Dense lattices in dimensions 28 and 29.
Roland Bacher

Abstract: We exhibit an integral lattice of determinant 2" 3 with minimum 8 in dimension n = 28 and
29. These lattices are denser than the laminated lattices and yield hence the densest known sphere packings
in 28 and 29 dimensions.

The standard reference for lattices and lattice-packings is [CS]. In order to keep this paper self-contained
we recall briefly the fundamental definitions.

A lattice is a discrete cocompact subgroup A in the n—dimensional Euclidean vector space E* (with
scalar product denoted by ( , }). Two lattices A and M are isomorphic if there exists a group isomorphism
¢ : A — M which is an isometry. The determinant of a lattice A is the square of the volume of a fundamental
domain E"® /A. The norm of a lattice element A € A is defined as (A, A) (and is hence the squared Euclidean
length of A). A matrix G is a Gram matrix of A if G; ; = (b;, b;) where by,...,b, is a basis of A. It can
easily be shown that det A = det GG. A lattice A is integral if all scalar products between lattice elements
are integral. An integral lattice 1s even if all its elements have even norm. Its minimum is the norm of a
shortest non-zero element. The Voronoi polytope

Vory = {z € E" | 2(z,A) < (A, A) forall A e A\ {0} } CE"

of A is the set of all points « € E™ such that 0 is the closest lattice point. For two lattices A and M we
denote by A @ M the orthogonal sum lattice {(A, 1) }xea,penmr With the obvious scalar product.

A sphere-packing in dimension n is a collection S of points in E™ and a strictly positive real number
p such that inf,zpcs || a — b ||< p where || z || denotes the Euclidean length of z. One takes generally
p=inf,2pcs || @ — b ||. The density of a sphere packing S, p is defined as

Volume {z € E", ||z ||<tand s €S, ||z —s ||< p}
Volume {z € E*| || 2 ||< t}

limsup,_, o

A sphere-packing is a lattice-packing if the set S is a lattice. The density of an n—dimensional lattice is the
maximal density of an associated sphere-packing and is given by

(min A)”
47 det A "

ﬂ.77,/2

(n/2)!

where V,, = is the volume of the unit-ball in E™. The center density of A is by definition

(min A)™
47 det A

and is proportional to the density (cf. Chapter 1, Formulas 20 and 27 in [CS]). The kissing number of a
lattice A is the cardinality of the set Ayin = {A € A | (A, A) = minimum(A)}.

The root lattice As is a lattice which is isomorphic to the even sublattice of Z3 generated by (1, —1,0)
and (0,1, —1). There are 6 vectors of norm 2, called roots, in Ay. The lattice Ay is 2—dimensional and has
determinant 3.

Let M be an n—dimensional lattice with minimum 4. Denote by M2 = {u € M | (i, ) = 12} the set
of norm 12 elements in M. Suppose that there exists R = {£r1, +ry, rs} C M2 N Voraps such that %R’
are the roots of Ay (recall that Vorayr = {2 € E” |(z, p) < {(u, pu) for all p € M\ {0}}). Let mq,...,my, be
a basis of M.



Proposition. The (n 4+ 2)—dimensional sublattice A C — M generated by

M7
(v2m1,0),...,(V2m,,0) and (

1“1, 7“2,
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has determinant 2" 3 det M and minimum 8. Moreover, A is integral if M is integral.

Proof: A contains the lattice generated by (v/2m1,0),. .., (v2my,0), (0, \/grl), (0, \/grg) as a sublat-

tice of index 4. The determinant of this sublattice is easily seen to be 27** 3 det M. This shows that
27+4 3 det M
det A = 2 3det M
(22)°
Let @ = (21, z2) be a non-zero element of A. If x5 is zero then z € (\/§M, 0) and # has norm at least 8.
Let us hence suppose z3 # 0. The element 25 is an element of the even lattice A which does not contain
elements of norm 4. The norm of x5 is hence equal to 2,6 or > 8. In the last case we are done. If x5 is of

norm 6 then z5 = 2} (mod 24,) Where x4 is a root of A;. We can hence suppose that z5 is of norm 2.
This implies that z = ( r+ \/_/J, —=r) for some r € R' and some p € M. We have then

3 2r, ) + 2, ) + 3, )
=84 2((r, ) + (1, 1))

But +7 € Voray implies (7, p)| < (i, p) and hence (z, z) > 8.
A straightforward computation shows that the integrality of M implies the integrality of A. QED.

Set
1
mi = =(1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16,17, 18,19,20, 74,22, 23,24, 25, 26) € E*

and denote by e; the i—th basis vector of the standard orthonormal basis of E?. For 2 < i < 25 set then
m; = e; + a;eas Where a; is an integer such that ¢ 4+ 26a; is divisible by 53 (this ensures the integrality of
the scalar product (mj, m;)) and set finally mss = 53e96. The vectors my, .., mag generate then an integral
unimodular lattice without roots. Indeed, 53m;,ms, ..., mog generate the sublattice of index 53 in Z2°
consisting of all elements in Z2® which have integral scalar product with m;. Adjoining m; to this lattice
yields a unimodular lattice since my is of index at least 53 in this lattice (the integrality of the resulting
lattice is easy). Let r be a (non-zero) vector of minimal length in M. If r belongs to Z?° then r has norm
at least 3 since the coordinates pi,...,pss of 53my are all non-zero modulo 53 and satisfy p; # tp; for
i # j. If the shortest vector r does not belong to Z2® then the coordinates p, ..., pag of 261 represent all
elements of the set {£1 (mod 53),+2 (mod 53),...,4+26 (mod 53)}. The norm of r is hence at least
(12422 + ...+ 262)/53% = 26.27.53/(6.53%) > 2. Since all norms are integral the minimum of M is at least
3 and it is easy to find elements of norm 3 or 4 in M. This shows that M is a unimodular lattice without
roots (elements of norm 1 or 2) in dimension 26. According to Borcherds such a lattice is unique (cf. [Bo]).
For i = 1,...,26 set now m; = m; + €;mos where ¢; = 1 if m; has odd norm and ¢; = 0 otherwise. The
vectors m; generate the even sublattice M, of M. Consider

ry=(1,=1,1,—-1,-1,-1,1,1,1,1,1,0,0,0,
ro=(1,-1,1,1,-1,-1,1,1,0,0,0,—1, —1,

rs =7r) —rg
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(coordinates are with respect to the orthonormal basis eq, .. ., ea¢ of E%_).

Theorem 1. The vectors ﬂﬁzl, .. \/_ng, ( r1+eq7 — 628), (%7"2 +eq7 — 629) generate an integral
lattice A with minimum 8 and determinant 228 3. The kissing number of A is equal to 112 458.

Proof. Since M is unimodular and has minimum 3, the even sub-lattice M, of M has determinant 4 and
minimum 4. The vectors 471, £rs, 73 generate /6A3. On checks by computer that R’ = {471, +rs, 473} C
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Voraar,. The subset R = {&r1, £ra, £r3} satisfies hence the conditions of the Proposition. This shows that
A is integral, has minimum 8 and determinant 2263 4 = 228 3. The kissing number of A can be established
by use of a computer. QED

Consider now the vector

my = i(1,2,3,5,6,7,53,9, 10,12,13,14,15,16,17,18,19,20, 21,22, 23, 24, 25,26, 27, 28, 29)

61
and define ma, ..., mas,ma7 = gesr in the analogous way as for the 26—dimensional lattice above (for
instance my4 = e4 4 aeay where a is an integer such that 54+29a =0 (mod 61)). It can again be shown that
the lattice M generated by my, ..., ms7 is a unimodular lattice without roots. Choose a basis mq, ..., M7

of the even sublattice M, of M and consider the vectors

ry=(1,-1,-1,1,-1,-1,1,-1,-1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ,
ro = (1,—1,-1,1,1,—1,1,-1,0,0,0,0,—1,1,0,0,0,0,—1,0,0
rs ="r1 — 79
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Theorem 2. The vectors \/51711, Cen \/577127, %rl + €98 — €99, %rg + ea2s — eap generate an integral
lattice A with minimum 8 and determinant 2%° 3. The kissing number of A is equal to 109 884.

The proof is as for Theorem 1.

Corollary. In dimension 28 and 29 there exist sphere packings with center density % These packings

are denser than the packings given by laminated lattices which have center density % (cf. Chapter 6, Table
6.1 of [CS]).

Remarks. (1) The Proposition can be generalized to other root lattices. One needs R’ C M1 N Voran
such that %R’ is a root system. Moreover R’ has to satisfy the following condition: for each element x
which belongs to the lattice generated by R’ one has :(z,z) + 2(Z,Z) > 8 where (Z,Z) is the norm of a
shortest element in the class of 2 (mod 2M).

The construction of the Proposition is in fact very close to laminating.

(2) One may ask if the lattice obtained by the Proposition is perfect if M is perfect. A sufficient
condition is that the set R’ is contained in the set of vertices of Vorsas. The proof is straightforward.

(3) There are probably many 28—dimensional lattices with the same densities as the lattice given in
Theorem 1. Indeed the set

ry=(1,-1,1,-1,-1,-1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0) ,
T2 = (la la la _la _la _1; Oa 1; 1; 0; 0; _1; _la 0; 0; 0; _la 0; _la 0; 0; 0; 0; 0; Oa 0) 3

r3 =r1 —ro

satisfies the same requirements as the set ri,75 and r3 used in Theorem 1. Tt yields hence another
28—dimensional lattice with the same density. This lattice is non-isomorphic to the lattice of Theorem
1 since its kissing number is 112 394.

The same remark is probably true for 29—dimensional lattices.

Acknowledgements. I thank J. Martinet who has verified the computations for the lattice of Theorem
1. He informed me that this lattice is perfect.
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