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Abstract

We obtain a generalization of two recent results of [Pa] concerning the best
approximation problem and a unicity problem for complex polynomials of one
variable.

In [Pa] the second author described the polynomials of least deviation from zero
on certain compacta in (. This result was applied in [Pa] to obtain a solution of
a problem posed by C.-C. Yang [Ya]. Namely, it was proven that, up to a sign, a
complex polynomial of a given degree is determined uniquely by the preimage of the
two-point subset {1, —1} C @. In this note we generalize both of these results along
the same line of ideas.

Remind that, for a given compact K C @', a monic polinomial p(z) € @'[z] of degree
n > 0 is called the n-th polynomial of least deviation (from zero) if ||p||x < ||q||x for
any monic polynomial g(z) € @'[z] of degree n, where ||p||x := max.ex{|p(z)|}. By
the Tonelli-Walsh-Kolmogorov Theorem ' [To, Wa, Ko| such a polynomial is unique
as soon as card K' > n. To formulate our main result we need the following

Definition 1. Let A = A, , be a closed disc centered at a € @' of radius r. We say
that a compact K C A supports®* A if A is the (unique) disc of smallest radius which
contains K.

The next result generalizes Theorem 1 of [Pal].

Theorem 1. Lel A, = Ao, C @ be the disc of radius r centered al the origin,
K C A, be a supporting compact of A, and p € @'[z] be a monic polynomial of degree
n. Set K, = p~'(K). Then p is the unique n-th polynomial of least deviation on K.

"Walsh (1930) proved this (and, in fact, a more general) theorem using the Tonelli approach
(1908) to the Chebyshev unicity theorem for real polynomials of least deviation on the interval. The
Kolmogorov approach (1948), which deals more generally with Chebyshev systems, is based on his
well known criterion for polynomials of best approximation.

2See Lemma 2 below for some properties of supporting compacta.



The following corollary describes a class of plane compacta for which a given monic
polynomial p serves as the polynomial of least deviation. The maximal such class is
called the Chebyshev cluster of p.

Corollary (cf. [Pa, Theorem 1]). Let K C S, be a supporting compact of the disc®
A, and p € @z] be a monic polynomial of degree n > 0. Then p is the n-th polynomial
of least deviation on any compact T such that K, CT C p~'(A,).

In the proof of Theorem 1 we use the following averaging projection.

Definition 2. Let p, g € @'[z] and degp = n > 0. We call the average of q over p the
transform ¢ — 0,(¢) = g o p, where

q(z) = —~ > &), (1)

p~! (Z)Z{{l,...,{n}

3

the summation is over all the roots of the polynomial p(£)—z, and a root of multiplicity
m is repeated m times.

Lemma 1. a) 0, : @'[z] = @[p] is a linear projection. Moreover, it is a homomor-
phism of @'[p|-moduli, i.e. o,(¢(p)-q) = p(p)- op(q) for any q, p € T[z].
b) deg g = [(degq)/n]. In particular, deg ¢ = 1 if degq = n. Furthermore, if both p

and q are monic polynomials of degree n, then c,(q) = p + ¢, where ¢ € (.

Proof. By definition, the function o,(q) is constant on each fibre p~'(2) of p, and
op(p) = p. Let g(z) = T4 bi(2)p", where b, € @'[z] and degb, < n for all k, be
the p-adic decomposition® of g. Then, clearly, o,(q) = 4 dxp*, where & = o,(by).
Here §;, are constants, since 0,(q) is constant for any polynomial ¢ of degree m < n.
Indeed, this is enough to check for the monomials ¢, (z) = 2™, 0 < m < n. But the
Newton sum of the roots of p — z

1
Gm(2) = - > &

p_l (Z):{‘El 7'-'7671}

is a polynomial on the coefficients a,_1,...,an_m of p(£) = £ + I a;€%, and
therefore, it is constant. The lemma easily follows from these observations. O

3For instance, we may take for K either a pair of symmetric points or a triple of points in S,, as
in Lemma 2(iv) below.
4We are thankful to D. N. Akhiezer who proposed to use the p—adic decomposition.



Remark. An easy alternative proof of the lemma can be obtained by applying the
formula of logarithmic residue. Due to this formula, we have

o
where R = R(z) is sufficiently large and where the members of the series are all zero

for k > (degq)/n.

!

7)) = o | L

2min Ju=r p(u) —

q(w)p (u)du
27rm =k pFti(u)

Proof of Theorem 1. Let ¢ € @'[z] be a monic polynomial of the same degree n as p.
Since the compact K, = p~'(K) is saturated by the fibres of p, it follows easily from
Definition 2 that

oo (@)llre, < llallx, - (2)
By Lemma 1, 0,(q) = p + ¢, where ¢ € @'. Since K supports the disc A, we have

r=plle, < lp +¢ellk, = llop(a)llx, - (3)

From (2) and (3) we obtain

Ipllx, < ll4llx, - (4)
This proves that p is, indeed, a polynomial of least deviation on the compact K.
Note (see e.g. [Pal) that the geometric preimage of two distinct values aq, ay of the
polynomial p of degree n contains at least n 41 distinct points. So, the uniqueness of
such a polynomial follows from the Tonelli-Walsh—Kolmogorov Theorem cited above.
a

Remark. In our particular case we can provide an easy alternative proof of the
uniqueness. Assume that in (4) the equality holds, which implies the equality signs
also in (2) and (3). This is true only if ¢ = 0, and therefore 0,(q) = p, i.e. §(z) = =.
Choose two arbitrary distinct points ay,a, € K N S,, where S, = dA,. Then

G(ai) =1/n > q(&ij) = @i, i = 1,2. (5)
p~Hai)={&i1,--&in}

Hence

i Y )l =r=lall,. (6)
P () ={&in,e6in}

Since &;; € K,, we have |q(&;) .,n. This holds only if ¢(&;) =

a; =p(&;), 1 =1,2, j =1,...,n. Thus, the polynomial p — g of degree at most n — 1

vanishes in at least n + 1 distinct points® &;, ¢ = 1,2, j = 1,...,n. This proves that

P=4q. O

See the remark at the end of the proof of Theorem 1.




The next lemma is a simple exercise.

Lemma 2. Let S = JA denote the boundary circle of the disc A. The following
conditions are equivalent:

(i) A compact K C A supports A.

(ii) The compact K NS C S supports A.

(ili) K NS C S is not contained in an open half-circle (or, what is the same, in an
open half-plane with the boundary line passing through the center of A).

(iv) KNS C S contains either a pair of symmetric points of S, or a triple of points
b, ¢, d € S such that the center a of A is an inner point of the triangle bed.

The next theorem shows that, given a plane compact saturated by fibres of a
degree n polynomial, there exists a unique such saturation, so that the fibres are
uniquely determined by the compact itself. It follows from Theorem 1 in the same
way as Corollary 1 follows from Theorem 1 in [Pa]. For the reader’s convenience we
repeat the arguments.

Theorem 2. Let a compact K C @' contains at least two points. Suppose thal
p, q € @[z] are two polynomials of the same degree n such that p~' (K) = ¢7'(K).
Then p = a(q), where a(z) is a rotation of @' which preserves K.

Proof. Let zy be the center of the unique disc A supported by K. Replacing K, p, ¢
resp. by K — zo, p — 20, ¢ — zo we may assume that zo = 0, so that A = A, for some
r > 0. Set p = (1/an)p, ¢ = (1/bs)q, where p(z) = anz™ 4+ ..., q(z) = b.2" + .. ..
Then we have

K, =5 (K) = ¢ (K) = 57 (1/an) K) = 7 (1/b.)K).

Since the compact (1/a,)K resp. (1/b,)K supports the disc A/, resp. Ay, by
Theorem 1, p resp. ¢ is the unique n-th monic polynomial of least deviation on the
compact

Ky = (1/an)K); = (1) K);.

It follows that |a,| = |b,| and p = G, so that p = ¢*¥q for some ¢ € IR. Since
K, =p " (K) = ¢ *(K), we have

K =p(K,) = ewq(Kp) = ewq(Kq) = K .

This shows that K is stable under the rotation z — €%z, O
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