Dense lattices in dimensions 28 and 29.

Roland Bacher

Abstract: We exhibit an integral lattice of determinant 2^n 3 with minimum 8 in dimension n = 28 and 29. These lattices are denser than the laminated lattices and yield hence the densest known sphere packings in 28 and 29 dimensions.

The standard reference for lattices and lattice-packings is [CS]. In order to keep this paper self-contained we recall briefly the fundamental definitions.

A lattice is a discrete cocompact subgroup Λ in the n-dimensional Euclidean vector space \mathbf{E}^n (with scalar product denoted by $\langle \ , \ \rangle$). Two lattices Λ and M are isomorphic if there exists a group isomorphism $\varphi:\Lambda\longrightarrow M$ which is an isometry. The determinant of a lattice Λ is the square of the volume of a fundamental domain \mathbf{E}^n/Λ . The norm of a lattice element $\lambda\in\Lambda$ is defined as $\langle\lambda,\lambda\rangle$ (and is hence the squared Euclidean length of λ). A matrix G is a Gram matrix of Λ if $G_{i,j}=\langle b_i,b_j\rangle$ where b_1,\ldots,b_n is a basis of Λ . It can easily be shown that det $\Lambda=\det G$. A lattice Λ is integral if all scalar products between lattice elements are integral. An integral lattice is even if all its elements have even norm. Its minimum is the norm of a shortest non-zero element. The Voronoi polytope

$$\operatorname{Vor}_{\Lambda} = \{ x \in \mathbf{E}^n \mid 2\langle x, \lambda \rangle \leq \langle \lambda, \lambda \rangle \text{ for all } \lambda \in \Lambda \setminus \{0\} \} \subset \mathbf{E}^n$$

of Λ is the set of all points $x \in \mathbf{E}^n$ such that 0 is the closest lattice point. For two lattices Λ and M we denote by $\Lambda \oplus M$ the orthogonal sum lattice $\{(\lambda, \mu)\}_{\lambda \in \Lambda, \mu \in M}$ with the obvious scalar product.

A sphere-packing in dimension n is a collection S of points in \mathbf{E}^n and a strictly positive real number ρ such that $\inf_{a\neq b\in S} ||a-b|| \leq \rho$ where ||x|| denotes the Euclidean length of x. One takes generally $\rho = \inf_{a\neq b\in S} ||a-b||$. The density of a sphere packing S, ρ is defined as

$$\operatorname{limsup}_{t \to \infty} \frac{\operatorname{Volume} \ \{x \in \mathbf{E}^n, \ || \ x \mid| \leq t \ \text{and} \ \exists s \in S, \ || \ x - s \mid| \leq \rho\}}{\operatorname{Volume} \ \{x \in \mathbf{E}^n, \ || \ x \mid| \leq t\}}$$

A sphere-packing is a lattice-packing if the set S is a lattice. The density of an n-dimensional lattice is the maximal density of an associated sphere-packing and is given by

$$\sqrt{\frac{(\min\Lambda)^n}{4^n \det\Lambda}} V_n$$

where $V_n = \frac{\pi^{n/2}}{(n/2)!}$ is the volume of the unit-ball in \mathbf{E}^n . The center density of Λ is by definition

$$\sqrt{\frac{(\min \Lambda)^n}{4^n \det \Lambda}}$$

and is proportional to the density (cf. Chapter 1, Formulas 20 and 27 in [CS]). The kissing number of a lattice Λ is the cardinality of the set $\Lambda_{\min} = \{\lambda \in \Lambda \mid \langle \lambda, \lambda \rangle = \min (\Lambda) \}$.

The root lattice A_2 is a lattice which is isomorphic to the even sublattice of \mathbb{Z}^3 generated by (1, -1, 0) and (0, 1, -1). There are 6 vectors of norm 2, called *roots*, in A_2 . The lattice A_2 is 2-dimensional and has determinant 3.

Let M be an n-dimensional lattice with minimum 4. Denote by $M_{12} = \{\mu \in M \mid \langle \mu, \mu \rangle = 12\}$ the set of norm 12 elements in M. Suppose that there exists $R' = \{\pm r_1, \pm r_2, \pm r_3\} \subset M_{12} \cap \operatorname{Vor}_{2M}$ such that $\frac{1}{\sqrt{6}}R'$ are the roots of A_2 (recall that $\operatorname{Vor}_{2M} = \{x \in \mathbf{E}^n \mid \langle x, \mu \rangle \leq \langle \mu, \mu \rangle$ for all $\mu \in M \setminus \{0\}\}$). Let m_1, \ldots, m_n be a basis of M.

Proposition. The (n+2)-dimensional sublattice $\Lambda \subset \frac{1}{\sqrt{2}}M \oplus \frac{1}{\sqrt{6}}M$ generated by

$$(\sqrt{2}m_1, 0), \dots, (\sqrt{2}m_n, 0)$$
 and $(\frac{1}{\sqrt{2}}r_1, \frac{1}{\sqrt{6}}r_1), (\frac{1}{\sqrt{2}}r_2, \frac{1}{\sqrt{6}}r_2)$

has determinant 2^n 3 det M and minimum 8. Moreover, Λ is integral if M is integral.

Proof: Λ contains the lattice generated by $(\sqrt{2}m_1, 0), \ldots, (\sqrt{2}m_n, 0), (0, \sqrt{\frac{2}{3}}r_1), (0, \sqrt{\frac{2}{3}}r_2)$ as a sublattice of index 4. The determinant of this sublattice is easily seen to be 2^{n+4} 3 det M. This shows that det $\Lambda = \frac{2^{n+4} \ 3 \ \text{det} \ M}{(2^2)^2}$.

Let $x=(x_1,x_2)$ be a non-zero element of Λ . If x_2 is zero then $x\in(\sqrt{2}M,0)$ and x has norm at least 8. Let us hence suppose $x_2\neq 0$. The element x_2 is an element of the even lattice A_2 which does not contain elements of norm 4. The norm of x_2 is hence equal to 2, 6 or ≥ 8 . In the last case we are done. If x_2 is of norm 6 then $x_2\equiv x_2'\pmod{2A_2}$ where x_2' is a root of A_2 . We can hence suppose that x_2 is of norm 2. This implies that $x=(\frac{1}{\sqrt{2}}r+\sqrt{2}\mu,\frac{1}{\sqrt{6}}r)$ for some $r\in R'$ and some $\mu\in M$. We have then

$$\begin{array}{ll} \langle x, x \rangle &= \frac{1}{2} \langle r, r \rangle + 2 \langle r, \mu \rangle + 2 \langle \mu, \mu \rangle + \frac{1}{6} \langle r, r \rangle \\ &= 8 + 2 (\langle r, \mu \rangle + \langle \mu, \mu \rangle) \quad . \end{array}$$

But $\pm r \in \text{Vor}_{2M}$ implies $|\langle r, \mu \rangle| \leq \langle \mu, \mu \rangle$ and hence $\langle x, x \rangle \geq 8$.

A straightforward computation shows that the integrality of M implies the integrality of Λ . QED.

Set

$$m_1 = \frac{1}{53}(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 74, 22, 23, 24, 25, 26) \in \mathbf{E}^{26}$$

and denote by e_i the i-th basis vector of the standard orthonormal basis of \mathbf{E}^n . For $2 \leq i \leq 25$ set then $m_i = e_i + a_i e_{26}$ where a_i is an integer such that $i + 26a_i$ is divisible by 53 (this ensures the integrality of the scalar product $\langle m_1, m_i \rangle$) and set finally $m_{26} = 53e_{26}$. The vectors $m_1, ..., m_{26}$ generate then an integral unimodular lattice without roots. Indeed, $53m_1, m_2, ..., m_{26}$ generate the sublattice of index 53 in \mathbf{Z}^{26} consisting of all elements in \mathbf{Z}^{26} which have integral scalar product with m_1 . Adjoining m_1 to this lattice yields a unimodular lattice since m_1 is of index at least 53 in this lattice (the integrality of the resulting lattice is easy). Let r be a (non-zero) vector of minimal length in M. If r belongs to \mathbf{Z}^{26} then r has norm at least 3 since the coordinates μ_1, \ldots, μ_{26} of $53m_1$ are all non-zero modulo 53 and satisfy $\mu_i \neq \pm \mu_j$ for $i \neq j$. If the shortest vector r does not belong to \mathbf{Z}^{26} then the coordinates $\rho_1, \ldots, \rho_{26}$ of 26r represent all elements of the set $\{\pm 1 \pmod{53}, \pm 2 \pmod{53}, \ldots, \pm 26 \pmod{53}\}$. The norm of r is hence at least $(1^2 + 2^2 + \ldots + 26^2)/53^2 = 26.27.53/(6.53^2) > 2$. Since all norms are integral the minimum of M is at least 3 and it is easy to find elements of norm 3 or 4 in M. This shows that M is a unimodular lattice without roots (elements of norm 1 or 2) in dimension 26. According to Borcherds such a lattice is unique (cf. $[\mathbf{Bo}]$). For $i = 1, \ldots, 26$ set now $\tilde{m}_i = m_i + \epsilon_i m_{26}$ where $\epsilon_i = 1$ if m_i has odd norm and $\epsilon_i = 0$ otherwise. The vectors \tilde{m}_i generate the even sublattice M_e of M. Consider

(coordinates are with respect to the orthonormal basis e_1, \ldots, e_{26} of \mathbf{E}^{26}).

Theorem 1. The vectors $\sqrt{2}\tilde{m}_1, \ldots, \sqrt{2}\tilde{m}_{26}, \left(\frac{1}{\sqrt{2}}r_1 + e_{27} - e_{28}\right), \left(\frac{1}{\sqrt{2}}r_2 + e_{27} - e_{29}\right)$ generate an integral lattice Λ with minimum 8 and determinant 2^{28} 3. The kissing number of Λ is equal to 112 458.

Proof. Since M is unimodular and has minimum 3, the even sub-lattice M_e of M has determinant 4 and minimum 4. The vectors $\pm r_1, \pm r_2, \pm r_3$ generate $\sqrt{6}A_2$. On checks by computer that $R' = \{\pm r_1, \pm r_2, \pm r_3\} \subset$

Vor_{2 M_e}. The subset $R' = \{\pm r_1, \pm r_2, \pm r_3\}$ satisfies hence the conditions of the Proposition. This shows that Λ is integral, has minimum 8 and determinant $2^{26}34 = 2^{28}3$. The kissing number of Λ can be established by use of a computer.

Consider now the vector

$$m_1 = \frac{1}{61}(1, 2, 3, 5, 6, 7, 53, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29)$$

and define $m_2, \ldots, m_{26}, m_{27} = qe_{27}$ in the analogous way as for the 26-dimensional lattice above (for instance $m_4 = e_4 + \alpha e_{27}$ where α is an integer such that $5 + 29\alpha \equiv 0 \pmod{61}$). It can again be shown that the lattice M generated by m_1, \ldots, m_{27} is a unimodular lattice without roots. Choose a basis $\tilde{m}_1, \ldots, \tilde{m}_{27}$ of the even sublattice M_e of M and consider the vectors

Theorem 2. The vectors $\sqrt{2}\tilde{m}_1, \ldots, \sqrt{2}\tilde{m}_{27}, \frac{1}{\sqrt{2}}r_1 + e_{28} - e_{29}, \frac{1}{\sqrt{2}}r_2 + e_{28} - e_{30}$ generate an integral lattice Λ with minimum 8 and determinant 2^{29} 3. The kissing number of Λ is equal to 109 884.

The proof is as for Theorem 1.

Corollary. In dimension 28 and 29 there exist sphere packings with center density $\frac{1}{\sqrt{3}}$. These packings are denser than the packings given by laminated lattices which have center density $\frac{1}{2}$ (cf. Chapter 6, Table 6.1 of [CS]).

Remarks. (1) The Proposition can be generalized to other root lattices. One needs $R' \subset M_{12} \cap \operatorname{Vor}_{2M}$ such that $\frac{1}{\sqrt{6}}R'$ is a root system. Moreover R' has to satisfy the following condition: for each element x which belongs to the lattice generated by R' one has $\frac{1}{6}\langle x, x \rangle + 2\langle \overline{x}, \overline{x} \rangle \geq 8$ where $\langle \overline{x}, \overline{x} \rangle$ is the norm of a shortest element in the class of $x \pmod{2M}$.

The construction of the Proposition is in fact very close to laminating.

- (2) One may ask if the lattice obtained by the Proposition is perfect if M is perfect. A sufficient condition is that the set R' is contained in the set of vertices of Vor_{2M} . The proof is straightforward.
- (3) There are probably many 28—dimensional lattices with the same densities as the lattice given in Theorem 1. Indeed the set

$$r_1 = (1, -1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) , r_2 = (1, 1, 1, -1, -1, -1, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0) , r_3 = r_1 - r_2$$

satisfies the same requirements as the set r_1, r_2 and r_3 used in Theorem 1. It yields hence another 28-dimensional lattice with the same density. This lattice is non-isomorphic to the lattice of Theorem 1 since its kissing number is 112 394.

The same remark is probably true for 29-dimensional lattices.

Acknowledgements. I thank J. Martinet who has verified the computations for the lattice of Theorem 1. He informed me that this lattice is perfect.

Bibliography

[B] R.E. Borcherds, The Leech lattice and other lattices (Thesis), Trinity College, Cambridge, 1984. [CS] J.H. Conway, N.J. Sloane, Sphere packings, Lattices and Groups, Springer (1993) (2-nd edition).

Roland Bacher, Université de Grenoble I, Institut Fourier, B.P. 74, 38402 St Martin d'Hères, Cedex, France.