L}(Xp)

V=00

w— lim gi(i(v)) =@r in  L{,(Xp)

V—00
where
Wei(v) = py 11, @k(i(Y)).
For the proof, we need the following:
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Lemma 4.4. — Suppose Proposition 4.1 is true for N. Then,

lim supAn41(i) < Antr-
1— 00

Proof. — Inview of [Y 2], Lemma 5.2, it is enough to show that if { @, 1,;} approx-
imates @y41:
1
(4.15) lent1i — Prtallz,, < 7o SUPP@N41i C Xy,
putting
- 1
(116) xvia) = () e (6l <y(3))
then, for k < N,
(4.17) lim (xn+1(i), pi(i)); = 0.
1— 00
By Lemma 4.3,
(418)  [(xv+1(2) @k()i — (@n41s Wi(D))o| < Cltil [[@nill2/|wi (i) ]l2
< C|t,'| — 0.
By Prop. 4.1 for N,
(4.19) (@16 Wi ()] < [(@n41,6 @e)| + ok — wi(i)]| — 0
which combined with (4.18), yields (4.17). |
Proof of Proposition 4.1. — We prove by induction. Assume for k < N,
(4.20) lim Ap(i) =4}, lim yi(i) = @k
1— 00 1— 00

strongly in L; and weakly in L] ,, where

(4.21) wili) = pa ff, @uli) (1] < Vi)
In view of [Y 2], proof of Proposition 5.2, it is sufficient to show that for some subsequence

{i(v)}, there exists an eigenfunction of Aj, say ¢/(# 0), such that ¢y (i(v)) converges
to  strongly in L; and weakly in Ly ,.

By Lemma 4.3 and definition of p., we get
lon (D122 < 2{lldoson (DI + 1803 ona (D13 + lloz @i ()3}
1 2
. 2 .
(422) < 2{lowa o+ 555 ov Ol

< C(1+An+1(9)),

which, combined with Lemma 4.4, yields
(4.23) lwn1(D)IT2 < C(A+ 2ANn41).
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By the Rellich lemma, one can find a subsequence {i(v)} and ¢ € L{,(Xp) such that
(4.24) Jim gy (i(v) = @

strongly in L; and weakly in Ly ,. We may also assume that Ay (i(v)) convergesto A€R, .

By Lemma 4.3,
; 1 A2 1 ,
(4.25) lwn+1(i)ll5 > §||P%<PN+1(1)||2,,- > 5||<PN+1(1)||%2(XQ__K,-)
where K; := (Sing Xp) Jz N X;,. Since
N (12 1 . 1 N4
(4.26) ||<PN+1(1)||L2(1<i) < ;log lH W‘pl\’—i—l(l)nlg(m)

1 :
< C-logi(l+Ap),
i

combined with (4.25), we obtain

1 1
(427) Il > S{1 = C+Ans1)<(logi+1)}
1
> —.
4
This shows @ # 0. Since A;@n+1(i) = An41(i)@n+1(i), for any x € AJ(X, reg),

(4.28) (dy, dx) + (89, 6%) = A(w, X).

By the same manner as [O 2], for any f € Lj,(X),

(dw, df) + (9, 6f) = lim {(dy, d(p.f)) + (6w, 8(pef))}

. = lim A
(4.29) 1im A(w, pcf)
= A f).
This implies Agy = Ay and proves the proposition. |

PRrOPOSITION 4.2 (Ohsawa [O 1]).
Hiyy (X0) & H' (Youeg) (r < n)

In particular,
H{y)(Xo) X Hy" ™" (Xoreg) —> C

is a perfect pairing.

Proof of Theorem 4.1. — 1) follows from Corollary 4.2, 2) from Proposition 4.1,
since {f;}, t; — 0 is an arbitrary sequence, and 3) from 2) since (p, g)-forms of X; con-
verges (p, q)-forms of Xj.
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Proof of 4). — Put b, := dim H'(X;) (t # 0). By2), dim H(rz) (Xp) > by. Sup-
pose that strict inequality hold in this inequality. Then, by Proposition 4.1, one can find a
sequence {f;}, {@p,+1(%)} and ¢ € L{,(Xp) such that

D Ny=0, [¢ll.=1.

2) |t < y(%) and ¢p, 11 (i) == p2 f¥ t_(pbr+1(tj) converges to ¢ weakly in L; , and

i 2k

strongly in L,.

3) AL@p4(t) = Ap1(t) o1 (), (| @n41(80) |2y = 1.

4) Either @p,41(%;) € Imd or Imé.

Suppose there are infinite ;s with @5 11(#;) € Imd. Then, we may assume

@p,+1(ti) € Imd for every i by choosing a subsequence. Choose T € Hj (X reg) arbitrary.
By Proposition 4.1, we get

/ YANT= llm qu,+1(i)/\T
XO,reg

1
oo X(),reg

(4.30) = lm [ @p(6)A(f,)"T

i— 00 X;
i

=0,

since @p,+1(1;) is d-exact and T is d-closed which, combined with Proposition 4.2, implies
¢ = 0. Contradiction.

Suppose there are only finitely many #;’s with @5, 41(#;) € Imd. Then, consider
{dqob,+1(t,-)/ Abl.+1(ti)} instead. As, r < n — 2, we can apply Proposition 4.1 to above
sequence and obtain contradiction in the same way. |

Proofof5). — By3),

4.31 dim H?Y(Xy) > dim HP9(X,).
(2)
As
(4.32) H(rg)(XO) = @ H(l;)q(%) (7‘< n)'
p+a=r
5) follows from 4) and (4.31). [ ]

CoroLLarY4.3. — Letr: Xy — X, be a desingularization. Then, dim H” (X;, Ox,) =
dim HP (Xo, (93;0) forp<n—1.

Proof. — By Theorem 4.1, we get

(4.33) dim HP(X;, Ox,) = dim H(’;? (X).
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Since an element of H(pz';] (Xo) is a holomorphic p-form on Xy e it extends to a holomorphic

p-form on X; if p < n — 1. Therefore,

(4.34) dim H(";;’(XO) = dim H” (X, O, )- n

THEOREM 4.2. — Lett : X"™! — D be a smoothing of IHS. Suppose Sing X, is
rational. Then,
dim H(X;, Ox,) = dim H7(X,, Ox,)

foranyq > 0.

Proof. — When q < n — 1, the assertion follows from Corollary 4.3, since
dim HY(Xo, Ox,) = dim H9(X,, (95;0) if Sing Xj is rational.

Caseq = n. Since Sing Xj is rational,
(4.35) dim H" (X, Ox,) = dim H®(Xo, Kx | %)

it is sufficient to show that dim H° (X, KX| Xp) is a constant function on D. By Takegoshi’s
theorem (cf. [T], Theorem 6.11), we know

(4.36) r: (X, Kx) — (X, KX‘Xt) —0

is surjective for any ¢ € D. By the theorem of cohomology and base change (cf. [H], Theo-
rem 12.11), we get

(4.37) dim H°(X;, Kx| ) = dim Op,/m, . Kx ® Opy/m,-

Since T, Kx is torsion-free and dim D = 1, . Kx is locally free. Therefore, the right hand
side of (4.37) does notdepend on ¢ € D. |

Caseq = n—1. Asm: X — Disflat, 2,(—1)7dim H7(X;, Oy,) is constant
on D. Therefore dim H"~!(X,, Oy,) is constant because dim H9(X;, Ox,) is constant for

qg#n—1.
PROPOSITION 4.3. — Lett : X"*1 — D be a smoothing of IHS, gx a Kihler metric
of X, gx/p the induced metric on TX/D. Suppose Sing X, is rational. Then,

1) Ifu®9(t) stands for the first nonzero eigenvalue ofD?’q, then there exists a con-
stant C > 0 such that u®9(t) > C > 0 forany t € D* andq > 0.

2) Ifo € T(D(e), R, O¢) with o(0) # 0, then there exist 0 < C; < G, < 00
and k > 0 such that

0< Ci(log|t])™* <|lo(t)||l. < G, < +00 forany t € D*.

If (m, X, b) is A -singular, then we may choose k = 0.
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Proof of 1). — For g < n — 1, the assertion follows from Corollary 4.1. As
uom=1(r) < po"(t), it is sufficient to prove the assertion for ¢ = n — 1. By Theo-
rems 4.1 and 4.2, it is enough to show dim H(Oz’;l_l(Xo) = dim H""'(Xp, Ox,). Since

H?z’;l_l(Xo) & H"10(X,) by the rationality of Sing X, (cf. [vS-S], Definition (1.5)), and
H" (X, 0 5{0) &~ H"!(X,, Ox,) by the rationality again, using the Hodge symmetry, we
have

dim Hg’;—l(xo) = dim H"~'(X,, Ox, ) ]

Proof of 2). — Let @, € H*(mm~'(D(¢))) be a representative of o. By the Serre
duality (R, Ox)* = R"9m,wx,p there exists ¢ € H" "= 9(r~1(D(¢))) (¢ < &)
such that
(4.38) (P A @) = / oo Aw—dt (|t <&).

Xz
If H; stands for the harmonic projection, then
(4.39) Hos, Ay =dt (|t] <¢).
Xy

By Barlet’s theorem ([Bal]), there exists an asymptotic expansion
(4.40) / |w/dtl* = aolt|=* (log |¢])*(1 + O(|z[f))
Xi

forsome & > 0,8 > 0and k € Z>o.

Consider the Mellin transform:

(4.41) /Itlsdt/\df/ \w/dt]? =/ |fI°x av
D X;NU n-(D)nU

where U is a neighborhood of Sing X;, f a defining equation, x an appropriate smooth
function, and dv a Lebesgue measure. As is well-known (cf. [Bal, [Ko],§ 10 and references
therein), we find that o« — 1 is the largest root of Bernstein-Sato polynomial by (s) of f,and
k + 1 its multiplicity. Here we use the same definition of b-function as [Ko], § 10. By [Kol,
10.8, Remark, we have &« = 0 if Sing Xj is rational, which, combined with (4.39), (4.40)
and Cauchy-Schwartz inequality, yields the desired lower bound. When (m, X, D) is A; -
singular, as the b-function of A, -singularity is b(s) = (s + 1) (s + 1), we obtain k = 0
for n > 1, and get uniform lower bound. Since
1H:@o I3 < lloll2,
(4.42) < (\/—_1)4/ Qo APy A wy
Xt

S |C0—‘OO VOI(XI)J

we also obtain the uniform upper bound. |
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Let us consider an analogue of Theorem 4.1 for vector bundle valued Laplaciens.
Since Lemmas 4.1, 4.2, 4.3 also hold if the fiber metric of the vector bundle is flat on a
neighborhood of Sing X;, we have the following theorem.

THEOREM 4.3. — Letm : X — D be a smoothing of IHS, gx a Kidhler metric of X,
gx,/p the induced metric on TX/D and (E, h) a holomorphic Hermitian vector bundle. Let
027 be the 3-Laplacian acting on A% (E;) and o(007) = {aAY(¢) < A¥9(z) < ---}its
spectrum, where Dg’q is considered to be the Friedrichs extension.

Suppose R, = 0 on a neighborhood of Sing X;,. Then for g < n
lim o(0?) = o).
Jm o(O;") = o(0y")

In case of A; -singular family, we have the following:

THEOREM 4.4. — Letm : X — D be a A, -singular family, gx a Kédhler metric of X,
8x/p the induced metric on TX/D. Let (E, h) be a holomorphic Hermitian vector bundle
such that

1) R, = 0 on aneighborhood of Sing X,

2) dim HY(X;, Ox,(E;)) =0forq< nandt € D.

Then,

1) H(‘;)(XO, Ey) =0forqg<n,

2) dim Hj (X, Bo) = dim H" (X, Ox, (Eo)),

0, 0, = =

where H(Z?(Xo, E) ={f € LyJ(E);af =0,0 f =0}.

Proof. — For simplicity we prove the case SingX, = {0}. Let p : X, — X, be
the natural resolution and Y := p~'(0) the exceptional set. Since (Ox,,0) is an A; -

singularity, Y is a hyperquadric in P”. Let C be a local coordinate transversal to Y, i.e., ,
YN U = {C = 0}. Then,

(4.43) P gy, ~ |dgl® +1C1%gy. &g ~ |dL” + gv

where 8%, is a fixed Kahler metric of X, and gy a Kéhler metric of Y.

1) (g < n—1). Suppose there exists p € H?z’;](XO, E), @ # 0. Put @ := p*op.
Since

4.44 2(n=q) () "= < p* ()9 < 2(n—q=1) =4
(4.44) alZ| wg S Py < o] wg
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we get
2(n—a)| 512 Ay~ — 2(n—q) = A = n—q
(4.45) /U\CI @l dvg, = \/Ull:\ PAP WL

S/ |@|*dvx, < o0
U

which implies @ € L?’Z‘)’ (X, p* E®[Y]"7) with respect to some Hermitian metric of p* E®
[Y]"9. We show d® = 0 in the sense of current as an element of L?‘ZL)’ (Xo, p*E ® [Y]"9).
Since the problem is local, we may assume @ € L?’Z‘)](D”) ando® = 0on D" — A, A =
{0} x D"L.

Letx € Ay 77" (D). By definition, we get

(4.46) (0@, x) == (—1)q+1/ @ Aox.
Dﬂ
Let p: be the same as in Lemma 4.3 and put p, := p*p.. Then, by Stokes’s theorem,
we obtain
@@, x) = (-1)""lim [ ®ApIx
e—0 pn
(447) — (0 im{ [ #ndex - [ #Asnx)
e—0 pn pn
= (=1)71im ®@NAops A X,
e—0 Dn
and
o ) V—=1dC AN dC\ 3
@19) | [ onocnx| < clollxli{ voldeh ey
Dn e<|gi<ve |logel*[T]

c .
< ——?ll211Xllcor
v/ |logé|

we conclude 8 @ = 0.
Suppose HY(Xo, p*E ® [Y]"~9) = 0.
Then, by Hodge theory, one can find g such that

(4.49) ®=0mxg gELY (X p ER[Y]").

Noting p* E | v = C" (r = rank E), consider the following exact sequence of sheaves on Xo
forevery k > 1:

(450) 0 — Oz (P*E®[Y]*") — Og (P E® [¥]*) — Oy([¥]*|, ®C") — 0.

Since

(4.51) [Y]|, =—2H, H=0(Q),
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we know HY(Y, Oy([Y]* ‘ y)") = 0for g < n — 1 which, combined with the long exact
sequence of cohomology yields

(4.52) H (X, O3 (P E® [Y]*71)) = H(X, O3 (" E® [Y]))

forany g < n—1and k > 1. By the hypothesis 2), we obtain H9 (X, Ox (p*E®[Y]%) =0
forany k > 1and g < n — 1. Therefore we can find such g as (4.49). Since [Y] is trivial on
p~" (Xoreg), (p~")* g is considered to be a E-valued (0, ¢ — 1)-form on Xy reg. Then, for a
neighborhood V of 0, we get

—1\* — —q+1
(™) )2, = \/ gAEA Pl
p~1(V)

(4.53) < ¢ IZX= g A g A |
p='(V) %
2
S C||g||L2()A{6,p*E®[Y]”_q)’
which implies, by putting ¢ := (p~')*g, we obtain
(4.54) P = 5max4/; VS Lg’q_l(XO' EO)

Therefore by Lemma 4.1, we have

Il = timy | Gmaxtts pe0)

. =i —
(4.55) lim (@, — % 0pe * @)
. -1
< clim [0/ (61083) ™ Pl s ),
=0. ]

2) Letf € H&;’ (Xo, Eo)- Since the metric of E, is Euclidean on a neighborhood

of Sing Xj, 2 f = Oimplies df = 0. Therefore, f is holomorphic on a neighborhood of
Sing Xj, which, combined with the rationality, implies an isomorphism

(4.56) Hy (X, Eo) & H'(Xo, p* Eo).
By the rationality again, we have
(4.57) dim H(;) (Xo, By) = dim H"(Xo, O(E))- ]

1) (¢ = n—1). Since Sing X, is A;, Hardy’s inequality holds uniformly in ¢ (cf.
Appendix): for any f € A*"*(X,, E,),

(458) 55l < COBF o+ 18" ke + 1 £120)

where C is independent of ¢. Therefore, Proposition 4.1 holds also for (0, n)-forms. Sup-
pose Hy' ™' (Xo, Ey) # 0. Then, by Theorem 4.3, A?"~"(r) converges to zero. As AY"*(r)
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is uniformly bounded from below, A?" () — 0 since AY"~'(¢) = min{A?"~%(¢), A?"(£)}.
By Proposition 4.1 for (0, )-forms (which holds because of (4.58)), we get

(4.59) dim H(’;) (Xo, Bo) > dim H"(X;, Ox, (E;)) (t #0).

Since 1 : X — Disaflat family and H7(X;, Ox,(E;))=0forany q < n, dim H"(X;, O(E;))

is constant on D, which, combined with 2) and (4.59), yields a contradiction. [ ]
ProposITION 4.4. — Under the situation of Theorem 4.4,

1) A%(t) > C>o0foranyt € Dandq < n.

2) Ifo € T(D(¢),det R, O(E)), 0(0) # 0, then there exist0 < C; < G, < 400
such that, on D(¢) G < ||o|2(t) < G,.

Proof. — 1) follows from Theorem 4.4 and 2) is similar to Proposition 4.3. |

5. A Duhamel’s principle for the heat kernel

Let (M, g) be a complete Riemannian manifold of dimension n. Let (E, h, V) be a
Hermitian vector bundle on M with a Hermitian connection, H = V*V 4 Q a semipositive
self-adjoint Schrodinger operator on E, where Q € I (M, End E) with Q* = Q. Fixa point
p € M and a constant p > 0 such that

(1) p<3ip, where i, isthe injectivity radius at p,
@ |Vigi(x)| + |[V'h(x)] +[V'Qx) < G

forany x € B(p, 2p). Let K(t, x, y) be the heat kernel of H.

TaEOREM 5.1 (cf. [C-L-Y], Theorem 3). — Let A, be a differential operator of order
k at p. Then, fort € (0,+/R], R < p,

n+k R2

‘/ tl‘{ApK(t,p,x)}K(t,x,p)| g Ct "z expy(__+t>
M—B(p.R) ;

where C, y > 0 are constants which depends only onp, C; (1 < k + 4), and Ap.

The norm on End(E,, Ey) is defined by |A|> = Tr AA* as usual.

LemMA 5.1. — Let d(x, y) be the distance function on M. Put
1
p(xyt) = —d(xy) = Gt gns)=—20(yp (1+25)t—5)
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Then, foranyy € M and s € [0, (1 + 26)1],

1
E|Vyg|2 + g +2G = 0.

Proof. — See [C-L-Y], Theorem 3, and [L-Y], § 3.

LemMA5.2. — Foranyx,y € B(p,p) andt € [0,/p),

n d(x,
\VfK(t,x,y)| < Bt~ T exp ( - Lfy))

where By, y > 0 are constants which depends only on p and Ck.

Proof. — See [C-G-T], Example 2.1.

In the sequel, we assume 0 < s < T < ¢. Fix 0 € E) with \0p| = 1, and put

F(ys) = / K (s, y x){ApK(t, p, x)} opdx
(5.1) M—B(p,R)

= / K(s,y,x)xM_B(p,R)(x){ApK(t, p x)} opdx
M—B(p,R)

where X/_p(p,r) is the characteristic function of M — B(p, R). Let (> 0) € C5°(M) be
a cut-off function which satisfies ¢ = 1 on B(p, g), ¢ =00onM — B(p,R),and |V¢| <
CR ' on B(p,R) — B(p, ).

LemMA 5.3 (cf. [C-L-Y]).

1 1 i
—/ ¢*e8|FlPay| _ < —/ ¢2eg|F|2dy|s_0—2/ ds/ ¢ e(V, ® E VF)dy.
2 /m B 2J/m N 0 M

Proof. — Since F satisfies the heat equation:
(5.2) (aa—s + Hy) F(y,s) =0,
by the same manner as [C-L-Y], p. 1039, we get
5 | ety <5 [ et
(5.3) -2 /T ds /M ¢ e#(Vy,¢ @ EVF)dy
0

1 /7 1 E QF
+—/ ds/ ¢zeg|F|2<gs+—|Vyg|2—2< Q2>>dy.
2 Jo M 2 F|
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As |(E QF)| < G|F|? by Lemma 5.1, we obtain

! 1 (E QF)
2,82 2 2_,
/Ods/]wcbe\ I(gs+2|Vyg\ FE )dy

! 1 (E QF)
5.4 = ds/ P*e8|F|*(gs + =|V,g* — 2 d

T 1
< / ds/ ¢p2e8|F|? (gs + -|V,gf* + ZCO) dy =0,
0 B(R) 2

which, combined with (5.3), yields the assertion.

LEmma5.4. — For0<T1 <t < ,/p/2,
R

;
|/ ds/qbegWY"’@F’VF)dy\SCt—(§+’“)exp(—y—+yf)'
0 M t

Proof. — By the semigroup property of the heat kernel, we get

F(ys) = / K(s, y x){ApK(t, p, x)} opdx
M—B(p,R)

(5.5)
—(ay(t+sp0)o,- [ o K K ) oy
p.
and
(5.6) VyE(ys) =V {Ap(t+spy)}op— /B( 0 VyK(s, y, x){ApK(t, p, x) }* opdx.
2
By Lemma 5.2, we obtain
(5.7)
no_n d(y,x)? d(x,p)?
|/ K(s,y,x){ApK(t,p,x)}*apdx‘ < C/ s e T e N
B(pR) B(pR)

By an appropriate coordinates centered at p, we have

t St
(58)  td(yx)*+sd(xp)® > C(t+s)|x - my\z +C——d(yp)’,

r+s
which, combined with (5.7), yields

n d(y,p)
(5.9) |/ K (s, 3 x){ApK (1, p, x)}* opdx| < C(t-l—s)_it_lice_—ywysp :

B(p.R)
Since
n d(y.p)

(5.10) {ApK (1 + 5 p,y)}| < C(1 4 5)~ETHe 5,

by Lemma 5.2, we have

FO| < K +sp Y ol +] [ Koy (4Kt ) opd
(5.11) B(p,R)

S C([+s)_gt_§e_ T+s .



Similarly, we get

(512) VyE(rs)] < C (145 s b e
Since
(5.13) g(ys) < —d(zyls’;)z + G +28)t (s<t),
we obtain
| /M ¢ ef(Vyo ® EVF)dy|
<c/ e “H4 |1 [V | [V gldy
(5.14) B(pR)-B(p.R/2)

yR?

2 P L
< CR_le_%+Ct/ t_ks_%(t—l— s)""e 1t+5) dy
B(p,R)—B(p,R/2)

< CR"_ls_%t_("+k)e_¢+Ct.

Finally, we have

T 2
‘/ ds/ b (V,p® EVF)dy‘ < C\/?t_(”’Lk)R"_le_%’LC’
(5.15) 0 M

2
< critth o

Proof of Theorem 5.1. — Combining Lemma 5.3 and 5.4, we get
1 1 n R2
3 | Fertal <5 [ @aIRgofdy+ ot
(5.16) 2/M 2 Ja(p)
<cC t—(%+k)e—¢+Ct’

since F(y,0) = Xum—p(pr) (¥)K(1 ¥, p)op which vanishes on B(p, R). Suppose Vt < R
Then, as v/t/4 < R/2, we obtain

(5.17) / eg|F\2dy\H§/ ¢*e8|F|Pdy| .
B(p,/1/4) N M B
and, for y € B(p,\/t/4),
1
5.18 b)) > ——— — (1+26)Cyt
(5.18) gn1) 2 —oos — (1+28)G

which, combined with (5.16), yields

2
(5.19) FPdy|_, < crEtRe T Ht (i<R).

/B( p1/4)
Since | F(y, s)| satisfies the following inequality ([C-L-Y], Lemma 4.6):

(5.20) (A‘ — %>|F(J’, s)| > —k|F(y5)]
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for (y, s) € B(p,p) x [0, /p], where k(> 0) is a constant which depends only on p and C
(k < 4), by applying the Moser iteration argument to |F(y, s)|, we have

t 1
(s21) ppols e ([lar [ irompra)
P

which, combined with (5.19), yields

t
Fpof <cet [Lan [ Ry
0 B(p.V1/4)

L 2
(522) S e
0

2
<C t—(n+k) e—%+yl'

Therefore, we have
) _mpk R’
(5.23) | K(t,px){ApK(t, px)} ap‘ <Ct 2 expy(— —+t).
M—B(p,R) 13
Let {0y, - - -, 0,} be a orthonormal basis of E, (r = rank E). Then, by (5.23), we get

| tr{ A K (t, p, x) } K(1, x, p) |
M—B(p,R)

(5.24) = Z/M_B(pR)<K(t' p. X){A,K(t, p, x)}* 0y, 0)dx

nik R?
<Crt 2 expy(— 7+t)'

As an application of Theorem 5.1, we prove an effective Duhamel’s principle for the
trace of the heat kernel.

Let (M, g) and (M’, g') be Riemannian manifolds of dimension n, D CC Q CC M
and D' @ Q' «C M’ are domains of M and M’ respectively. Let (E, h, V) and (E', ', V')
be Hermitian vector bundles with Hermitian connections on M and M’ respectively. Sup-
pose that there is a diffeomorphism ¢ : Q = Q' such that

1 ¢(D) =D
(2) ¢*E'=E ¢*g =g ¢*W=h ¢*V' =V on Q.

Let H = V*V + Qand H' = V' *V' + @ be self-adjoint semipositive Schrédinger oper-
ators such that $* Q' = Q. Let K (¢, x, y) and K’ (¢, x, y) be their heat kernels respectively.

Tueorem 5.2. — Letp, Cx > 0 (k > 0) be constants sach that

(1) dist(D,0Q) > 2p, iy >2pforanyp € 3Q,
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@) |V*g| + |V¥h| +|V*Q| < Cx foranyx € 0Q, := {y € M;d(30Q) < p}.

Then, fort < ,/p,
‘/{tr K(t,x,x) —tr K'(t,x,x)}dx| <Cet
D

where C, y > 0 are constants which depends only on p, Cy, (k < 4).

Proof. — 1In the sequel, we identify K’(¢, x, y) with a kernel on Q x Q via ¢. By
Stokes’s theorem, there exists a first order differential operator B defined on E ‘ 20 such that

(5.25) /Q{(V*Vs, §) — (s, V*Vs')}dvg = /a(2{<B 5,8') — (s, Bs')}duvsq.

Choose o € E,. By Duhamel’s principle, we get

(0, {K(t, % %) — K'(t, 5, %)}0) = /ds/ (B.K (s 2 x)0 K' (£ — 5,2 %)0)

(5.26)
—(K(s,2,x)0, B.K'(t — s, 2, x)a)}dz

which, integrated on D, yields
|/tr{K(t, x,x)—K'(t, x, x) } dx|
D
t
gr/ ds/ az [ 1B.K (s 2, )| |K' (1—s, 2 x)|dx
o Jea Jp
t
(5.27) —l—r/ ds/ dz| |K(s z x)||B.K'(t—s, 2, x)|dx
o Joo Jp

t 1 1
gr/ ds{/ dz/ |BZK(s)\2dx}2{/ dz/ |K'(t—s)|2dx}2
M—B(zp) '—B(z,p)

R :
+/ds/ dz/ \dx / dz/ |B.K'(t— s)|2dx} .
M- sz M'— zp

Since
(5.28

)
/ dz/ IB.K (s 2 x)Pdx = / dz/ tr { B B,K (s, 2 %) K (s, %, 2)dx
2Q M—B(z,p) 2Q M—B(z,p)

and similar formula holds for the other terms, we obtain the assertion of the theorem by
applying Theorem 5.1.
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6. Sobolev inequality and lower bound of the spectrum

Let (M, g) be an n-dimensional Riemannian manifold with finite volume, (E, h, V)
a Hermitian vector-bundle with a Hermitian connection, H := V*V + Q a self-adjoint
Schrodinger operator, where Q € ' (M, End E) with Q* = Q. Put M := M x M and
m; : M — M for the projection to the i-th factor. Define E := m!E ® m}E, and H =
H®1 + 1®H on I*(E).

THEOREM 6.1. — Suppose the Sobolev inequality holds for H,ie,
If 22 < ACHS, ) forany f € [o(M, E)
where A > 0, v > 1 are constants.
Then, for the Friedrichs extensions of H (which is also denotes by H),
1) o(H) consists of discrete eigenvalues,

2) e "M js a trace class operator and the following upper bound holds for any
t>0;
Tre " < cr™v

where C = Const(vol(M), A, v, ).

Proof.

1) Forany f € y(M, E), put

(6.1) F(xy) = f(x)® f(y) € To(M, E).

Since

(62) 11 = 1711

and

(63) (Hf, f) = (Hf&f + f®HS, f®f) = 2(HS, f) | fII”
< (Hf, )+ |If1l2

combined with the Sobolev inequality for H,we get

(6.4) 1% < (HE £) + 1£15-

Then, by the same argument as lemma 4.2, the Rellich lemma holds for H, which
implies the discreteness of o( H).

2) Let {®;}$°, be a complete orthonormal basis of L (E) such that
(6.5) Hp; = Ai@;.
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Then the heat kernel of H is represented by

(6.6) K(txy) = Z e @i(x)(, @i(y)).
Put |
(6.7) Kn(t,xy) = ;Ve_qun(x) ® @i(y) € L*(M, E).
Then, :
(6.8) Try e = Z e~
i<N

~ I
:/M\|KN(E,x,y)|2de\.

Since Ky satisfies the heat equation

0 ~ 1 ~~
6.9 —Ky + —HKy =0,
(69) ot NN
we have (cf. [C-K-S])
e = (iR (5).8(3)
3 - = |HKn| =), Kn| = ~
(6 10) dt TrNe N 5 N 5 i
&G
= all™\2/ Mz

v

(@ e )l

1+1 It
a(me™) ()]
A( N N2
Since

(6.11) HI?NG)HI < r-vol(M)

Y

by lemma 6.1 below, we obtain
d _1 _2
(6.12) —(Teye™) 7Y > v

o (r - vol(M))

1
Av

AsTry e~ = N at ¢t = 0, solving (6.12), we have

| =~

<

1 -V
(6.13) Try e~ 7 < {N—% n A—(r-vol(M))—%t} _
v

Taking the limit N — oo of (6.13), 2) follows.

LEMMA 6.1. — ForanyN > 1,
/A |I?N(t, x,y)|dvg < r-vol(M).
M
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Proof. — Let I/(\N Lxy be the operator norm of I/(\N t,x,y) € End(E,, Ey),
op V

where we identify Ky with the corresponding integral kernel. Then, there exist ¢, f €
L (E) such that

D le(x)|=|f(x)]=1 aex€eM;

|sztxy‘ = (Kn(t, %, y)e(y), f(x)) ae. (x,y) € M.
Then,
(6.14) /M\‘I?N(t,x,yﬂopdvﬁ:/M(KN(t x,y)e(y), f (x))dxdy
= e ™(@s f)(e Pi)
i<N

sqzwmﬂizwmﬂ%

= [I£ll2 - llell2 = vol(M).

Since
(6.15) ‘I/(\N(t,x,y)‘ < r‘I/(\N(t,x,y)‘op
we obtain the assertion, combining (6.14) and (6.15). [ ]

CoROLLARY 6.1. — Under the situation of theorem 6.1,
Ap > Ckv
when C = Const(4, v, r, vol(M)).

ProrosITION 6.1. — Suppose the following inequalities hold on M:
1) Foranyf € CG*(M), [f]l 2 < Glldfl-
2) PForanys € Ty(M,E), |(Qs,s)| < Ci(Hs,s).

Then the Sobolev inequality holds for H,i.e., for any@ € FO(Z\7I, @,
loll o < C(ip,)
where C = Const(Cy, Gy, vol(M), r).

Proof. — Forp € Iy ]\//f 15 put

(6.16) x y) Z al](pl ® <P](}’)
Then, we get

©11) (@9 = |3 [ (06 3 () S aeul) dx
<> a (HZ aij@i(x), y akjcpk(x))
I i k

<G ((HO) @, @).
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Similarly, we obtain
(6.18) |(18Qp, @)| < GL(10HY, P).
Therefore, for A := V*V®1 + 1QV*V,

(6.19) (B0, @) = (Hp, @) — ((Q11 + 18Q)9, @)
<(1+ G)(He, ).

Let Vg be the induced connection of E by that of E. Then VE = Vi®1l 4+ 1®VE, and
AE = V%VE. Thus, by (6.19), we have

(6.20) V59l < (1+ Q) (g, @)

Since 1) implies the Sobolev inequality on M (cf. [Da]), i.e., for any ¢ € C§° (ﬁ )

(621) il s, < Colldw]la

where C, = Const(Cy, vol(M), v), combined with Kato's inequality, we obtain

(6.22) l®)n < GlIViel}
2v—1 E

< G(1+ ) (Hp, p). =

THEOREM 6.2. — Letm : X =5 D be a smoothing of IHS. Suppose Sing X, con-

sists of homogeneous singularities, i.e., for any p € Sing Xy, there exists a homogeneous

polynomial F(z) € C[z] such that (Ox,, p) == (C{z}/(F),0). Put X = X x X,

A" := i A" @13\ as before. Let gx be a Kahler metric of X such thatgx = 93| z||? with

respect to the coordinate z above. Then there exists v > 1 such that, forany € I ()/(\t N )
(r<n),

Il 2 < c{(Biww) + I3}

Proof. — When r < n — 1, we can verify the condition 2) of Proposition6.1 in the
same way as Lemma 4.1 by using F = log||z||* in (4.2). The condition 1) follows from
[L-T1, and the assertion follows from Proposition 6.1. For the case r = n—1, see Appen-

dix. [ |
COROLLARY 6.2. — Under the situation of Theorem 6.2,
lim Tr e =527 = Tre—20
1—0

foranys>0andr < n.
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7. Heat kernels on asymptotically flat manifolds

DEFINITION 7.1. — Let (X, g, 0) be a complete Riemannian manifold of dimension
m (> 2) with a (fixed) point 0. Put |x| := dist(0, x) = d(0, x), and iy for the injectivity
radius at x.

(X, g, 0) is said to be an asymptotically flat (AF) manifold if the following conditions
are satisfied:

1) There is a constant ¢ > 0 such that, forany y € X,
iy > c(1+yl) = Jjy,

2) If B(y, jy) stands for the metric ball of radius j, centered at y, and x=(xi,..., xm)

for the normal coordinates on B(y, j,), write g(x) = > gij(x)dx’ dx/ on B(y, j,). Then,
ij

for any x € B(y, j,) and multiindex & > 0,

Co T < (81(x) < Gol, [0%gij(x)| < Ka(1+ [y)) 7.

Let (E, h, V) be a Hermitian vector bundle of rank r with a Hermitian connection on

(X,80),s={sy,..., s} and unitary frame on B(y, Jy)- Put

hij(x) := h(si s;)(x), Vsi(x Z w;j(x
and Q = (Q;;) for the curvature with respect to s.

DEFINITION 7.2. — A vector bundle (E, h, V) is said to be asymptotically flat (AF),
if, for any y € X, there is a suitable choice of frame {s,,..., s;} on B(y, j,) such that
hij(y) = 5ij and

C7'1 < (mij(x)) < CI,
0% Rij(x)] < Ka(1+ [y)) 71,
|98 wij(x)] < Kg(1+ [y])~EHY
foranyx € B(y, jy), « > 0and B > 0 where C and Ky are constants independent of x, y. A
section Q € I (X, End E) is said to be asymptotically flat (AF), if, when Q = (Q;j(x)) with
respect to {s;®s} } on B(y, jiy),
0% Fij(%)] < Ko (14 |y[)=01+2)
for any x € B(y, jy) and o« > 0.
Put A := V*V for the Laplacian and H := A+ Q, (Q* = Q) to define a self-adjoint

Schrédinger operator on E. In the sequel, we assume that (X, g, 0), (E, h, V) and Q are AF
in the above sense.
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Following [B-G-V], pp. 82-87, let u;(x, y) € T (B(y, jy) % B(y, jy), m{ E1 @ m3 E) be
the function constructed in [Y 1], (2.4), (2.5). Put

(7.1) pr(r%y) = T(up + tuy + - - - tXuy)
(7.2) (1, % y) = (4mr)~ % exp{ . @}
(7.3) Fie(t,x,y) == K(t, x,y) — pe(t, %, )

where K (1, x, y) is the heat kernel of H. Note that for any y € X, Fi(t,-, y) is defined on
B(J’: jy)-

LEmMMA 7.1. — Forany(x,t) € B(y, jy) x Ry,

a m m
(a + Hx)Fk(t, x,y) = (amt) "2 "= 2 e~ T4 By

where B is the same differential operator as in [B-G-V], (2.2).
Proof. — See [B-G-V].

LEMMA 7.2. — Foranyx € B(y, j,) and i > 0, multiindex « > 0,

[0%ui(x,y)| < Cal1+ [y]) 7141720

Proof. — See [Y 1], Proposition 2.2,

Lemma7.3. — Foranyp € X,x,y € B(p, jp), and0 < t < %j,z,,

yd(x, y)z)

K(t %) < i exp (- :

where C, y > 0 are constants independent of p, x, y, t.
Proof. — See [Y 1], Proposition 2.1.

LEMMA 7.4. — For k > 3 + 4, Fy(-,-,y) extends to a C? function by setting
Fi(t,x,y) =0fort <0.

Proof. — See [C-Y].

Let X, € C*°(X) be a cut-off function such that X, > 0, X, = 1on B(y, 1j,),

Xy, =0on X — B(y, jy) and |dX,| < 4j;"". Put

(7.4) Ge(t, %, y) = X,(x) (% +H)E(Lx )
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t
(7.5) Hi(t,x,y) = / dT/ K(t —T,x 2) G¢(T,2,¥) dv.
0 X

LEMMA7.5. — Fort € [0,1+ |y|?],

sup  [Fi(-,-,¥) — He(+, -, y)|
[0,xB(n1iy)

<cf s IRCI+ s |HC)]
[0.£] x93 B(y.jy) [0,7] X3 B(3jy)
where C = Const(c, Cy, Ky, (|| < 2)).

Proof. — See[Y1], Lemma 2.3.

LEMMA 7.6. — Fort € [0, 1+ |y|?],

cy(1+ |y|2)>_

sup [Fel-1, )| < G (1 ) e (- L

[0.]x2B(33Jy)

Proof. — By definition and Lemmas 7.2, 7.3, for (s, x) € [0, t] X dB(}, j,), we get

m _ yd(xy)?

(76) |Fe(s %) < Cs™Fem 5 (1 s(L+[y") ™" + - + 551+ [y*)7F)

k 2
<Cs 2 25_7“(1 + [y)*) " exp ( _ ot ))

2s

_m _ cy(1+|y?)
< CMTE (4 [y (Hl)e’q’(_ ( 25| | )

since (14 |y|?)/s > 1. As s¥t1=% exp(—cy(1 + |y|?)/2s) is an increasing function in s,
we obtain the estimate. u

In the sequel, we assume k > % + 4.
LEMMA 7.7. — Fort € [0,1+ |y|%],

L i)y

_m _ cy
up (e, )] < G (14 ) ep (-
[0,6]x3B(31 jy) S

Proof. — For (s,x) € [0,£] X 3B(y, 1 jy),

(7.7)  |Hk(s,xp)| = ‘ / dT/ K(s—T,x2)Gr(T,2,y) dv‘
0 B(y.jy)

s/"dj/ K (s — 7)[|Ge(7)| dv
0 B(3.Jy)

+/ dT/ IK(s — 7)[| Ge(7)| o
0 B(J’r]'y)_B(J’:%fy)
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Put I; and L for the first term and second term of the right hand side respectively. Since
m
d(x,z) > d(zy) = ||s|* = X (z)* and d(x, z) > 1j, forz € B(y, 1jy), by Lemma 7.2

i=1

and 7.3, we get
m _YAp2? yd(x2)?  _ yd(y2)?
78 11<C/ dT/ s—-r “2¢g 2s-71) g (-7 g )
%i1ly)
k-1 (k+1
21+ [y)~* Y av
cy( 1+ v ))
%

C1+[yP)~ s ¥ exp (-

/ T dT/Z”<4]y{TSS_T)}_

er(1+ )y

8s

2
( sl ) dz
27(s — 1)
< CFE (14 y) W exp (-
Since d(x, z) > 1]y for z € B(y, j,) — B(), 1jy), in the same way as the above, we obtain

(79) I, < c/ dT/( g K
0 B(yjy)-B(nLj
TR ey(L+ ¥\ k-2 (k+1)
xexp(—7> z(1 —|—||) dv

4T
2 s
(k+1) (_ cy(1+ 1yl ))/ k—m (_cy(l +[yP )) d
O+ )4 exp (- L) [ at o e (— )
1 2
< Cs k+1——(1+|y| ) (k+1) Xp(—CY( +|y| ))
8s
Therefore, combining (7.7) and (7.8), we have
1 2
(7.10) L+L <8 (14 |y F ) exp ( - W)
1 2
< Ctk+1——(1+ |y| ) k—l—l) exp (_cy( ;_t|y| ))
for0 <s<t<1+ |y [ |
Combining Lemmas 7.5, 7.6 and 7.7, we obtain the following
ProposiTioN 7.1. — Fort € [0,1+ |y[?),
_ cy(1+ |y
sup  [Hi(-,,y) = Fiul, -, y)| < GO E (1 ) exp (- L),

[0,]x B(3.3 Jy)

ProposITION 7.2. — Fort € [0, 1+ |y/|?],

|He(t, 3, y)| < CEH7E (1 )~ H,
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Proof., — Put

(7.11) I:/td"r/|K(t—T,y,z)||Gk(T,z,y)|dv.
By definition, Lemmas 7.1, 70.2 and )7(.3, we get
|Hi(t,y,y)| <1
< c(+yP)~ k—H)/tTk_%dT/ |K(t—T1,y, z)| exp (—M) dv
0 B(xjy) 4T
@12) <oy [t [ (enmf en (G4 Ial7) az
-7

) e [abar [ (T g (2L 4

< Ctk-H (1_|_|y| ) k+1 m

TueoreM 7.1. — Let (X, g, 0) be an asymptotically flat manifold of dimension m
and (E, h, V) an asymptotically flat vector bundle. Let H = V*V + Q be a self-adjoint
Schrédinger operator on E with asymptotically flat potential, K (t, x, y) its heat kernel and
pk(t, x, y) its parametrix as before . Then, forany k > 0 and t € [0,1 + |x|?],

|K (6,3, 2) — it %,2)] < Gt 1= E (14 |2f2) =K+

where Cy is a constant which is independent of t and x.

Proof. — First we prove the theorem for k > 7 + 4. By Propositions 7.1 and 7.2,
we get

‘K(t,x,x) - pk(t,x,x)| = ‘Fk(t,x,x)‘
(7.13) < sup  |He(e,x) = e, x)| + | He(8 %, %)

[0,] x B(x, 3 jx)
< CEFHITE (14 |xf) R
which proves the theorem in this case. When k < 2 7 +4,ixN > % + 4, Then, since
(7.14) Fi(t,x) = Fn(t, % x) + (4mt) ™ % (g (%) + - + Nun(x x)),
we have

|Fi(t, % x)| < |Fn(txx)| + Cem 2 (¢ (1 + |22) =) 4 1 N (1 + [x2)7N)

(7.15) { Zk (1 " \x|2) }tk+1__( + |x]?)~(k+D)

Scr’““"( 1+ [x?) =+

ast <1+ |x|? ]
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8. Conic degeneration and asymptotics of analytic torsion

In this section, we prove a refinement of our previous theorem (cf. [Y 1], Theorem
6.1).

DEerINITION 8.1. — Let (X™, g, 0) be an AF manifold. It is said to be asymptotically
conical (AC), if there exist a compact Riemannian manifold (N, gy ), a compact set K C
X™ and a diffeomorphism

@:[l,oo) x N— X —K
such that, for some é > 0,

P*gx = dr* + rPgn + 0(r°).

The cone C(N) = (N xRy, dr*+r’gn = g¢(n)) is said to be the tangent cone of
(X, g). We often identify C(N) with its metric completion. Denote by K9(t, x, y) the heat
kernel of the Laplacian on q-forms (when X is a complex manifold, we use (0, q) for the
Laplacian on (0, q)-forms). Let

[e.e]
(8.1) K9(t,x,x) ~ (amt)™2 > ul(x)t' (t— 0)
i=0
be its asymptotic expansion.
Put B(r) := K U@~ !([1,r]) C X for r > 1. Then, B(r) is a manifold with bound-
ary N; 0B(r) =% N. Therefore, for a manifold M’ with boundary N, one can obtain a
compact manifold M by patching M’ and B(r) along the boundary:
(8.2) M = M’ Uy B(r).

Note that M does not depend on the choice of r (3> 1).

DEFINITION 8.2 (cf. [J-W]). — Let M be a compact manifold, M’ C M a submani-
fold with boundary N, and { g }o<s«1 a family of Riemannian metrics of M which depends
smoothly in €. Then the family {(M, g;)} is said to be a conic degenerating family with
tangent cone C(N) iff there exists an AC manifold (X, g) with tangent cone C(N) and a
Riemannian metric gy of M’ such that

1) M=MUyB(e!), g =¢8onB(e!),

2) !13(1) 8 = & in the C*°-topology, and g, extends to a smooth Riemannian met-
ricon My := M’ Uy Gy1(N).

Furthermore, if there is a smooth family of complex structures { I; } on M, a complex

structure I on X, and I on M, such that
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4) (M, I, g) is Kéhler,
5) I =IonB(e Y andI, — I,
then the family is said to be a conic degeneration of Kihler manifolds.

Let g7 be the Laplacian on (0, g)-forms on (M, I,, &), o(02%) = {fo< A%(e) <

A (e) <o } its spectrum, K(t, x, y) its heat kernel, and

(83) tr K29(t, x, x) ~ (41t)~ Z up(x, €)

0.q
(8.4) Tre—! e’ (amt)™ Z u(e)et  (u)(e) = / u?(x, ) dx)
M

be their asymptotic expansions as t — 0.

When ¢ = 0, Dg’q is considered to be the Friedrichs extension. Then its spectrum
consists of discrete eigenvalues and it is a trace class operator and admits an asymptotic
expansion as ¢ — 0 (cf. [C] and [B-S]).

Let n be the complex dimension of M. Let P%9(¢, x, y) be the heat kernel of the
Laplacian on (0, g)-forms on C(N). By using the polar coordinates x = (1, z) of C(N),

(8.5) ¥t 1,2) == tr P*9(t, x, x) ~ (418)~ Z > (z)r2i¢

is the pointwise asymptotic expansion as ¢ — 0 (cf. [C]).

Put

(8.6) D" (N) ::% /01 d—; /N {fo"’(u, Lz)— (41Tu)_"zn: a?’q(z)uj} dvy
j=0

n—1

1/00 @/ {fo’q(u 1,z) — (41Tu)_”Zaq'q(z)uj} duy
2 1 u N ¢l J j:0 ]
(1) = / a¥(2) dv.

N

By Cheeger (|C], Theorem 2.1), the following holds.

ProposiTiON 8.1. — Fort € (0,1],
0 n—1
Tre 'O — ()" Y u(0)e" - / (a11) =", 0) dv — D™(N)

i=0 '

1 1
—5 (41)""a24(1) log ;| < Ct

where C > 0 is a constant independent of t.
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Clearly, Proposition 8.1 also holds for the Laplacian on (0, g)-forms with coeffi-
cients in holomorphic Hermitian vector bundle (E, k) if (E, h) = (C’, flat metric) on a
neighbourhood of Sing M.

Our main concern is the determinant of Laplacian (cf. [S]) i.e.,

d
(8.7) logdet 0% := y SZOCO'q(S).
1 [ ,
(8.8) g (s) = m/ (T e ' _ dim H1(M, O(E))) dt,
$) Jo
n
(8.9) log T := Z(—l)"“qlog det 0%,
4=0

TueoreM 8.1. — Let {(M, L, g )} be a conic degenerating family of Kdhler mani-
folds with tangent cone C(N), {(E, J, h¢)} a family of holomorphic vector bundle on the
family such that (E, J;, he) = (C", h), h a flat metric outside of M', and converges to a
holomorphic Hermitian vector bundle ( E, Jo, hy) on My. Suppose the Sobolev inequality
is uniform in ¢ for {(1\//}, I X I, gg®gs)} ie, foranyp € T (]\//L, N9,

@l 2. < C{(O20, @) + [|oll2,}
wherev > 1, C > 0 are constants independent of ¢, .
Then, as ¢ — 0, the following asymptotic formula holds:
logdet %7 = (41)~"a%"(1)(loge)* + 2i*7(X) log e + Z logA?"(e) + o(loge)
0<A;(g)<1

where

i%4(x) = D*I(N) — lim /
( ) ( ) T—)OO( B(T)

(41) " "u%9(x) dvx — (411)""a29(1) log T)
1 _
o (am) 7T (1)),
Here (X, g) is the AC manifold associated to the family {(M, I, g;) }.
In the sequel, we omit (0, g) for simplicity. Put

(810)  I(T):= /X o [eK(T )~ (am7)~" Z w07} do

—1

# [y LK@ - (1) S ) o

i=0

THEOREM 8.2. — Under the situation of Theorem 8.1,

Jlim 1(T) = D(N).
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LemMA 8.1. — Under the situation of Theorem 8.1, there exist Cy, C; > 0 such that
D #{Ai(e);Aie) <1} < Gy

2) Y exp(—tAi(e)) < Gt~V (t>0).

Proof. — By the uniformity of the Sobolev inequality, using Theorem 6.1 and its
corollary, there exists C > 0 such that

1
(8.11) Ae(e) + 5 2 Ck>.

Assertions follow immediately from (8.11). [ ]

LEMMA 8.2. — Let Fi(t, x, y) be the same as (7.3). Then, fork > nandt € [0, 1],

‘ Fe(e72t, x, x) dvx| < Cpt*tl.
—B(e~1)

Proof. — Since tr € [0,1]andx € X — B(e™!),wehave 0 < ¢?¢ < 1+ |x/?, and
apply Theorem 7.1 to yield

/ |Fe(e72t, x,x)| dv < Cr(e™%t ’C+1/ (14 [x[2)~(+14m) gy
X—B(e") X—B(e~1)

o0
(8.12) < Cele k+1/ 2(k+1+n) 2n—1 4.

Put

n—1

A(g t) :=Trexp(—t ;) — (4mt)™" Z ui(e)t’

i=0

(8.13) _ /B oy () o — 1

_ /M (4" ) dve

ProposITION 8.2. — Foranyt € [0,1],
|A(g t)| < Ct
where C is a constant independent of €.
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Proof. — Let L.(t,x,y) = ¢ 2"K(e~2t, x,y) be the heat kernel of the Laplacian
on (0, g)-forms on (X, € gx ). By Duhamel’s principle (Theorem 5.2), we get

/trKg(t, x, x) dv, = / tr K (t, x, x) dv, +/ tr K (t, x, x) dv,
B(e—1) !

(8.14) = / tr L (¢, x, x) dv, +/ tr K, (1, x, x) dvs + O(e™ 1)
B(e—1)

MI
= / tr K(e72¢, x, x) dv, —I—/ tr K, (£, x, x) dve + O(e™7)
B(e—1) !

which, combined with the definition of A(, t), yields

n—1
A(g t) :/B( . {trK(f‘zt,x,x) (4me ™2t ”Z ui(x }de

i=

- / (4r6) =" un(x) dv—I(e=21)
B(e=1)—B(e~1/7)

n

(8.15) + /M' {trKs(t X x)—(Am) ™"y ui(x) i} dve+0(e™ 1)

i=0

:/ Fn(e72t, x, x dv+/ Fu_1(¢7%t, %, x) dv
B(e=1)—B(e~1/7) B(e-1V/7)

— I(e720)+0(1)

:/ Fn(e7%t, x, x) dv—/ =21, x, x) dv+0(1)
B(e—1)—B(e-1/7) X—B(e l\f
_ / Fa(e=2t, %, x) dv+0(1)

X—B(e=14/7)

where O(t), O(e~ ) are uniform in ¢.
The assertion follows from (8.15) by applying Lemma 8.2 with k = n. |
Put

(8.16) B(g t) :== A(g t) + I(e7%1).

ProposITION 8.3. — Foranyt € (0,1],

n—1
. _ _ 0,9 _ —n . i
lim B(e, 1) =Trexp(—¢ 0p7) — (4m10) Z_; u;(0) 1
. 1., 1
— [ (4m) "un(x,0) dvy — 5(41T) an(1) log -

Proof. — By Corollary 6.2, we have
(8.17) lin}]Trexp(—t 0;) = Trexp(—t ).
£—
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Since {(M, g)} is a conic degeneration, we get

(8.18) 8111)1(1) u;(€) = u;(0) (i< n),

(8.19) 21_1)% (410) " "uy(x, €)dve = / (410) " "uy(x,0) dvy, (i< n).
As

(8.20) un(x) = r=2"ay(z) + O(r=2("*2))

in the polar coordinates of C(N),

(821) lim (470) " un(x) dv = > (410)"an(1) log ~. .
€0 J B(e—1)—B(e~1v/7) 2 t

ProrosITION 8.4. — Foranyt € (0, 1],
lim [I(e7%¢) — D(N)| < Ct
lim |1(e721) = D(N)| <

where C is a constant independent of € and t.

Proof. — Since I(e~%r) = B(g, t) — A(g, t), applying Proposition 8.2,
|1(e7*2) — D(N)| = |B(e 1) — A&, t) — D(N))|
(822) < |B(& 1) - D(V)| + |Gz, 1)
< |B(g t) — D(N)| + Ct.
Therefore, by Propositions 8.1 and 8.3, we have

lim |I(e7%¢) — D(N)| < Ct. [ |
lim |1(e721) = D(N)] <

Proof of Theorem 8.2. — Let u be an arbitrary given number, {T,}, T, — 00 an
arbitrary sequence. Put &, := \/u/Ty. By Proposition 8.4,

. i ~211) — D(N)| <
(8.23) Jim |7(e;,°p) — D(N)| < Cu

Therefore, there exists n(u) such that, for n > n(u)

(8.24) [I(e52u) — D(N)| < 2Cp
which implies
(8.24) |I(T,) — D(N)| < 2Cp. [

ProrosiTION 8.5.

1 Ldr
lim / 9t 12y = D(N),
e~0loge=2 Jo t
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Proof. — As

1 Ydt !
(8.26) - / at 12y = / 1(e=%°) do
log e 2 I 0
by settingo = 1 — IJEEfZ , the assertion follows from Theorem 8.2, applying the Lebesgue
convergent theorem. |

Proof of Theorem 8.1. — Put
2 n

827)  8ole) = /0 8 {Trexp(—tmg — (am) ™" Y i) ﬂ'}%
(828)  8(e) = / {Trexp(—10,) — (am1) ™Y o) '} ?
& i=0
(8.29) 82(¢) := (4mt)™" Z % — (4m) 7" (1) un(e) + T'(1) h9(E)
(8.30) 83(e) == /100 % Trexp(—tO,) — h?(E).
Then,
(8.31) C.(0) = 89(¢) + &1(e) + 82(e) + 83(e)-

By Duhamel’s principle (Theorem 5.2) and Theorem 7.1, we get

n

|60(¢)| <| /OE % /B( ) {wk(e?txx) — (41TE_2t)_nZ u,-(x)(f_zt)i} dux|

(8.32) +|/OE ?/,{trl(g(t,x,x)—@rrt)_"z ui(x,f)ti} dve |

n

i=0
_cdt
+C e i —
0 t

2 2
€ dt & dt _c
gc/ e_zt——l-C/ t— + Ce 2 < C.
0 14 0 1A

By Propositions 8.2 and 8.5,

1 1 1
51(e) = / 9 e ) - / a / (a11) =" un(x) dvx + / a2
e ! e B(&V/1) 2

- _ /fz %/ (411) ™" un(x) dvx + (D(N) + o(1)) loge™* + O(1)
! B(V1)

=~ (am)"a(1) (t0g ;) + D(V) loge ™2

(833) - /1 %{ /B Ly () v -
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= (am)~"a,(1) (10g +)’

+ {D(N) - Jlim. ( /B . (417) " (x) dvx — (4) " "an(1) log T) } log e 2
+ o(loge).

We obtain

(8.34) 8,(e) = (4n)—"§_: % — (am)~"T" (1) an(1) log% + (1) hY(E)

by the definition of conic degeneration. And by Lemma 8.1, we have

(8.35) 63(5)22/ —exp —tA( )—I—Z/ —exp —1tAi(€))

0<A<1 A>1
= Y log——~+0().
0<A<1
Combining (8.31)-(8.35), we obtain the formula. |

To describe the behaviour of analytic torsion, introduce the following function.

DEerINITION 8.3. — Let (M", g) be a compact Kdhler manifold with possibly coni-
cal singularities (cf. [Y 1]), (E, h) a holomorphic Hermitian vector bundle. Define

n—1
Z(s) =Y _(-=1)(q - n){c*(s —I—dlmHOq (E)}.
4=0
PROPOSITION 8.6. — Z(s) is regular ats = 0.

Proof. — See [Y 1] and [Y 3]. Note that the assertion is equivalent to the following:

n—1
— _1\9+1 _ 0,9
Res Z(s) = ) (~1)""'(q — m)ay"(0)
q=0
n
(8.36) = (-1 qa%7(0)
q=0
=0. [ ]
THEOREM 8.3. — Under the situation of Theorem 8.1 with the uniform Sobolev in-
equality for g < n,
log T(g) = (2(0,0) — Z(0,¢)) log e* + Z(— )7 (g Z logAY(€) + o(loge),

0<A;<1
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where Z(0, €) stands for the Z-function for (M, E;) = ((M, I, &), (E, I, he)).

Proof. — By Theorem 8.1 and Proposition 8.6,

10§ 7(6) =( 3 (~1)7*(q - mDH()
4=0
(8.37) — Jim (417)_"/ i(—l)"“(q — n)uy?(x) dv) log &
—00 B(1) =5
+ z_:(—l)q“(q —n) Z logAY(¢) + o(loge).
q=0 0<A;<1
But we have
> (=1)%* (g - n)D*(N) — Jim (4")_"/ D (=D g - n)uy(x) dv
q=0 o B(T) 4—o
(830) = 30— m{ P + () [ a(0) e}
= M’

n—1

=Y (=)™ (g~ n)(am)""u?(e) + O(e)
q=0
= Z(0,0) — Z(0, &) + O(e),

since by Propositions 8.1 and 8.6,

n—1

(839) 2(50) = £ () + L;(—m“(q — m){D*I(N) + (am) ™" /M () v}
for some f € Ogy, and by [G],

(8.40) Z(s6) = g ) + :2;::<—1>q+l<q — ) (am)"u ()

for some f; € Ocp. n

9. Rationality of Z(0) for IHHS

Let (M", g 0) be a Kéhler manifold with a conical singularity. In this section, we
always assume that (O, 0) is an isolated homogeneous hypersurface singularity (IHHS),
and g is Euclidean around 0, i.e., there exist a neighborhood U of 0, an embedding i :
(U, 0) < (C"1,0), and a homogeneous polynomial F(z) € Clz, ..., 2z, such that
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1) (U,0) = {ze€C"; F(z) =0,|z]| <1}.
2) g= 03|zl

Put Y := {[z] € P";F(z) = 0}. AsdimSingM = 0, Y is non-singular. Let
L := Opn(—1) be the tautological line bundle of P and Ly := Ljy its restriction to Y.
Since Ly is negative, one can contract its zero section Zy (=2 Y) to obtain a complex space
(Cy, 0) with an isolated singularity. The blowing-down map is denoted by p : Ly — Cy.
Then, (Cy, 0) is nothing but the affine cone over Y : Cy = {z € C"*'; F(z) = 0}.

Since the construction of the resolution p : Ly — Cy islocal, one obtain a natural
resolution 5 : (M, Y) — (M, 0).

TueoreM 9.1. — There exist fy(x1,...,x,) € C[x] and g,(y1,..., yn—1,2) €
Q[y, z| such that, for (M, g, 0) as above,

D z(0,M) = fu(c(M))[M]

2) Z(0,M) — Z(0, M) = gu(c(Y), cr(Ly))[Y].
where c;(-) stands for the i-th Chern class.

First we remark 1) is essentially proved in the work of Bismut, Gillet and Soulé ([B-

G-S 2], [G-S 2], [F], [Y3]). Therefore, we only prove 2). For the proof, we construct a family
of Kiihler metrics {gx} (o« < 2) on M as follows:

(9.1) g =4 P8 _ onM — p~}(U)
* 09]|z||> + 00 log ||z]|> onp~1(V),

where V := U N B(3 ) by the embedding. Put
(9.2) (X, gx) = (Ly, 00]|2||* + 83 log ||2[|*| ., )-

Then it is a AC kihler manifold in the sense of § 8 with tangent cone (Cy, 30 || z||? ‘ Cr ). By

coordinate change w = o1z,

(9:3) 23] z||* + «*32 log||z||* = o<2(65||w||2 + 00 log ||w||2) = o’gyx.
Therefore, the family {(M, g,)} is a conic degeneration of Kihler manifold. Note that for
this family, complex structure is constant. By Theorem 6.2, the Sobolev inequality holds

uniformly for the family, and one can check there appears no small eigenvalues for this
family as in [Y 1], § 5:

(9.4) Y A >cC>o0
0% (o) <1

By Theorem 8.3, we obtain the following:

ProrosiTion 9.1. — Aso — 0,

log T(«x) = (2(0,0) — Z(0, )) log &® + o(log ).
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Let u(t) be a positive function on Ry such that u(z) = tfor ¢ < 3 and p(t) =
fort > %. Put
(9.5) Gre' *= Bu(lef2)+
fore € Plandt € (0,1]. Form : M := M x P! — P!, a trivial family on P,
G; = {Gye}epr defines a Hermitian metric on TM (C TM). Let R, be the curvature
of (T1\7I, G;). Combined with the theorem of Bismut, Gillet and Soulé (cf. [B-G-S]) and
Proposition 9.1, we obtain the following:

DN [—=

ProrosiTION 9.2.

2(0,0) — z(0,1) —/ Td(Ry)" 1) =
M

Proof. — Since the determinant bundle det R, O o, is trivial, its degree is zero.
By Proposition 9.1, the Quillen metric defines a generalized Hermitian metric on the de-
terminant line bundle. Then, as m,(Td(Ry)){"") extends to a smooth (1, 1)-form on P!
(cf. [Y 1], Proposition 1.1), by the same argument as [B-B], Proposition 10.1, the curvature
current of the determinant bundle is represented as follows:

(9.6) o =- (Z(o, 0) — Z(o, 1))50 + 1, (Td(Ry)) M,
Note that Z(0,&) = Z(0,1) for any ¢ # 0 by Theorem 9.1 1). Integrating (9.6) on P!, we
obtain

(9.7) deg(det R, O ) = Z(0,0) — Z(0, 1) _/ Td(RO)(n—H,n—H)
M
=0

LEMMA 9.1.

1
/ Td(Ry) = — lim dt/ / oTd (Ry; G—1 d Gt)
M 0200 p1(U) Jlel=s

where Td'(A; B) .= %| oTa(5 L(A+ uB)).

Proof. — By the Bott-Chern formula ([B-C], Proposition 3.15), we get

1
_ d
(9.8) Td(Ry) — Td(R) = 30 / Td(R; G 4-G)
0
onm~!(P') — D(§)) for any & > 0. Therefore, we obtain
1
_ d
/ / Td(R,) —Td(Ro):/ /Naa/ Td (R; GT'—G,)dt
P1-D(s pl-p@)JM  Jo dt
! - d
(9.9) = —/ / /Nd(aTd'(R,;Gt_l—Gt))
o Jrl—-D(s) J M dt

1
- d
:/ dt/~ oTd (R; GT' —Gy).
0 Mx2D(6) dt
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By taking the limit § — 0, we have

1
(9.10) / Td(R,) — Td(Ry) = lim dt/ / oTd (Ry; G;lic;t)
M 0 p~1(U) J|e|=6

5—0 dt

Q)
! - d
+lim/ t/ aTd (R; GT —Gy).
60 Jg (M= U)x3D(5) dat

Since G is non-degenerate on (M — U) x P~1, we get

(9.11) |5Td’(Rt;Gt_1%Gt)| <cC

on[0,1] x (M — U) x P~!, which yields

3Td (Rs; Gt—l%c;t)\ < C-vol ((M ~U) x aD(a))

(9.12) ‘ (M—U)xaD(5)
< Cé.

As G, defines a non-degenerate Hermitian metric on T™ , we obtain

(9.13) 0 = deg(det R, O p() = / Ta(R,),
M
which, combined with (9.10) and (9.12), yields the formula. |

Now, regard p~!(U) as an open set of Ly on which the following exact sequence
holds:

(9.14) 0 — Ly — TLy — m*TY — 0.

Note that m* Ly has a holomorphic section corresponding to the Euler vector field which
vanishes exactly along Zy. By the definition (9.3), the metric of T Ly is represented by the
following form with respect to (9.14):

(9.15) grLy = "8, ® (1+[|z]*)m"gry

where g;, is the induced metric from L, and gry the restriction of the Fubini-Study metric
of P", Identify (1* L)1 with 7m* T'Y by the projection.

LemMa 9.2. — Onp~'(U),
6 le = ! P
Codr T a2 e + o

where P : TLy — (m* L)~ is the orthogonal projection.

Proof. — By (9.1) and (9.3), on p~1(U),
9|20 ] ||
G, = Il !ZH
(9.16) |2l
=gy + (l2l* + le* + £)m" gry.

+ (llll* + [el* + 1)23 log || |*
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By differentiating (9.16) by ¢, we obtain the formula.

ProrosiTIiON 9.3.

1
Td Ry (n+1,n+1) _ _/ - Td R P (n,n)
[, T L Tl D)

where R is the curvature of T Ly with respect to the metric (9.3).

Proof. — Put
d _ _
(9.17) Td'(R; G;! - Gt) = Ann+ An—in NOJel* + Apn_1 A3|e|* + An—1n—1 N30 |e|*

for some A, 4(e) € AP9(Ly). Then,

= / dt/ / 0(Ann+ An_1n N 3|e|* + Apn_1 AD|ef?
0 p=1(U) Jlel=6 + Ap_yn1 A 03€)

1
(9.18) _ / dr / / BeAnn + 31 Ann 1 N3e]?
0 p~Y(U) J|e|=6
Fl / Ann —I—/ drAnn—1(6)
Sy ) g @)
5 / ann)) + / Ann1(6)
/|e|:a E( p1(0) ) () }

where Ay, ,_1(8) := f|€|=5 Apn—1 N\ 0|e|?. Since Ay, = Td' G;'4G,) and

(Rt‘ﬁx{s};
(9.19) G, = 90||z|* + (|e|* + £)ad log | z||*

on p~!(U) for § < 1, we have

1
Appn = Td' (Ry|= i —5——5—P
/nl(U) /||z||51 (el 2|2 + [e|? + ¢ )
—/ ! de’(R-P)
(9:20) <1 (eP+ O+ w?)y2m “
A/ le|2+2
1
= W{f(OO) — f(lef + 1)}
where
1 i
(9.21) f(r):/ )
lwlz1/v7 1+ |[w]? 2m
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As (Ly, gry) is asymptotically conical, we find | f'(r)| < C as r — 0. Therefore,

[ o
/dt/w W0~ (e + )

B '8t 2 s%dt
022) — omi f(oo )/0 G —I—21Tz/ 16+ 0

1 £/
t
+2m'/ %5%

= —2mi f(oc0) + 2171/ %—;2))
= —21Tlf( ) 0(1) (5 — 0).

ds + 0(6° log &)

Since G is a non-degenerate family of metrics on dp~!(U), and is of the form (9.19), we
get [Ann—1(z €)| < Cforany (z ¢) € dp~*(U) x D(1/4). Therefore, we have

‘ / Amn—1(5)| S / / |An,n—1 /\5|g|2‘
(9.23) ap—1(U) ap—1(U) J|e|=6
< Cé
Then, the assertion follows from Lemma 9.1, (9.18), (9.22) and (9.23). [ |

Let us now consider (9.14) as the following exact sequence on Cy — {0}:
(9.24) 0—S—TCy —n'TY —0
where S is the trivial bundle generated by the Euler vector field.

Let A € AY(End(S, $1)) be the second fundamental form associated to (9.24).
Then, the curvature Ry, of (T Ly, h) is represented as follows (cf. (1.5)):

_(Rs—A*AA —9A*
(8.25) R = ( 3A R(m*TY) — AN A* ) '

Identify Z = (zy, ..., z,) with the Euler vector field ) | zia%, and put e := Z/|| Z||.

LemMA 9.3. — Suppose h = 65||z||2|cy. Then, on Cy — {0},
Rs=m"R, =A*NA 0A=0A*=0
R(m*TY)=m"Rry + MR, ® I = m*R(TY ® L)

where Ry, is the curvature of (L, ||z||?) and Rry of (TY, 33 log || z||?).

Proof. — Since
312”2 ||=]”
l|=l1*
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(9.27) R(S) =Ry, R(T*TY)=mR(TY ® L),
we find

(9.28) Rpe = (R(S) — A* AN A)e + (0A)e.
Thus, it is sufficient to show Rye = 0.

Let C"+1 = 7O+l ‘ Cy be the trivial bundle, and consider the following exact se-

quence:
(9.29) 0— TCy — C"' — N-—0

where N = N, ,cn+1 is the normal bundle of Cy. Let Pc, : TC""' — TCy be the
orthogonal projection. Then, by definition,

(9.30) Rpe = Pg, dPCy de

where d stands for the exterior differential on C"*!. Since Cy is defined by a single homo-
geneous polynomial F, we get

(9.31) po, = 1- YLV VFt—(aF aF)
' @ T IvERE oz oz
Note TCy = {v € TC"";VF' . v = 0}.As
az Zd\|Z
o joo 42 zdlZ],
1P|
we have
VF VF
Pc,de = de — VF'dZ + VF' - zd|Z|
! IVE|? IVE|?
(9.33) VF VF
=de — w——dF + deg(F) - F——=d||Z||
IVE|? IVE|?
= de,
since dF = F = 0 on Cy, and therefore we obtain Pc, dPc, de = 0. [ ]

By a straightforward computation, we have the following.

2
LEMMA 9.4. — Put a(z) = %

Lemma 9.3, the curvature R of ( TLy, h) is represented as follows:

. Then, when h = gr;, and A the same as in

R— TR, — 1A* AN A dloga A A*
“\ —1i0loganA T R(TY ® L) +33loga® I — LAA A*

For the convenience of notations, put
1 a||<]1* 92|

9.34 xX=— uUu=-—>-———————— ypy:=—1>-_—_  Rs=R+6P
(534) e =P+ 2P ar
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and

(935) Tr Rg = A(),o(k) + uAL()(k) + UA(],l(k) + uvAu(k).

LEmMMA 9.5. — Foranyk > 0,
Alo(k) = A()l(k) =0.

Proof. — ByLemma9.4,

[ xRy 0
Bs = 0 ™ Rry + (1 —x)m* R, @ I + (1 — x)AN A* + 61

(9.36)
-I—uOA* —xv00+uv00
0 O A 0 0o 1)/’
Since
d
k k—1
(9.37) Am(k)za|u:v:0TrR§:kTrE|u:v:0R5-R(s ,
and
d 0 A* ¥ 0
(9'38) E|u:v:0R5:(0 0)’ R‘s‘u:v:O:(O *)’

we have Ajg(k) = 0. Similarly, we get Ay (k) = 0.

LEmMMA 9.6. — Foranyk > 0,
Ag(k), A (k) € Z[m* Ry, Te(mr* Ry )X, Te(mr* Ry ) ' A A A%, x, 8]k 130-

Proof, — Put A := Z[m* Ry, Tr(r* Ry )X, Tr(r* Ry ) !A A A%, X, 8]. As

_ Rll 0
(9'39) R‘s‘u:v:O - ( 0 R22> ’
we have
(9.40) Ayp(k) = RE + T RE, = rRE,  (mod A).

Since Ry, = m*Rry + (1 — x)AAN A* + AI (A € N\), we get
TtRY, € Y A -Te(m*Rry + (1— x)AAA)

(9.41) =t o o
€ > A-Tr(m*Rry)"(AAT) - (" Rry) " (AAT).
[1=17I<k
But
Te(m* Rry ) 1 (AA*) - (0 Ryy ) H(AA*) (i -oeji > 1)
(042) = (A" AVI=EA A* (" Ryy)TA A -+ - A A* (" Rpy ) A

— (A*A)Ifl—l A Tr('rr* RTY)ilAA* v TI‘(’IT* RTy)ilAA*
e N
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Therefore, Ayo(k) € /. Similarly, we have
62

B k
Rll(k) - auav‘u:vonrRa
02 k-1
(9.43) = KT (o] s ) B
d i (0 ]
bk =1) Y (] o) R (o) B
i+j=k—2
As
(9.44) h - (o 7
A auav‘u:UZORé o 0 I !
02 k—1 k—1
(945) Tr (m‘u:vzo& R5 =Tr R22 € /\
Similarly, since
(9.46) E‘u:v:OR‘s = (0 0 ) %‘u:szR‘s =X (A 0)’

we obtain

T () B (5| oo ) B

0 0 0 R,)\a o 0 R,
= —x(m* Ry)! Tr R., AA*.
As before, we can show Tr Ry, AA* € A and complete the proof. [ |
ProposITION 9.4.
Tr(r* Ry)FA A A* € Q[r* Ry, Tr v RS Jieso.
Proof. — Let Ac, be the second fundamental form of the exact sequence (9.29)

with respect to the Euclidean metric. Then, since C"*+1 is flat, in the same way as (1.6), we
get

(9.48) Re, = Ay, NAc,, Ry =Ac, NAY,

where R, and Ry are the curvature of TCy and N respectively, which, combined with
Lemma 9.3, yields

(9.49) R(M*TY) — ANA* = Af, A Ac,.

Put Ao := Z[r*Ry, Trt*R¥]i>o. taking the trace of the both hand sides of (9.49), by
Lemma 9.3, we get

No D TrR(m*TY) —TrAN A" = Tr Ag, A Acy

(9.50) n
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and therefore,
(9.51) Tr(Ag, A Acy)® = —RY € A,
Now, we prove the proposition by induction. When k = 0, the assertion is clear from

Lemma 9.3. Suppose Tr(* Rry)¥A A A* € A for k < m. Combining (9.49), (9.51) and
Lemma 9.3, we obtain

(9.52) Tr(m* Rry — AN A*)™? = Te(Af, A Ac, — T R @ 1) € .

By th same computation as in Lemma 9.6, we get

(9.53)
Tr(m* Rry — AN A*)™2 = Te* RYY? — (m+ 2) Te(m* Rey) " TPA A A*

+ Y a(l) Te(n* Rry) "A A A” -+ Te(mr* Ry ) LA A A°

|| <m
for some a(I) € Z[m*Ry). Therefore, by the hypothesis and (9.52), Tr(7*Rry )" 1A A
A*E/\O. |
Coro1LARY9.1. — Foranyk > 0,

Ago(k), A1 (k) € Qm* R, " Tt Ry, x, Sle>1

THEOREM 9.2. — For any n>1, there exists fu(Jo,---, Yn % %, w, 8) € Q[y, 2, x, w, 8]
such that, for any smooth projective hypersurface Y in P"+1,

1
Td(Rs) = fo(t"c(TY), m 1 (L), T[22

VT VT 0l AP

ar 2w [l2lP(1 4 [l2]?)*

T,6)

where

Proof. — By the Chern-Weil theory, there exists a polynomial g(xi, ..., x,) € Q[x]
such that

(9.54) Td(Rs) = g(Tr Rs, ..., Tt RY).
By Corollary 9.1, there exist ax (¥, z, x, 6), bi(y, z, x, 8) € Q[y, %, x, 8] such that
(9.55) Tr R = ap(m* c(Y), *c1 (L), x, 8) + the(m*c(Y), *c1 (L), x, 6).

The assertion follows from (9.54) and (9.55). [ |

Proof of Theorem 9.1.
By Proposition 9.2 and 9.3, we get

(9.56) 7(0,0) — Z(0,1) = /

1
—_Td' (R P)™),
T e ¢ &P
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Since Rs = R + 6P, by theorem 9.2, we have

d
Td (R P) = o5y Td(Rs)
(9.57) e .
= _‘ fa(m*e(Y), e (L), ———5, T, 5)
dé 5=0J7 4 s 1+ ||Z||2’ »0),
and therefore
(9.58)
Td’(R; P)(n,n) — i i| fn—l(TT*C(Y), - Cl(L), 1 T 5)(n_1’n_1)T,
dt'™=0ds§ 6=0 1+||Z
which, combined with (9.56), yields
7(0,0) — 2(0,1) :/Tazf”—l(n*c(y) e (L), —— 0,0)[Y]
959 ¢l i C aTa6 1 1 1 1+||z 21 il
(99 102
:/ 3135 (" e(Y), m (L), x,0,0)dx[Y],
0
as
(9.60) / 1 1 /1 kg
- T= = x"dx.
c(T+lzl®)* 14k Jo

10. Proof of Proposition 3.1

In this section, we always consider the situation of Proposition 3.1.

ProrosiTionN 10.1. — Suppose, for any p € Sing X;, there exists a coordinate

(20, - - -, z2n) centered at p such that, on a neighborhood of p,
(1) 1(2) = apzs + -+ anz: (ao---an #0),
2) gx =ldz|*+ -+ |dza|

Then, Proposition 3.1 holds.

Proof. — By the hypothesis, Theorem 4.3 and Proposition 4.4, there exists o €

I (D(¢),A(E)) such that, for r € D(¢),

10.1 0<CG < |lo(t 2SC2<+OO,
(10.1) | (2)]]
and
n
(10.2) 1)) logat(1)] < Gs.
q=0 0<A<1
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Set
(10.3) Yy :={z € P"apz5 + -+ + anz; = 0}.

Then, the family {(X;, g:)} is a conic degeneration with tangent cone (Cy,, gcyp) corre-
sponding to each singularity, and the uniform Sobolev inequality holds for this family by
Theorem 6.2. Applying Theorem 8.3 and 9.1 to {(X;, g;) }, we obtain

(10.4) log T(¢) = (Z(0,0) — Z(0,1)) log|¢| + o(log|¢]).

Note that €2 = |¢| for this family, since X; is given by {ayzZ + -+ + a,z5 = t} ona
neighborhood of the singularity.

Combining (10.1), (10.2) and (10.4), we conclude that the Quillen metric is a sin-
gular Hermitian metric on D. By Proposition 1.3, .. (Td(TX/D, gX/D))(l'l) extends to a
smooth (1, 1)-form on D. Therefore, by the same argument as [B-B], Proposition 10.1, the
curvature current of (A(E),

- | @) is given by
1
(10.5) & = —2(2(0,0) = Z(0,1))8 + . (Td(TX/D, gx/n)) Y.
By (8.37), Z(0,0) — Z(0, 1) is localizable, i.e., by setting
(10.6) W, = {[w] € P a0wf + -+ - + anwl — twl,, = 0},

(10.7) Z(0,0) = 2(0,1) = r(E) Y {ga-1(c(¥p), 1 (L)) + fu(c(Wo)) — fule(W1))}-

p€ESing Xy

Since any pair (Y, Lyp) is isomorphic to a specific quadric Y (a@; = 1forany i) and Ly =
Opn ( —1 )

(108) gn—1(c(Yp), c1(L)) + fulc(Wo)) = fu(c(Wh)) = a(n) € Q

which, combined with (10.5-6), yields the assertion. [ ]

y» and the similar holds to Wp, W1, we get

LemMA 10.1. — Let gx be a Kahler metric of X such that

1) gk = 00|zl + X Aij(2)dzidz;,  |A;(0)| =0 (0<4ij<n)
L]

2) m(z) = apzs + -+ + anz?

on a neighborhood of any singular point of Xy. Let gx be the same metric as Proposition
10.1, Td(TX/D; gy, gx) the secondary class associated to the Todd genus with respect to
8% and gx. Then,

| [ Ta(TX/D; g}, gx)"™"| < C
Xy

where C is a constant independent of t € D.
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Proof. — Since the problem is local, it is sufficient to show

(10.9) | Td(TX/D; gy gx)"™"| < C
X;NU

where U is a neighborhood of Sing Xj. Put

(10.10) g :—egx+(1—¢€)gy, &= gg|TX/D.
By the Bott-Chern formula, we get

1
— d
(10.11) Td(TX/D; g, gx) = / Td (Rig ' g)de
0

where R, is the curvature of (TX/D, g./p). Set
(10.12) Vi={ze C"Saz+ -+ anz, = t},
b ViNB(|E]~2) 3z = Viz € V; N B(1).

Then, we obtain

(1013)  dig(a) = [1(e3el + (1 - ) Y Ag(Vi)dzdz),
Lj
and
d
(10.14) a(l):gg = —|t‘ ZAij(\/fz)dz,-dz'j
Lj

which yields, for any z € V; N B(|¢|~ %),

* _— d * 1
(10.15) |bre: 1E¢tge(z) g = —11 > 145(Viz)| < Cle]2| 2.
Lj
Put
(10.16) Ge(z) = 00|12l* + (1 — &) Y _ Aij(v/12)dzidz;.
Lj

Since ¢;g = |t|G;, we have Ry-g = Rg, (cf. [Y 1], proposition 1.1). Identify G, with the
matrix I + (1 — €)A(y/2z). Then,
2

aziaz'j

(10.17) \ Gz 1)| < Clt]

forany (z,t) € Vi NB(|t|~2) x D, which, combined with (10.15), yields

\/ Td(TX/D; g, gx)""| = # Sing X, | | TaA(TVi/D; b go, b))
Xnu VinB(|z|” 2
d
1018 <C Re|"|big ' —bi&|,.. dv
( ) /Wlnms(|z|%)| o l"léie ar P18l

lt] 2
< C/ £ 2 P2  dr
0
<C u
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Taeorem 10.1. — Proposition 3.1 holds.

Proof. — Let gx be a given metric. Since the metric is kéhlerian, for each p €
Sing Xj, there is a coordinate neighborhood (Up, z = (2, ..., 2,)) centered at p for which
the assumption of Lemma 10.1 holds. Let gy be a Kéhler metric of X which coincides with
gx on X — Upesing X, Up, and is of the form

(10.19) gk =23]zl* (v,  Up).

Leto € '(D(e),A(E)), o(0) # 0 be a holomorphic section, |o||q and |||/, its Quillen
norm with respect to gx,p and gy sp respectively. By the anomally formula ([B-G-S 1], The-
orem 0.2),

!
oy
lollo
whose right hand side is bounded on D by Lemma 10.1. Therefore, by Proposition 10.1, we

(10.20) log . (Td(TX/D; gx/p, 8xp) ch(E))*Y,

have

(10.21) log ||o||, = —a(n)r(E)# Sing X, log |¢|* + O(1).

Since 32 log [|o]|7, extends to a smooth (1, 1)-form on D by Proposition 1.3, we have the
following equation on D in the sense of current:

(10.22) a(A(E), || - o) = a(n)r(E)# Sing Xo80 + 1, (Td(TX/D) ch(E))Y,

11. Evaluation of the universal constant

In this section, we evaluate the constant a(n) in Proposition 3.1.

THEOREM 11.1.

“M= G
Letm: X"*1(d) — D be a family of projective hypersurfaces defined as follows:

(1) X" d) ={([x, 1) € P x Dyxd +--- x4 —txd; =0}, w([x, 1) =t

By calculation, X;(d) is non-singular for  # 0, and Xy(d) has only one singularity at
([0:1),0). Let (C"*, (2, ..., z,)) be an affine coordinate of P"*'. Then, this also becomes
alocal coordinates of X(d), and 1t is expressed as follows:

(11.2) m(z) = 2] + - + 22
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Let g4 be a Kihler metric of X (d) such that
(11.3) ga = 29]|2?
on a neighborhood of the origin expressed in the above coordinate.

Let L = 11} Opnt1(—1) be aline bundle on X(d), and hy(z) = 1 + ||z||? the natural
Hermitian metric of L (expressed in the affine coordinates). Let x(¢) : Ry — Ry bea
non-negative convex increasing function such that x(¢) = 0 for ¢ € [0,log2], x(¢) = ¢ for
t € [log5, 00), and put

(11.4) b(2) = x(log(1 + |[2]*)) — log(1 + [|2l[*),  h(2) := €® ho(2).

ProrposiTiON 11.1. — There exists a non-negative function A(% 0) on P"*! such
that, foranyt € D andany f € A?(’?(L) (g<n),

/ A@)If Pdvy, < (O¥F, 7).
Xi

Proof. — Let Ry, be the curvature of (L, k). Then,

(I B)(= o) = 5 -ox(1og(1 + [2])

1 _
= x'(ho(Z))ga.a log(1 + ||2[|*)
1 _
+x"(ho(2)) -0 log(1 + |12]|%) A& log(1 + ||21%)
i 9]2]%]ll”

(11.5)

= —X'(ho(2))wpns1 — X" (ho(2))

2m (1 + ||2]]2)?
where wpn+1 is the Fubini-Study form of P"*!, Therefore, as x’, X"’ > 0 by definition, we
get
(11.6) —(X' + cx"wpnr1 < (L h) < =X wprn

for some ¢ > 0. Since gx,p is uniformly quasi-isometric to the induced Fubini-Study met-
ric, by (11.6), we have

(1L.7) —G(x' +ex")Qx/p < a(L )|y, < —Cx'Qxp
where Q x,p is the relative Kihler form associated to gx,p.

Now we apply Kodaira-Nakano formula (cf. [K] and [De]) to obtain
(118) ©@f, £) — @F.F) = (V1[Rw NS F)

where E(t)'q =0%0 + 00*, and /\, is the adjoint of the exterior multiplication of Q;. By the
formula of Gigant ([K], III, (3.6) and [De]) and (11.7), we have

(11.9) (V1R NS, ) = GX'IF P
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which, combined with (11.8), yields

(11.10) Cs/ X (ho(2))|f (2) Pdvx, < (OFf, f)e n

X;
Put A%7(¢) for the i-th eigenvalue of (17 as before.

ProposITION 11.2. — Foranyqg < nandt € D,
@ H(XoLo) =0,
@ A¥(r)>C>0

where C is a constant independent of t.

Proof. — Clear by Theorem 4.3 and Proposition 11.1. |

Since H7(X;, O(L;)) = Oforany t € Dand g < n, det R, O(L) is trivial and gives
trivial contribution to the Quillen norm for the above range of g. By the flatness of the fam-
ily, H"(X;, Ox, (L)) has a constant dimension in ¢, and R"m,O(L) becomes a locally free
sheef on D whose dual is given by 1. wx(a),p(H), where H = L' is the hyperplane bun-
dle, and wx4),p is the relative dualizing sheef. Regard m.wxq4), p(H) as a vector bundle
on D, and construct a holomorphic frames as follows.

First consider the following exact sequence of sheefs for any hypersurface S in P"+1:
(1L.11) 0 — QFHL(H) — Qptl (log S(H)) — Q%(H) — 0
in which, the residue map gives the following isomorphism:
(11.12) Res: H'(P"™, Qptl (log S(H))) = H(S, Q§(H)).

Identify V := H°(P"*', Q7! (log S(H))) as the space of meromorphic (n + 1)-forms
on P! with logarithmic poles along S and H. By computing the transition relation, we

obtain the following.

Lemma 11.1. — A basis of V is given by

fdzg N---Nd
(== el <d—(n+1)}

F(z)
where z¢ = z---z&, |e] = Y. e; (e; > 0), and F(z) is the defining equation of S in
crt1,
Proof. — Since it is straightforward, we leave it to the reader. [ ]

Consider the family (1, X(d)). By computing the residue map, we obtain the fol-
lowing.
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ProPOSITION 11.3. — A basis of 1. wx(a),p(H) is given by

frr—

e
Fdzl/\.../\dzn;\d Sd—(n-i—l)}

Put
(11.13) 0’ (1) = Nej<a—(np1)T° € A" H(X;, Q% (H)).

Then, o’ is a non-zero holomorphic section of det 17, wx,p(H) which does not vanish at
t=20.

ProrosiTioNn 11.4. — Ast — 0,
1 d 1
1 "), = —= log |£|* + O(loglog —).
o810/l =~ (, ) 081+ + Oltogtog
Proof. — Set
(11.14) WP S g e zey] = [téz() Teee: téZn_f_]] e prtt

which induces an isomorphism y; : X;(d) — X;(d). As

n+lel—(d—1)

(11.15) gty =t a  T%(1),
we find
2(n+|e|
(11.16) T3 = llwrTe(0)ll5 = || || ‘M3
Since
(11.17) IO~ T I3
le|<d—(n+1)
substituting (11.16) to (11.17), we get
(11.18)
logllo’(B)lF=" > I3+ o)
le] <d—(n+1)
1
= > {n+le - (d—1)}log|e
le|<d—(n+2)
Y gl + o)
le|=d—(n+1)
1 d d—
== log |¢]? logl o(1;d

d(n+2) og || +( . )ogog||+ (1;d)

where O(1; d) is a term bounded in ¢, but may not in d. [
ProposITION 11.5. — (11, X"*!(d), D) admits a Morsification to which L extends.
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Proof. — Define a family over D? as follows:
(11.19) X(d) == {([2], t,e) € P"t' x D*; Fy(z,t,¢) =0}, ([z], t,€) = (t,¢),

(11.20)  Fu(z t,e) i= 28 +--- + 20 —de® (&l 29+ - + (xz_lzn)z,‘f;ll - tz,‘f+1

where & = (o, ..., &p) satisfies the following condition:

forany k = (ko, ..., kn) € (Z/(d — 1)Z)",

“ 2mki
(11.21) > o exp ( ) #0.
i=0

d—1

By the direct computation, we can show that 7t : X(d) — D? is a Morsification of X(d) to
which L extends naturally.

Lemma 11.2. — Let S*(d) be a projective hypersurface of degree d. Then, for any
I = (i,..., i), |I| = n, there exists C{(n) > 0 which depends only on I and n such that

i, (8) -+~ i, (S)er(H)*[S]| < Cr(m)d™*".

Proof. — See [D], §3, (3.7).

Proof of Theorem 11.1.

Let : X"t1(d) — D be the same as before, and o € ' (D, det R"m,O(L)) such
that o~! = o’. We compute || 0| ¢ in two ways.

1) Let T(¢) be the analytic torsion of (X;(d), L). By Theorem 8.3, Theorem 9.1 and
Proposition 11.2, there exist f,(x) € Q[x] and g,(y z) € Q[y, z] whose coefficients de-
pend only on 7 such that

2
(11.22) log T(2) = {fu(c(X)) + gn(c(Y), c1(Ly))} log|t| @ + o(log |z[)
where Y = {[z] € P";2¢ + - - + z% = 0}. By Proposition 1.4, we know

1

d
) toglotr)E = ~loglo' (g =5 () togls + ofogle)

Since A(O(L)) = (det R*m,O(L))(=V", {=1)" is considered to be a section of A(O(L))
which does not vanish at 0 € D, whose Quillen norm is given by

g =" (617, = 10g (1) + log |o*~" (1)
. = 2ty +-0( 9 ,) Yroglef + oftogl)

where h,(d) € Q[d] is a polynomial of degree smaller than n + 1 by Lemma 11.2.

n+2
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2) By Proposition 11.5, (1.X(d), D) admits a Morsification. Since L and its exten-
sion is also negative, the conditions 1) and 2) of Theorem 3.1 are satisfied by vanishing
theorem and Theorem 4.4. Therefore, we can apply Theorem 3.1 to yield

(11.25) log [|o~" (1)|[% = —a(n)u(Sing Xo) log |2 + O(1).
Since Sing X, is homogeneous of multiplicity d, by [D], p.13, we get
(11.26) u(Sing Xp) = (d — 1)"*!

which, combined with (11.25), yields

(11.27) log |lo"="" (1)|% = —a(n)(d — 1) log|¢[* + O(1).

Comparing the coefficient of log | ¢| in (11.24) and (11.27), we have

(11.28) %hn(d) + (—1)"—(’112) = —a(n)(d —1)"".

Since deg h,(d) < n + 1, we have

a(n) = Jim {2 ha(d) + (<12 ( ! 2>}
(_l)n—H
T (n+2)0

(11.29)

Tueorem 11.2. — Let (m, X, D) be a smoothing of IHS which admits a Morsifi-
cation, gx a Kéhler metric of X, and gx,p the induced metric on TX/D. Let A(Ox) =
det R, Oy be the determinant of direct images, and || - || ¢ the Quillen metric associated
to gx,p- Suppose that gx is Euclidean flat on a neighborhood of Sing Xy. Then, || - ||q is a
singular Hermitian metric of A(Ox) whose curvature current is given by

(_ )n+1
a(A(0x), || - ll) = it 21
where , (Td(TY/D?))"Y) is a smooth d-closed (1, 1)-form on D.

p(Sing Xo)8o + 1, (Td(TY/D?))Y)

Proof. — Clear from Theorem 10.1, Theorem 3.1 and Theorem 11.1. [ |

12. Higher rank case

We treat vector bundle case in this section. In higher rank case, we must impose
some extra conditions on the family.

THEOREM 12.1. — Lett : X"*! — D be a smoothing of IHS, gx a Kédhler metric of
X such that Ry = 0 on a neighborhood of Sing Xy, gx,p the induced metric on TX/D. Let
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(E, k) be a holomorphic Hermitian vector bundle such that Ry = 0 on a neighborhood of
Sing X,. Suppose that (m, X, D) admits a Morsification p : Y — D? such that

(1) (p Y, D?) is locally projective,
(2) E is arestriction of a holomorphic vector bundle Fon Y .

Then, the Quillen metric || - || associated to gx,p and h is a singular Hermitian
metric of A(E), and its curvature current is given by
(_ 1) n+l1

MT(E)F(SngXo)% + m,(Td(TX/D) ch(E))*Y).

a(A(E),

lle) =

For the proof, we need the following.

ProposITION 12.1. — Under the situation of Theorem 12.1, there exists an exact
sequence of vector bundles on a neighborhood of Y

0— Epyy —> Ep—> - —3 B — E—>0
such that

(1) E;=L"®C™ forsomen;, mi >1 (1<i<n),

2) HI(Y5, Oy,(E,)) = 0 forany0 < g < nand anys € D?,

where L = i*Opn(—1),andi: Y < PN x D? (1, 0 i = p) is an embedding of Y.

Proof. — Put H = L™!, Then, by the positivity of H, there exists n; > 1 and
& > Osuch that E @ H™ is generated by global sections on Y, := p_l(Dfl). Therefore,
one can choose sy, ..., Sm, € (Y, E® H™) so that

(12.1) i : C™ 9§=(§1,...,§m1)—>Z§i8i€E®H”1

is surjective at any y € Y, and therefore

(12.2) h:(™mMeC™ - E—o0

is surjective. Set E; := L™ ® C™ and F; = Ker j;. Inductively, we can define ¢; (1 < i <
n), E; := L™ @ C™ and F;, and obtain an exact sequence on Y; (¢ = min{e;}):

(12.3) 0O—F,—E,—---—FE —E—NO.

Set Ej+1 == Fy. Since0 — F; — E; — E — 0 is exact, HO(YS, F) = 0 for any
s € D?. Again, since0 — F, —» E, —» F; —» Oisexact, H(Y,, F;) = HY(Y, F,) =0
forany s € D?. Inductively, we can show H7(Y;, F;) = 0 for any s € D?, which yields 2) of
the assertion, since E,, 11 = Fj. [ |

Proof of Theorem 12.1. — Let& = {E;};>o (Ey = E) be the exact sequence con-
structed in Proposition 12.1. By Theorem 4.4 and Proposition 12.1, the conditions 1) and
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2) of Theorem 3.1 are satisfied for E; (i > 1), and therefore, Theorem 12.1 holds for any E;
(i > 1). Choose o; € I (D, A(E;)), 04(0) # 0for anyi > 0and put

(12.4) o= ®o—

By the anomaly formula ([B-G-S 1], Theorem 0.3), we get

n
(12.5) log [loflq = D (~1)"log |loill g = T.(TA(TY/D? gyp2)ch(€))
i=0
where &1(8 ) stands for the Bott-Chern secondary class for £. Since R, = 0 on a neighbor-
hood of Sing Xy, Td(TY /D?; gy p2 )ch(&) vanishes on a neighborhood of Sing X,, and the
right hand side of (12.5) extends to a smooth function on D. Thus, in the sense of current,

. n
i - .
(126)  -dologlloflq =Y (—1)'mu(Td(TY/D? gy/p2) ch(E)) M.
i=0
Since Theorem 12.1 holds for E; (i > 0), we have
(12.7)
a(A(E), [| - llo)
n

= (_l)i"T*(Td(TY/DZ)Ch(El.))(l,l)

Z n++z+ EDu(Sing Xo)3n — Y (~1)'m. (Td(TY/D?) ch(E:))
(7>"“ . ) .
(n+2)! r(E)u(Sing Xo)8¢ + m.(Td(TY/D") ch(E))\. .

13. Proof of the Main Theorem

We prove the following theorem in this section.

THEOREM 13.1. — Let : X! — D be a smoothing of IHS, gx a Kéhler metric of
X, and gx,p the induced metric on TX/D. Let A(Ox) = det ,ROx be the determinant
of direct images, || - || o its Quillen metric associated to gxp.

If (1, X, D) admits a Morsification, then || - || is a singular Hermitian metric on
A(Ox), and its curvature current is given by

o) = £V

(A(Ox), (n+2)!

1 (Sing Xo)8o + 1, (Td(TX/D; gx/p)) V.
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Here, m, (Td(TX/D; gx/p))™") € L], (D, A*')N33 C*(D) as current on D for some r > 1
and « > 0. In particular, foro € T (D,A(Ox)),0(0) # 0, the following asymptotic formula
holds:

n

(n+2)!

log [lo(#)[[@ = u(Sing Xo) log || + Co + O(|£]%).

For the proof, we need some lemmas.

Lemma 13.1. — Let (X, g) be a Kihler manifold. Then, for any p € X, there exists
a Kahler metric g’ such that

(1) Ry = 0 onaneighborhood of p
2 [wg] = [wg]

where wy is the Kéhler class of g.

Proof. — By the Kihlerness, there exists a coordinates (z, ..., z,) centered at p
such that

V=T

(13.1) wg = T(a5||z||2 + ) aij(2)dzi A dzj),  aij(0) = dxaij(0) = 0.

Lj
Since dwg = 0, by the 39 -Poincaré lemma, there exists a function ¢ € C*°(B(1)) such
that

132 wp= LB+ w@) Ve =0 (k<4
Let p(t) be a cut-off function such that p(t) > 0, p(¢) = 0fort < 3, p(r) = 1fort > 1
and |p'(t)| < C. Putp,(z) := p(]|2]|/¢) and
(13.3) w; = 00 (||zlI* + pew).
Then, we can write w, := 99||z||? + p:00¢ + T, where T, satisfies

|Tel < Voel V| + V2| lw]

<Cet-E+e 2.6 < Ccé

Since 99 |z]|? 4+ p:00¢ = (1 — p;)30||z||> + pswg, we get w, > cw; when ¢ K 1, and
corresponding Hermitian tensor g; defines a Kéhler metric on X which coincides with g
outside of B(1) and satisfies 1). As
(13.5) w — w = 30{(1 — pe)y},

we obtain [w] = [w,]. [

(13.4)

Lemma 13.2. — Let V, and A be the same as in Lemma 1.1, and assumedim¢c V. =
n. Leth= Y 60" be a Hermitian metric on Vi, w=+-1) 0'A 6’ its associated 2-form.

i=1 i

Then,
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1) ForanyS=+/—1%8;0' A8 >0,
i

C(n k)7YS*|w™ < §¥ A w"F < C(n, k)|S¥|w"

where C(n, k) > 0 is a constant which depends only on n and k. In particular, for S =

V—1A N A%,
(V=1AA A A 0"k = W( Z |a1|2)w”

=
where ar = a;, N --- A a; forl = (iy, ..., ix).

2) ForG e GL(C"),setwg :=+/—1Y. GO' A Go'. Then,
i

Co(n k G)S¥ A" % < S¥F Awg < Ci(n k G)S* A w"F

for S > 0 where C;(n, k, G) (i = 0, 1) are constants which depends only on n, k and entries
of G.

Proof. — Since 2) follows from 1), we only prove 1). As there is an unitary matrix
U such that

(13.6) w=v-1Y U'ATE, S=v-13 NU6'ATE, A;>0,
i i
we get by direct computation

_ n—k)!
(13.7) SEA w"F = %(Z AN@",  Ar= Ay Ay
|I|=k

which yields the former part of 1). When S = y/—1A A A*, since
(n—k)

|
(13.8) (V=1)*a; Nay A+ Nag A dg, A" 5= ” |arf”,

we obtain the latter part of 1). |

Lemma 13.3. — Let V, A be the same as in Lemma 13.2. Let B € A" ® End(C"),
0 € End(C") where APP := (APVL) A (APV_). Set

N:=Z[A*NAB6, M:=LZ[B6lCN My:={AuA* € N*Vg;u € M}.

Then,
Tr/\ C Z[Ma, AN AY),

ie, forany A € N, there exist yy,...,ux € My, and a polynomial f(xy,..., X, y) €
Z[xy, ..., Xk, y) such that
TrA = f(uy, ..., uk, AN A").
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Proof, — Let A € A be a monomial, i.e., there exist pg,..., U € M such that
A=pg(A* NA)® -y (A* AN A)%* (ax > 1). Then, there exist m > 0and b € {0, 1} such
that

A= (AN A)"u(A* A Ay (A* A A) --- pup(A* A A)?
since (A* A A)! = (A A A*)!=1(A* A A). When, b # 0, we get
TrA = (AA A*) ™ Tr g (A* A A)py(A* A A) - - - up(A* A A)
= (AN A)"(AAUA*) (AN AY) - (AN upA*) € ZIAN A*, My).
When b = 0, we have

(13.10)
TrA = £(ANAA") " Tr urpo(A* A A)uy (A" A A) -+ pg—1(A™ A A)

= +(AAN A (AN ueoA) (AN AY) - (AN uk_1AY) € Z[A N A*, My).

(13.9)

As any element of A\ is represented by a Z-linear combination of monomials, the assertion
holds. |

Lemma 13.4. — Let B; € End(C"*) ® APiPi, Suppose
(AB;j A™)---(AB;,A") ATt Bj ---Tr Bj, A (AN A")™ € A™".
Then, there exists C = C(k, I, m, n) such that
|(ABj A*) ... (AB; A*) ATt Bj, - Tr B, A (AN A*)™|

< cTL 1B 1B, @+ V=Tan %))
iprJq

where |B|? = Y |b;;|? for B = (b;;).
j j

Proof. — By computation,
(AB; A*)--- (AB;, A*) ATt Bj, - Tt Bj, A (AN A*)™
(13.11) = > cyBu--Bang
[1|=|7|=k+m
where CI](Bi1' e, le) is a polynomial of entries of B; , .. ., B;j,. Then, by using Lemma 13.2,
|(AB; A*) -+ (AB;, A*) ATt Bj, -+ Tr Bj, A (AN A*)™|

< > ley(Biy--o By)lla|ay|
1= iT1=k+m

(13.12) < c([] 18, 11Bi,1) Y |ar?
ip.Jg I
< c ] IB:,11Bj,ll(w + v=1AA 4%)".

ip.Jq
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Proof of Theorem 13.1. — For simplicity, we assume Sing Xy = {p} (The case

# Sing X, > 11is similar.) Let g’ be the Kéhler metric considered in Lemma 13.1, | - ||, the
Quillen metric of A(Ox) associated to g§ /p- By the anomaly formula ([B-G-S 1], Theorem
0.2), we get
(13.13) log ”UH’Q — 0, (TA(TX/D; gx/r g yp)) 0.
o
Q

Set g := (1 — €)gx + €8y, and g,p for the induced metric on TX/D. Let R, and R,/p be
their curvature forms respectively. By the Bott-Chern formula,

1
— d
(13.14) Td(TX/D; gx/p, 8k/p) Y = / %|520Td(Rs/D+695),
0

where 0, =g ' & d - & By the Chern-Weil theory, there exists a polynomial f (xy, ..., Xn41) €
Q[x1,---, Xnt1] such that

(13.15) Tdp1(Q) = f(Tr Q, Tr Q%,..., Tr Q™)

where Tdp1(Q) stands for the homogeneous part of degree n+1 of Td(Q). Then, by
(13.13-13.15), we have

T ( ?Zi( TX/D; gx/p: 8x/p)) (00) (1)

1
d
_ / de / %\520 st (T(Rey + 862), .., Te(Reyp + 56)™ 1)

(13.16)
/ / f"“ (Tt Re/p,..., TTRY ' 0, ..., Tr RIS
X;

k=1

:/ de/ g(Tx Re/p, ..., Tr RIY, Tr 0, Tt Re/p6, ..., Tr RY 1,6,
0 X;

for some g(xy, ..., Xnt1, Y1, ---, Ynt1) € Q[x, y].

Let U be a neighborhood of p such that g’ y = 09]|2]|* and we restrict our con-
sideration on U for a while. Consider the following exact sequence:

(13.17) 0— TX/D — TX — N — 0

where N = TX/(TX/D) is the normal bundle. Let A. € AY(End(TX/D, (TX/D)'1))
be the second fundamental form of (13.7) with respect to g;. Then, R; is represented as
follows:

R.p — A N\ A, —0A*
13.18 R = [ /P el ¢ )
( ) ¢ ( 0 A, Rye — A: N A}

Put B; := R, — A* A A, and E; = Ry — A N\ A} for the (1, 1) and (2, 2)-entries. Since g
(¢ € [0,1]) is a smooth family of nondegenerate Kihler metrics, there is C > 0 such that,

on U,

(13.19) |Be| + |Ee| < |Re| < C |6 < C.
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Note that C does not depend on a choice of unitary frames of 7X/D and N. Now substitute
Re/p = A* A A+ B; to (13.16). Then, by Lemma 13.3 and 13.4, we obtain on U
(1320)  [g(Tx Reyp,..., T Ry, Tr 0, Tt Reyp B, .., Tt RpOe)| |

< Cl(ws + V=14 A A", |
where w; is the Kéhler form of g,. By Lemma 13.1, for any § > 0, there exists C(n, §) > 0
such that
|(we + V=14 A A)"[ |dver < C(n,8) (67w + V=14 A AD)"|

= C(n,8)(6 'w: +v—1Ry, — \/—IES)”|Xt.

Let f € O(U) be the defining function of w on U, i.e,, 1(z) = f(z). Then, in the same
manner as Proposition 1.1 (1.11), we get

(13.21)

Rye = —Ry+g = —5a|df‘§
_ |df|zealaf|z —aldf|z Adlaf?

(13.22) ldf |2
_ are(vay,var) —dldfl; noldffe  (pe(df) df)e
jdf|2 |df2

where (Vdf,Vdf) = > g"(Vidf, V;df)dz; A dz;j and p, is the curvature of (Q%, g*).
Put
_ df{Vaf,Vadf) —dldf|; Ad|df|

. s; y
(18.23) df ¢
_ {pc(df). df)e
(13.24) T, = e

and identify S, with the associated Hermitian form. Then, S; > 0. In fact, for any & €
T1,0 X,

Se(5 %) = |df[¢|Vedf |} — [og|df[Z]*/|af |2
= |df[;|Vedf|z — [(Vedf. df)e[*/ldf ¢ > o.
Substituting (13.24) and (13.25) into (13.21), we obtain
(e + vV/—14¢ A A:)”‘Xt‘dvg_t < C(n,6)(Q:(8) + \/—_185)"\&
(13.26) "

<C(no)) (Z) Q:(8)" "¢y,

k=0

(13.25)

where Q. () = 6 'w, — v/—1E. — /—1T.. Since {g: } is a smooth family of nondegen-
erate Kihler metrics on X, chosing § sufficiently small, there exist C; (8), C(6), G3(8) > 0
which does not depend on ¢ such that, on U,

(13.27) 0<w,: < C(6)Q:(8) < G(8) (6 'we — V—1T) < G(6) ..
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As S; > 0, substituting (13.27) to (13.26), and using Lemma 13.2, we have
(13.28)

|(ws + V=14, A A:)"|Xt|dvs_t < C(6) Z (Z) (5_1“)5 _ \/__le)n_k(\/__lss)k‘Xt
k=0

< C(8)(6 7w, + V=18 — V-1T)"|
= C(8) (6 w, + \/—_mN,E)"|Xt.

Since |g(Tr Ryp,...,Tr RS"/"I')I, Tr 0., Tr R, /0, ..., Tr RE"/DOE) ‘Xt ‘ is uniformly bounded on
X — U, combining (13.14), (13.16), (13.20) and (13.28), we get

| (Td(TX/D; gx/p. 8xs0)) 0 (1)] < C(8) ; U(6‘1wg+\/—1RN,s)”+C
N

(13.29) < C(8) | (67 'we+vV—1Rye)"+C

< C(8){6™ ]|y, +2mer (Nx, ) }"[Xi]+C
C

(6),

which, combined with (13.13), yields

(13.30) | log HU”,Q\ <cC
o1l

for some C > 0, and therefore, log ||o|| o/ |||l € L, (D).

loc

Now we estimate 17, (Td(TX/D, gx;p))("V. In the same way as (13.20), (13.21) and
(13.26), on U, we get

(13.31) —C(wx + V—1Ry)"™ < Td(TX/D, gx;p) """V < C(wx + vV—1Ry)"™""

where Ry = Ry = 90 log |df]3. Put
(13.32)

of 2 of of
jdfly = \af? + A(df.df), =3 | Aldf.df) =) ayz- =
0z; Iy 0z; 0zj

Sincev: U — {0} 3z — [% Deees %] € P” extends to a meromorphic map from

v : U — P", due to Hironaka, there is a proper modification p : V — U such that

1) p~'(0) is a divisor of simple normal crossing, and p is an isomorphism be-
tween V — p~!(0)and U — {0},

2) There exists aholomorphicmap u : V — P"such thaty = vopon V—p~1(0).

We verify that p* Ry extends to a smooth (1, 1)-formon V. As
— - A(df,d
V—1Ry = \/—130 log |df|* + +/—100 log (1 + %)
Adf, af ))
|laf|?

(13.33)
= v*wpn + v/ —100 log (1 +
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where wpn is the Fubini-Study form as before, it is sufficient to show that
p*(A(df,df)/|df|?) extends to a smooth function on V which vanishes along p~' (0).
Put O; == {[z: -+ : z4] € P";2; # 0},

. Z~ _
(13.34) Ef = z_]~' Vi =u"(0)).
1
Then, by computation, on each Vi, we obtain
(13.35) p (W) = ZP ai g & /1 +Z|H gl
ij i£k

As p* a;j, p*E; € C*°(Vi) and a;;(0) = 0, itis clear that p* (A(df, df )/|df|*) € C>(Vk)
and vanishes along p~'(0) N V, which, combined with (13.31) and (13.33) yields

(13.36) —C-dvy < p*Td(Ryp, gx/p) """ < C- duy

where dvy is a volume form on V. Set g := mo w: V — D. By the assumption, for any
x € V, thereis alocal coordinates (wy, . .., wy) such that

(13.37)

e

n+1
dvy = (T) dwy ANdig N~ - - Ndwy \dwy, q(w) = wéc" ce wf’, (ki >1,1< n).
Set

1 .
(13.38) Ti= S (=) widwo A A dwisy Adwigy A+ A dwy,

Since g*(dt/t) AT = dwy A -+ - N\ dwp, by (13.36), we have
(13.39)
| (Td(TX/D; gxp)) " ()| < C(|gs (dwo A dig A -+ A dwy A diy)| + 1)

- c(|7d”\2dt/ T/\'T'|+1).
|| a-1(1)

By a theorem of Barlet ([Ba]), there exist ag € C, & € Q4+, B > 0 such that

(13.40) / T AT = ay+ O(|¢]*(log |£])?).

a='(1)
As dvy isintegrable on V, we find gy = 0, which, combined with (13.39) and (13.40), yields
(13.41) |7 (Td(TX/D; 8x/0)) "V ()] < C{[e] 7" (log |¢])* + 1}.

Therefore, there exists r > 1 such that " (Td(TX/D; gx/p))*") € L} (D). Using the
curvature formula ([B-G-S 1], Theorem 0.1), we get

I = -
(13.42) | 5799 (log]|ollq —log lollQ)| < Cf[¢[~*(log|¢])’ + 1}
which, combined with (13.30) and elliptic regularity theory, yields
(13.43) log ||ollq — log o]l € Lige2(D) C C*(D)
for some &« > 0. Clearly, the theorem follows from Theorem 11.2, (13.42), (13.43) and the
curvature formula of Bismut, Gillet and Soulé. [ ]

Remark 13.1. — We remark that the latter part of Main Theorem is proved in the
same way as Theorem 13.1.
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14. Examples

We treat some examples in this section.

TueOREM 14.1. — Letm : X" — D be a smoothing of IHS. If (1, X, D) is a family
of hypersurfaces in P+, then it admits a Morsification. Here, by a family of hypersurfaces,
we mean the following commutative diagram:

i:X o PHl'xpD

(14.1) N O Vm
D

where i is the inclusion, pro; is the projection to the second factor, and id is the identity
map. In particular, Main Theorem holds for degenerating family of projective hypersur-
faces.

Let H be the hyperplane bundle of P”, and F the defining equation of X:
(14.2) X ={(xt) € P""' x D;F(x,t) = 0},

where F(x,t) € C{t}[xo,..., Xnt+1] and F(-, t) is a homogeneous polynomial of degree
d = deg X; forany ¢ € D. As Sing X; is discrete, we may assume that Sing X, C P"*! —
H.,, and put

(14.3) F(z t) := F(zy,...,2n, 1, 1), F(z) = F(z0), 6F(z)= %L:OF(Z, r).

LEMMA 14.1. — Forany p € Sing Xy, 6F is an unit element of O, p.

Proof. — Since X is non-singular, dF(z, t) # 0 at p, which, combined with d,F =
n
> g—fidzi = 0 at p, yields %‘tZOF(p, t) #0,ie,6F(p) #0. [ |

i=0
Fix an identification of H®(P"*!, dH) with the set of all homogeneous polynomials
of degree d. Then, for G € H°(P"*!,dH), G(z) = G(zy,...,2n, 1) is a polynomial of
degree < d. Set
(14.4)
Y :={(z t,&) € P""' x D* F(z,t) +€G(z) =0}, M :Ys> (zt¢€) — (t,¢) € D

where z is the inhomogeneous coordinates.
LEMMA 14.2. — If|e| < 1, then Y is non-singular and X is reduced in Y.

Proof. — Put fg(z t,€) := F(z,t) + ¢G(z). Then,

(14.5) dfc = dF + €dG + Gde.
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Since dF # 0on X = {(z,t,€) € Yg;¢ = 0}, we find df; # 0 on a neighborhood of X.
Therefore, for sufficiently small ¢, Y is non-singular. As

(14.6) dfc N de = (dF + €dG) Nde # 0

for sufficiently small ¢, 77* € is chosen to be a coordinates of Y, and therefore X is reduced

since X = {m*e = 0}. [ |
Set

(14.7) Z, = {G € H (P"*!, dH); (N, Y, D?) is not a Morsification }.

LemMma 14.3. — Z, is an analytic set of H*(P"!, dH).

Proof. — By translation, if necessary, we may assume that p = 0 in the inhomo-
geneous coordinates. Set

2¢ :={(z t,¢€);z € Sing YG,(t,s)}

(14.8) _ ofc _of¢ . _
—{(Znt:f)r% =T 5, = fc =0}
and
Sc:={(zt,€) € Zg;(3t,€) isnot A }
(14.9) B ] *fe\ ofc _ofc . _
= {(z t,¢&);det <6ziazj) “ T3z fe =0}

If S is discrete, then Sg N Bs(p) = p for some small ball, and (I, Y, D?) is a Morsifica-
tion. Therefore,
(14.10) z, ={G € H (P!, dH);dim S > 0},

and it is an analytic set. n

Proof of Theorem 14.1. — Since Z, is analytic, it is enough to show that Z, #
HO(P"*1, dH) for any p € Sing Xy. Let (wy, ..., wy)be an inhomogeneous coordinates
centered at p, and put

(14.11) G(z) = %(w& et W),

Suppose G € Z,. Then, as det Hess,, f¢c = 0 on Z ¢, by Nullstellensatz, there exist k > 0,
ho,..., hp, b € C{z,..., 2, & t} such that

n

(14.12) (detHess, fo)* =)
i=0
Since fg = F + €G, by (14.11) and (14.12), we get

det(el + Hess,, F)* = (detHess,, f)*

n
0
= Z ﬁhi + fch.
—0 aw,-

dfc

aw,-

hi + fch.

(14.13)

81



Comparing the coefficient of "1k we obtain

n

OF -
(14.14) 1=Za—2iqi+22iri+qF+rG
=0 i=0
where g;, 1, g, 17 € (C{zo, ey 2y, t}, and obtain a contradiction by setting t = 0, since 1 ¢
M. Therefore G ¢ Z,, i.e., Z, # H'(P"*!, dH). ]

QuesTION 14.1. — Let (m, X, D) be a smoothing of IHS. Is it true that if (1, X, D) is
locally projective, then it admits a Morsification?

THEOREM 14.2. — Let (A"1), H) be a polarized abelian variety, w a flat Kéhler form
of Asuch thatc; (H) = [w]. LetCa(n, d) be the Chow variety of n-cycles of A whose degree
isd, : X — Ca(n, d) the universal family. Suppose D is a divisor of C4(n, d) such that 1t
is smooth on Ca(n, d) — D. Set TX/Ca(n, d) for the relative tangent bundle, wrx ¢, (n,a)
for the Hermitian metric of TX/Ca(n, d) induced by w, Krx ¢, (n,a) for the relative canon-
ical bundle, and det w7y

TX/CA(Yl,d)
A(mKx,c,(na)) be the determinant of the direct images, and || - || o the Quillen metric as-

-1
TX/C, 1lQ)

for the Hermitian metric induced by wrx,c A(nd)- Let

sociated to wrx/c,(naq) anddet w
isflatonCu(n,d) — D, ie.,

(nd)" Then, foranym € 7, (A(mKX/CA(n,d)),

a(A(mKxse,may || - llQ) = 0.
Proof. — By the same computation as Proposition 1.1, we get
(n+1,n+1) )
(1415) [Td(TX/CA(n, d)) ch(mKX/CAW))] = C(n, m)v*

=0
where v : X; — P" is the Gauss map as before. Now the assertion is clear from the curva-
ture formula ([B-G-S 1], Theorem 0.1). [ ]

QuesTiON 14.2. — Isit true that, if D = U;¢;D;, then

(14.16) a(A(mKysc,(nay) || lo) = D ai(m, n)sp,
i€l

for some ai(m, n) €  in the sense of current?
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Appendix. Proof of Theorem 6.2 and (4.58)

In this appendix, we give a proof of Theorem 6.2 for (n — 1)-forms and of (4.58). Let
F(z) € Clz,..., zy| be a homogeneous polynomial such that V(F) := {z € P"; F(z) =
0} is a smooth hypersurface. Set d = deg F, and

(1) X ={z€C™F(z) ="} g =00zl

(A.2) N:=XN 8" 1) ={ze C";F(z) =0,

z|| =1}

Clearly, X, = C(N), and (X, g1) is a AC manifold with tangent cone X,. Fix a diffeomor-
phism:

(AS) Y. )Q],(A,OO) = Xl — K (K « Xl);

(A4) Wg =g+ O(r % (6>0),
where X, (41) = {2 € X;;a < ||2|]| < b}. Define T, € GL(n + 1,C) by T,z = £z, and put
(A5) Wi=TioWo T X a100) 2 Xi(arje),2)
which gives an into-diffeomorphism. By (A.4), we have
(A.6) Wig = g + O(|t[’l2]|~°).
Let X; and /\?_1 be the same as in Theorem 6.2. Then, by long but straightforward compu-
tations, we can show the following two propositions.

ProrosiTioN A.l1. — There exists C = C(Xp, X;) > 0 such that, for any f €
[(X, Af™") withsupp f C X, g1y (B> 1),

1— CR® < [|def > + 18 £ 17/ do Wi £ 1> + (|8 W} £II* < 1+ CR™°

whered, == dy, ® 1 + 1 ® dx,, 8, :== 6x, ® 1 + 1 ® 8y,.

PROPOSITION A.2. — Suppose v > n* + n — 1. Then, there exists C = C(n,v) >0
such that, forany f € T (X,, /\6’_1) with supp f C )%,(0,1),

1Ay < CCIAFI? + 180f 7).
Combining Proposition A.1 and A.2, we obtain the following.
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ProOPOSITION A.3. — Suppose v > n> + n — 1 and R >> 1. Then, there exists a
constant C = C(Xo, Xi, v, n) such that, forany f € (X, A?™") withsupp f C X (Rj11)>

1 1Bay < CAAIP + 8.1

LemMa A.l. — There exists C > 0 such that, for any f € T (X, A’™") with
supp f C Xt, (R|t],1)”

1 1 25 52 1 (1A £112
/xt (g * Toogiy )t < CUNASIE + 1819

Proof. — Let {¢;} be a orthonormal basis of I? (Xt,(o

(A7) fxy) = Z aijbi(x) ® ¢;(y)-

), /A\?_l). Put

N

Then, by Lemma 4.1, we get
(A8)

1 2 / 1 )
T TE TSI y d ¢ — — . . d .
[, g e P 2 ), Tiog Ty 4220 o
<CZ |dZﬂkJ¢] ||2+||5§ akbi ().

Similarly, we obtain

(A9)
—If(x Ndvg <CY ([ld) ajbi(M)IP+16)  arjdi(y)
/xt ([lylltog|I¥I[)? * Z Z s zk: T
The assertion follows from (A.8) and (A.9). [ |
ProrosITION A.4. — There exists C > 0 independent of t € D such that, for any

f € r()f,, /A\?_l) with suppf C XI,(O,%)’

[£]] g < Clog (IIdtf||2+||5tf|| )-

Proof. — Since the Sobolev inequality holds uniformly in ¢ (|L-T1]), by using Weit-
enboéck formula, we get

£l o, < CIIVg, £IP
(A.10) = C(ldcf 1P + 16117 + (Ref. f))
1

< c{ldrP+ 1812+ [ (s o o )
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where R; is a 0-th order operator arising from the curvature of X;. As ‘ log || x|| ‘ > C‘ log |7 |
forsome ¢ € Dand x € X, (1), combining Lemma A.1 and (A.10), we obtain the desired
estimate. |

Proof of Theorem 6.2 for (n—1)-forms. — By the argumemt of partition of unity,
it is sufficient to show the following: for v > n?4+n—1, and any f € I (X, A’™") with

supp f C Xz,(o,%)'
(A11) 1150 1) < CUlAF I + 16ef117).
Let p, be the same cut-off function as (4.12), and put p,(z) := pgys|(]|2]|) where z is the

coordinate of Theorem 6.2. By Holder’s inequality, Lemma A.1 and Proposition A.4, there
exist x = &(n, v) > 0 and C > 0 such that

1= )l
< {vol(supp(1  p:)) vol(supp pr)}* | (1 = pe(x))(Pe(Vf | 1o,
(412) < ¢l ( 1og ﬁ) (141 = 2 NI
1841 = el (0: () FHIP)

1 - -
< clefr(log ) (1 + 18.71P)
Similarly, we obtain
1 - -
(413) a1 = i)l < Clef™ (tog ) (1efIP + 81117,

1

1) (s 1P + 18717,

(A19) (1= pi())(1 = (M) fllaqrs 1) < Clef*™* (10g

By Proposition A.3 and Lemma A.1, we have
(A.15)
||pt(x)pt(y)f||§(1+%)

< C(lldedpi(x)pc )P + 164 ()0 (v) FHI7)
1 1

<C dAt 2 3t 2 / 2dvy
< c{1dsl” + 1851+ | (iogTne * sy 4 )

< C(lldef11? + 16:£11%)-
Clearly, (A.11) follows from (A.12-15). [ ]

Proof of (4.58). — In the sequel, we consider the case that F(z) = z5 + - -+ + z-.
By the argument of partition of unity and K&hlerness, it is enough to show that, for any
f € A% (X, NB(1)),

1
(a.16) =l < Clof1B,
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where r = ||z||, and C is a constant independent of 7 and f. Since the inequality (A.16) has
the scaling invariance, it reduces to the following inequality: for any f € AJ(X;),

1
(A17) I=fll2 < Clla |2

As X; is a AC manifold with tangent cone Xp, and the Hardy inequality holds for (0, n)-
forms on X (cf. [Y 1], Theorem 3.1 and Corollary 8.1), in the same way as Proposition A.1
(See also [Y 1], § 3.), we get

(a18) 17112 < c(la £z + 5]

where K is a compact set. To eliminate the term || f|| x> from (A.18), in view of [Y 1], Theo-

K2)

rem 3.2, it is sufficient to show

(A.19) (X)) = {f € Q;}l;/ %|f|2dvxl <0} = 0.

X

By computing the growth order of an element of H ,(X; ), we get

(4.20) Ha(X0) C HO(Y, QU(H))

where Y is the projective compactification of X;, and H is the hyperplane bundle. Since Y

is a hyperquadric, we find H(Y, Q% (H)) = 0 and obtain the assertion. n
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