
        

Alexander Stratifications of Character
Varieties

Eriko Hironaka

Abstract

The first cohomology group of one-dimensional representations of
a finitely presented group Γ defines a natural stratification of its char-
acter variety Γ̂. This stratification is related to the Alexander strat-
ification, for which one can obtain explicit defining equations using
Fox calculus. We give an elementary exposition of Fox calculus from
two points of view: in terms of group cohomology and in terms of
finite abelian coverings of CW complexes. Work of Simpson, Ara-
pura and others show that if Γ is the fundamental group of a compact
Kähler manifold, then the Alexander strata are finite unions of trans-
lated affine tori. This gives obstructions to finitely presented groups
which can arise as the fundamental group of a compact Kähler mani-
fold. With this in mind, we give properties of the Alexander strata of
general finitely presented groups and apply them to certain examples.

1 Introduction

Let P be the set of isomorphism classes of fundamental groups of smooth
complex projective varieties. By the Lefschetz hyperplane theorem, each
group in P is isomorphic to the fundamental group of some smooth complex
projective surface. While it is well known that any finitely presented group
is isomorphic to the fundamental group of some closed real 4-dimensional
manifold, there are many obstructions for groups to lie in P . For example,
it follows from Hodge theory that groups in P must abelianize to a group
with even rank. A more complete discussion of these and other properties
and examples of groups contained in P can be found in the surveys [Ar2],
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[A-B-C-K-T]. In this paper we will show how Alexander invariants together
with known properties of groups in P can be used as a tool for finding
obstructions for a given finitely presented group to lie in P .

The Alexander stratification of character varieties is the finite sequence
of nested algebraic subsets Vi(Γ) of the character variety Γ̂ defined by the
Alexander ideals associated to a finite presentation of Γ. This stratification
is closely related to the jumping loci Wi(Γ) for the cohomology of Γ with re-
spect to one dimensinal representations. The Fox calculus computes defining
polynomials for the Alexander strata. We give an exposition of this tool and
give general properties of the Alexander strata and jumping loci in section
2.

An algebraic subset P ⊂ (
� ∗)r is called a rational plane if it is a con-

nected subgroup or translation of a connected subgroup by multiplication
by a unitary element of (C∗)r (an element whose components have norm
one.) The position of torsion points Tor(V ) for V any algebraic subset of the
affine torus (

� ∗)r is described by the following result due to Sarnak [A-S] (cf.
Laurant [La]).

Proposition 1 (Sarnak) If V ⊂ (
� ∗)r is any algebraic subset, then there

exist rational planes P1, . . . , Pk in (
� ∗)r such that Pi ⊂ V for each i = 1, . . . , k

and

Tor(V ) =
k⋃

i=1

Tor(Pi).

One motivation of this paper is the problem of relating properties of a
group Γ with the existence of epimorphisms of Γ onto the fundamental group
Γg of a smooth genus g curve. The existence of such an epimorphism has
strong geometric consequences. If X is a smooth complex projective variety
and there exists an epimorphism π1(X) → Γg, where g ≥ 2, then Beauville
[Be] shows that there is a pencil of divisors on X of genus greater than or
equal to g. (cf. [Cat].)

For the curve groups Γg, the Alexander strata and jumping loci are all
rational planes. Furthermore, given an epimorphism Γ → Γg, there are
inclusions Vi(Γg) ↪→ Vi(Γ) (see Proposition 5 in section 2.5), giving rational
planes contained in Vi(Γ). The same is also true for the jumping loci Wi(Γ).
By a result of Arapura [Ar1] (in the slightly more general setting of compact
Kähler manifolds), generalizing work of Simpson in [Sim], for groups in P
the strata are finite unions of rational planes.
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Theorem 2 (Simpson,Arapura) Let X be a smooth complex projective sur-
face and let Γ = π1(X). Then each Wi(Γ) is a finite union of affine subtori
translated by unitary characters.

For W1 one can state more about the structure of the rational planes, by
the following theorem due to Green and Lazarsfeld [G-L], Beauville [Be],
Simpson [Sim] and Arapura [Ar1].

Theorem 3 (Green-Lazarsfeld, Beauville, Simpson, Arapura) Let X be a
smooth complex projective surface and let Γ = π1(X). Then there are a finite
number of surjective morphisms fi : X → Ci onto smooth curves Ci with
genus gi, torsion characters ρi and a finite number of unitary characters ρ′j
such that

W1(Γ) =
⋃

i

ρif
∗
iW1(Γgi) ∪

⋃

j

ρ′j.

For most finitely presented groups, the Alexander stratification can’t be
decomposed into a finite union of rational planes. Thus, these theorems give
strong obstructions for groups that can occur in P . We study some examples
in section 3.

The author began writing this paper at the Institut Fourier in Grenoble
during the summer of 1995. I would like to thank the members for their
warm hospitality and stimulating conversations, especially Gérard Gonzalez-
Sprinberg who arranged my stay.

2 Fox Calculus and Alexander Invariants

In this section we give an exposition of the techniques and results surrounding
Fox Calculus, Alexander invariants (cf. [Fox]) and their applications.

Fox calculus and Alexander invariants can be summarized as follows. For
F any finitely generated free group, let ab : F → Fab be the abelianization
map. Then � Fab can be identified with the ring of Laurent poynomials
Λ = � [t±1

1 , . . . , t±1
r ], where xi maps to ti. Define

Di : F → Λ

by

Di(xj) = δi,j

Di(fg) = D(f) + ab(f)D(g).
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We call Di the i-th partial Fox derivative. The map D : F → Λr given by D =
(D1, . . . ,Dr) is called the Fox derivative. For a given finitely presented group
Γ with generators in a free group F and relations R1, . . . , Rs, the Alexan-
der invariants are associated with the matrix of partials M(R1, . . . , Rs) =
[Di(Rj)] called the Alexander matrix. These matrices can be evaluated on
points of the character variety F̂ = (

� ∗)r of F . Let q : F → Γ be the
quotient map. Then composition by q defines an inclusion q̂ : Γ̂ → F̂ . For
i = 0, 1, 2, . . ., define

Vi(Γ) = { ρ ∈ Γ̂ | rankM(R1, . . . , Rs)(q̂(ρ)) ≤ r − i }.

These are the subvarieties of Γ̂ defined by the ideal of (r− i)× (r− i) minors
of M(R1, . . . , Rs) restricted to the image of Γ̂ in F̂ . The nested sequence

Γ̂ ⊃ V0(Γ) ⊃ V1(Γ) ⊃ . . .

is called the Alexander stratifiction for the group Γ.
In section 2.1, we relate the Alexander stratification to group cohomology.

A convenient way to view the Alexander stratification is in terms of a certain
coherent sheaf which we define in section 2.2. In section 2.3, we show how Fox
calculus can be used to find defining polynomials for the Alexander strata.

Fox calculus gives an effective method for computing the first Betti num-
ber of abelian coverings of a finite CW complex. In section 2.4, we give a
geometric interpretation of the calculus in terms of CW complexes and regu-
lar coverings and derive a formula (see Proposition 4 in 2.4) for the first Betti
number of finite abelian coverings in terms of the Alexander stratifications.
We discuss properties of the Alexander stratifications in section 2.5.

2.1 Group cohomology and the Alexander stratifica-
tion.

For a group Γ, let
�

Γ to be the group ring associated to Γ and let Γ̂ =
Hom(Γ,

� ∗) be the group of characters of Γ. Then this has the natural struc-
ture of an algebraic variety with coordinate ring

�
Γab, where Γab is the

abelianization of Γ. For f ∈ �
Γab and ρ ∈ Γ̂, f(ρ) is defined to be ρ(f). Let

ab : Γ → Γab be the abelianization map. If α : Γ → Γ′ is a homomorphism

of groups, let α̂ : Γ̂′ → Γ̂ be the corresponding map on character varieties.
This is a morphism and the corresponding map on coordinate rings is given
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by
α̂∗ :

�
Γ′ab →

�
Γab,

where α̂∗(ab(f))(ρ) = f(α̂(ρ)) = α̂(ρ)(f) = ρ(α(f)), for all f ∈ Γ.
Let C1(Γ, ρ) be the set of crossed homomorphisms f : Γ→ �

satisfying

f(g1g2) = f(g1) + ρ(g1)f(g2).

Then C1(Γ, ρ) is a vector space over
�

. Note that for any f ∈ C1(Γ, ρ),
f(1) = 0.

Definition. Let

Vi(Γ) = { ρ ∈ Γ̂ | dimC1(Γ, ρ) > i }.

This defines a nested sequence

Γ̂ ⊃ V0(Γ) ⊃ V1(Γ) ⊃ . . . .

In section 2.3, we will show that this stratification is the same as the Alexan-
der stratification defined in the introduction to this section. For the moment
we will use the same notation.

Define, for ρ ∈ Γ̂,

B1(Γ, ρ) = { f : Γ→ � | f(g) = (ρ(g)− 1)c for some constant c ∈ � }.

Then B1(Γ, ρ) is a subspace of C1(γ, ρ). Define

H1(Γ, ρ) = C1(Γ, ρ)/B1(Γ, ρ).

This is the first cohomology group of Γ with respect to the representation ρ.
The jumping loci for the first cohomology group of Γ is defined to be

Wi(Γ) = { ρ ∈ Γ̂ | dim H1(Γ, ρ) ≥ i },

for i = 0, 1, 2, . . ., which defines a nested sequence

Γ̂ = W0(Γ) ⊃ W1(Γ) ⊃ . . . .

If ρ = 1̂ is the identity character in Γ̂, then ρ(g) = 1, for all g ∈ Γ. Thus,
B1(Γ, ρ) = {0}. Also, C1(Γ, 1̂) is the set of all homomorphisms from Γ to

�

and is isomorphic to the abelianization of Γ tensored with
�

. Thus,

dimC1(Γ, 1̂) = dim H1(Γ, 1̂) = d,
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where d is the rank of the abelianization of Γ. If ρ 6= 1̂, then dimB1(Γ, ρ) = 1,
so

dimC1(Γ, ρ) = dim H1(Γ, ρ) + 1.

We have thus shown the following.

Lemma. 2.1.1 The jumping loci Wi(Γ) and the nested sequence Vi(Γ) are
related as follows.

Wi(Γ) = Vi(Γ) for i 6= d

Wi(Γ) = Vi(Γ) ∪ {1̂} for i = d.

This shows that V0(Γ) = Γ̂ unless Γ is a perfect group, abelianizing to
the trivial group.

Remark. The Alexander strata could also have been defined using the coho-
mology of local systems. Let X be a topological space homotopy equivalent
to a finite CW complex with π1(X) = Γ. Let X̃ → X be the universal cover
of X. Then, for each ρ ∈ Γ̂, each g ∈ Γ acts on X̃× �

by its action as covering
automorphism on X̃ and by multiplication by ρ(g) on

�
. This defines a local

system
�
ρ → X over X. Then Wi(Γ) is the jumping loci for the rank of the

cohomology group H1(X,
�
ρ) with coefficients in the local system

�
ρ.

2.2 Coherent sheaves over the character variety.

Let Γ be a finitely presented group and let C1(Γ, ρ)
∨

be the dual space of
C1(Γ, ρ). We will construct sheaves C1(Γ) and C1(Γ)

∨
over Γ̂ whose stalks

are C1(Γ, ρ) and C1(Γ, ρ)
∨
, respectively.

Let F be a free group with r fixed generators x1, . . . , xr. For i = 1, . . . , r
and ρ ∈ F̂ , let 〈xi〉ρ ∈ C1(F, ρ) be the element determined by

〈xi〉ρ(xj) = δi,j.

Then 〈x1〉ρ, . . . , 〈xr〉ρ is a basis for C1(F, ρ) as a
�

-vector space.
Let C1(F ) be the

� r-bundle

C1(F ) = t
ρ∈Γ̂

C1(F, ρ)
y

F̂

8



        

where the fibers are C1(F, ρ). Define 〈xi〉 ∈ H0(F̂ , C1(F ) by 〈xi〉(ρ) = 〈xi〉ρ.
Then the module of holomorphic sections of F̂ to the total space C1(F ) is a
free

�
Fab module with basis {〈x1〉, . . . , 〈xr〉}. Let C1(F ) be the associated

sheaf and let C1(F )
∨

denote the sheaf associated to the dual bundle. The
latter has global sections 〈x1〉∨, . . . , 〈xr〉∨.

Let Γ be presented by:

Γ = 〈x1, . . . , xr : R1, . . . , Rs〉.

We will refer to the presentation as ℘. Let F , F ′ be free groups on r and
s generators, respectively, where x1, . . . , xr are the generators for F and
y1, . . . , ys are generators for F ′. Let

F ′
ψ−→F q−→Γ

be homomorphisms, where ψ(yi) = Ri, for i = 1, . . . , s, and q is the quotient
map given by modding F out by the normalization N(R1, . . . , Rs) of the
image of ψ. We will sometimes refer to a presentation ℘ as ℘(F ′

ψ−→F q−→Γ).
The map ψ determines a map on character groups ψ̂ : F̂ → F̂ ′. Let

ψ̂∗(C1(F ′)) be the pullback of C1(F ′) over F̂ . The global sections s ∈
H0(F̂ , ψ̂∗(C1(F ′))) are given by s(ρ) = s′(ψ̂(ρ)) for some s′ ∈ H0(F̂ ′, C1(F ′)).

In general, for any group homomorphism α : Γ′ → Γ and any ρ ∈ Γ̂, there
is a corresponding linear map

α¦ρ : C1(Γ, ρ)→ C1(Γ′, α̂(ρ))

given by α¦ρ(f) = f ◦ α for f ∈ C1(Γ, ρ). In this instance, we have a linear
map

ψ¦ρ : C1(F, ρ)→ C1(F ′, ψ̂(ρ))

defined by composition by ψ.
Take any element s ∈ H0(F̂ ′, C1(F ′)). For any ρ ∈ F̂ define ψ¦(s)(ρ) =

ψ¦ρ ◦ s(ψ̂(ρ)) = s(ρ) ◦ ψ. This defines a ring homomorphism

ψ¦ : H0(F̂ , C1(F ))→ H0(F̂ ′, C1(F ′))

which determines a
�
Fab-module homomorphism

H0(F̂ , C1(F ))→ H0(F̂ , ψ∗(C1(F ′))) = H0(F̂ ′, C1(F ′))⊗ � F ′
ab

�
Fab.
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Let
Ψ¦ : C1(F )→ ψ̂∗(C1(F ′))

be the associated homomorphism of sheaves over F̂ .
Let C1(Γ) be the kernel of Ψ¦ pulled back to Γ̂ under the map q̂ : Γ̂→ F̂ .

The dual C1(Γ)
∨

is the cokernel of the dual map Ψ¦ : ψ̂∗C1(F ′)
∨ → C1(F )

∨

pulled back to Γ̂. The sheaf C1(Γ)
∨

is coherent since ψ̂∗C1(F ′)
∨

and C1(F )
∨

are generated freely by global sections.

Lemma. 2.2.1 The sequence

0−→C1(Γ, ρ)
q¦ρ−→C1(F, q̂(ρ))

ψ¦ρ−→C1(F ′, ψ̂q̂(ρ))

is exact.

Proof. Clearly, q¦ρ is injective. An element f ∈ C1(F̂ , q̂(ρ)) lies in the image
of q¦ρ if and only if it vanishes on N(ψ(F ′)).

Suppose f vanishes on N(ψ(F ′)). Then f(ψ(R)) = 0 for all R ∈ F ′, so
ψ¦ρ(f) = 0 and f ∈ ker(ψ¦ρ).

If f ∈ ker(ψ¦ρ), then f(ψ(R)) = 0 for all R ∈ F ′. Take any a ∈ F and
R ∈ F ′. Then

f(aψ(R)a−1) = f(a) + q̂(ρ)(a)f(ψ(R)) + q̂(ρ)(a)q̂(ρ)(R)f(a−1)
= f(a) + q̂(ρ)(a)f(a−1)
= f(aa−1) = f(1) = 0

Thus, f vanishes on N(ψ(F ′)) and is in the image of q¦ρ.

Corollary 4 The stalks of C1(Γ) and C1(Γ)
∨

are canonically isomorphic to
C1(Γ, ρ) and C1(Γ, ρ)

∨
, respectively.

Proof. Fix ρ ∈ Γ̂. Then the restriction of Ψ¦ to the stalks over q̂(ρ) is given
by

ψ¦ρ : C1(F, q̂(ρ))→ C1(F ′, ψ̂q̂(ρ)).

The claim for C1(F ) follows from Lemma 2.2.1. The dual case follows from
naturality.
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2.3 Fox Calculus and the Alexander stratification.

In this section, we show how to use the Fox calculus to find defining equations
for the stratification defined in section 2.1, associated to a finitely presented
group. For technical reasons we will concentrate on the stalks C1(Γ, ρ)

∨
of

C1(Γ)
∨

instead of on the stalks C1(Γ, ρ) of C1(Γ).
For any group Γ, there is an exact bilinear pairing

(
�

Γ)ρ × C1(Γ, ρ)→ �
,

where
(

�
Γ)ρ =

�
Γ/{g1g2 − g1 − ρ(g1)g2 | g1, g2 ∈ Γ}

given by
[g, f ] = f(g).

This determines a
�

-linear map

Φρ : (
�

Γ)ρ → C1(Γ, ρ)
∨
.

Let α : Γ′ → Γ be a homomorphism of groups. Then, for each ρ ∈ Γ̂, α
determines a map α : (

�
Γ′)α̂(ρ) → (

�
Γ)ρ, by simply applying α to f ∈ Γ′ and

extending linearly. To see this one need only check the following:

α(g1g2) = α(g1 − α̂(ρ)(g1)g2)
= α(g1 − ρ(α(g1))g2)
= α(g1)− ρ(α(g1))α(g2).

Lemma. 2.3.1 For each ρ ∈ Γ̂, we have a commutative diagram

(
�

Γ′)α̂(ρ)

Φ
α̂(ρ)−→ C1(Γ′, α̂(ρ))

∨

yα
yα¦,ρ

(
�

Γ)ρ
Φρ−→ C1(F, ρ)

∨
,

where α¦,ρ is the dual map of α¦ρ.

Proof. For g ∈ �
Γ′ and f ∈ C1(Γ, ρ), the pairing [, ] gives

[g, α¦ρ(f)] = α¦ρ(f)(g) = f(α(g)) = [α(g), f ].
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Define
Φ :

�
F → H0(F̂ , C1(F )

∨
)

by

Φ(xi) = 〈xi〉∨
Φ(g1g2) = Φ(g1) + ab(g1)Φ(g2) for g1, g2 ∈ � .

Note that for any ρ ∈ F̂ and f ∈ �
F with image fρ ∈ (

�
F )ρ, we have

Φρ(fρ) = Φ(f)(ρ). Thus, the map Φ is the globalization of the maps Φρ.

Lemma. 2.3.2 For each ρ ∈ Γ̂ the dimension of C1(Γ, ρ) is given by

r − dim(Φ(℘)ρ),

where Φ(℘)ρ is the subspace of C1(F, ρ) generated by

Φ(R1)(α̂(ρ)), . . . ,Φ(Rs)(α̂(ρ)).

Proof. The presentation ℘(F ′
ψ−→F q−→Γ) of Γ gives the exact sequence

C1(F ′, ψ̂q̂(ρ))
∨ ψ¦,̂q(ρ)−→ C1(F, q̂(ρ))

∨ q¦,ρ−→ C1(Γ, ρ)
∨−→0.

By Lemma 2.3.1, the diagram

(
�
F ′)

ψ̂q̂(ρ)

Φ
ψ̂q̂(ρ)−→ C1(F ′, ψ̂q̂(ρ))

∨

yψ
yψ¦,̂q(ρ)

(
�
F )q̂(ρ)

Φ
q̂(ρ)−→ C1(F, q̂(ρ))

∨
yq

yq¦,ρ

(
�

Γ)ρ
Φρ−→ C1(Γ, ρ)

∨

commutes for each ρ ∈ Γ̂. Note that, for free groups F , C1(F )
∨

has a
basis of global sections 〈x1〉∨, . . . , 〈xr〉∨. Thus, the maps Φ

ψ̂q̂(ρ)
and Φq̂(ρ)

are surjective. Also, the maps q and q¦,ρ are surjective. Therefore, the
dimension of C1(Γ, ρ)

∨
equals the rank of the cokernel of ψ¦,ρ. The top of

the commutative diagram shows that the image of ψ¦,q̂(ρ) equals the image
of Φq̂(ρ) ◦ψ which is generated by (Φq̂(ρ) ◦ψ)(y1), . . . , (Φq̂(ρ) ◦ψ)(ys), for each

ρ ∈ F̂ . Since ψ(yi) = Ri, for i = 1, . . . , s, the claim follows.
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We will now write the map Φ in terms of Laurent polynomials. Let
F be the free group on r generators x1, . . . , xr. Then there is a natural
identification of the coordinate ring

�
Fab for F̂ with the ring of Laurent

polynomials Λ =
�

[t±1
1 , . . . , t±1

r ], given by sending xi to ti, for i = 1, . . . , r.
The ring of sections H0(F̂ , C1(F )

∨
) is canonically isomorphic to Λr, where

〈x1〉∨, . . . , 〈xr〉∨ map to the generators of Λr considered as a module over Λ.
The corresponding map

�
F → Λr restricted to F is the Fox derivative

D : F → Λr. Let R1, . . . , Rs be elements of F and let M(R1, . . . , Rs) be the
s× r Alexander matrix with entries in Λ.

Let Γ be a finitely presented group with presentation ℘(F ′
ψ−→F q−→Γ).

Let q̂∗ :
�
Fab →

�
Γab be the corresponding map on coordinate rings of the

character varieties F̂ and Γ̂. Then q̂∗ represents
�

Γab as a quotient ring of
�
Fab with kernel given by the ideal generated by ab(R1)−1, . . . , ab(Rs)−1.

Thus, q determines an identification of the coordinate ring
�

Γab of Γ̂ with
a quotient of Λ. Call this quotient ΛΓ and let q̃ : Λ → ΛΓ be the quotient
map. Let DΓ : F → Λr

Γ be the composition DΓ = q̃r ◦ D. Let DΓ,i be
the i-th component of DΓ. Let M(℘) be the s × r matrix with entries in
ΛΓ given by DΓ,i(Rj), for i = 1, . . . , r and j = 1, . . . , s. We call M(℘) the
Alexander matrix for Γ associated to the presentation ℘. Note that M(℘) can
be obtained from M(R1, . . . , Rs) by applying the map q̃ to all the entries.

Lemma. 2.3.3 The stratification Vi(Γ) are the algebraic subsets of Γ̂ defined
by the ideals of (r − i) × (r − i) minors of M(℘) and hence is the same as
the Alexander stratification.

Proof. For each ρ ∈ Γ̂, let M(℘)(ρ) be the matrix M(℘) evaluated at ρ.
Then the columns of M(℘)(ρ) are DΓ(Ri)(ρ) = D(Ri)(q̂(ρ)), for i = 1, . . . , s.
By lemma 2.3.2, we have

dimC1(Γ, ρ) = r − rank(M(℘)(ρ)).

It follows that dimC1(Γ, ρ) > i if and only if rank(M(℘)(ρ)) < r − i. This
happens, if and only if ρ satisfies all (r − i)× (r − i) minors of M(℘).
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2.4 Abelian coverings of finite CW complexes.

In this section we explain the Fox calculus and Alexander stratification in
terms of finite abelian coverings of a finite CW complex. An illustration of
the techniques is given at the end of this section.

Let X be a finite CW complex and let Γ = π1(X). Suppose Γ has
presentation ℘ given by Γ = 〈x1, . . . , xr : R1, . . . , Rs〉. Then X is homotopy
equivalent to a CW complex with cell decomposition whose tail end is given
by

. . . ⊃ Σ2 ⊃ Σ1 ⊃ Σ0,

where Σ0 consists of a point P , Σ1 is a bouquet of r oriented circles S1 joined
at P . Identify F with π1(Σ1) so that each xi is the positively oriented loop
around the i-th circle. Each Ri defines a homotopy class of map from S1 to
Σ1. The 2-skeleton Σ2 is the union of s disks attached along their boundaries
to Σ1 by maps in the homotopy class defined by R1, . . . , Rs.

Let α : Γ → G be any epimorphism of Γ to an abelian group G. Let
α̃ : � Γab → � G be the corresponding map on group rings. Let qα : F → G
be the map qα = α ◦ q and let q̃α : � Fab → � G be the corresponding map
on group rings. Identify � Fab with Λ = � [t±1

1 , . . . , t±1
r ] by ab(xi) = ti and

let ΛΓ and Λα be the quotient rings of Λ corresponding to q̃ and q̃α. The
monomials in Λ, ΛΓ and Λα are in one to one correspondence with elements
of Fab, Γab and G, respectively.

Let ρα : Xα → X be the regular unbranched covering determined by α
with G acting as group of covering automorphisms. We will now show how
Fox calculus can be used to compute the first Betti number of Xα. Choose a
basepoint 1P ∈ ρ−1

α (P ). For each i-chain σ ∈ Σi and g ∈ G, let gσ be the the
component of its preimage which passes through gP . For each generating
i-cell in Σi, there are exactly G copies of isomorphic cells in its preimage.
Thus Xα has a cell decomposition

. . . ⊃ Σ2,α ⊃ Σ1,α ⊃ Σ0,α,

where the i-cells in Σi,α are given by the set {gσ : g ∈ G, σ an i-cell in Σi}.
With this notation if σ attaches to Σi−1,α according to the homotopy class
of mapping f : ∂σ → Σi−1, where ∂σ is the boundary of σ, then gσ attaches
to Σi−1,α by the map f ′ : ∂gσ → Σi−1,α lifting f at the basepoint gP .

Let Ci be the i-chains on X and let Ci,α be the i-chains on Xα. Then
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there is a commutative diagram for the chain complexes for X and Xα:

. . . −→ C2,α
δ2,α−→ C1,α

δ1,α−→ C0,α
ε−→ �

yρα
yρα

yρα

. . . −→ C2
δ2−→ C1

δ1−→ C0,

where the map ε is the augmentation map

ε(
∑

g∈G
(agg)) =

∑

g∈G
ag.

Here elements of G are are identified with monomials in Λα.
Let 〈xi〉 be the elements of C1,α given by lifting x1, . . . , xr, considered

as loops on Σ1, to 1-chains on Σ1,α with basepoint 1P . Then C1,α can be
identified with Λr

α, with basis 〈x1〉, . . . , 〈xr〉 and C0,α can be identified with
Λα, where each monomial t ∈ Λα corresponds to a translation of 1P by the
corresponding element in G.

The above commutative diagram can be rewritten as

. . . −→ Λs
α

δ2,α−→ Λr
α

δ1,α−→ Λα
ε−→ �

yρα
yρα

yρα

. . . −→ � s δ2−→ � r δ1−→ � .

(1)

For any finite set S, let |S| denote its order. The map ε is surjective, so we
have the formula

b1(Xα) = nullity(δ1,α)− rank(δ2,α) = (r − 1)|G|+ 1− rank(δ2,α), (2)

where b1(Xα) is the rank of ker δ1,α/imageδ2,α and is the rank of H1(Xα; � ).
We will rewrite this formula in terms of the Alexander stratification.

Lemma. 2.4.1 The map δ1,α is given by

δ1,α(
r∑

i=1

fi〈xi〉) =
r∑

i=1

fiq̃α(ti − 1).

Proof. It’s enough to notice that the lift of xi to C1,α at the basepoint 1P
has end point tiP .
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We will now relate the map δ2,α with the Fox derivative.
Recall that Σ1 equals a bouquet of r circles ∧rS1. Let ρ : Lr → ∧rS1

be the universal abelian covering. Then Lr is a lattice on r generators with
Fab acting as covering automorphisms. The vertices of the lattice can be
identified with Fab and hence with the monomials in Λ. Let Kα = ker(α ◦
q) ⊂ F and let K̃α be its image in Fab. Then Σ1,α = Lr/K̃α and we have a
commutative diagram

Lr ηα−→ Σ1,αyρ
yρα

∧rS1 = Σ1

where ηα : Lr → Σ1,α is the quotient map. Let (ηα)∗ : C1(Lr) → C1(Σ1,α)
be the induced map on one chains. Then identifying C1(Lr) with Λr and
C1(Σ1,α) with Λr

α, we have (ηα)∗ = q̃α
r.

Choose 1P ′ ∈ ρ−1(P ). Let C1(Lr) be the 1-chains on Lr. Let 〈x1〉, . . . , 〈xr〉
be the lifts of x1, . . . , xr to C1(Lr) at the base point 1P ′. This determines an
identification of C1(Lr) with Λr and determines a choice of homotopy lifting
map ` : π1(Σ1)→ C1(Lr).

The action of Fab on Λr determines an action of Fab on C1(Lr). Let
D : F → C1(Lr) be defined by

D(xi) = 〈xi〉
D(fg) = D(f) + ab(f)D(g).

Define Dα : F → C1(Σ1,α) to be the map (ηα)∗◦D. Under the identification of
C1(Lr) with Λr, the map D is the Fox derivative map defined in the begining
of section 2. Let M(℘) be the matrix (as defined in section 2.3) given by
taking the entries of M(R1, . . . , Rs) and composing on the left by q̃. Let
M(℘)α be the matrix obtained from M(℘) be composing on the left with α̃.
(Here we are ignoring the distinction between � Fab, � Γab, � G and Λ, ΛΓ

and Λα, respectively.)

Lemma. 2.4.2 The lifting map ` : π1(∧rS1) → C1(Lr) is given by the Fox
derivative D : F → Λr and Dα = (q̃α)r ◦ `.

Proof. By definition, both maps ` and D send xi to 〈xi〉, for i = 1, . . . , r.
We have left to check products. Let f, g ∈ F , be thought of as loops on
∧rS1. Then the lift of f has endpoint ab(f), where ab : F → Fab is the
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abelianization map. Therefore, `(fg) = `(f) + ab(f)`(g). Since these rules
are the same as those for the Fox derivative map, the maps must be the same.

Corollary 5 Let Γ be a finitely presented group with presentation ℘ given
by generators x1, . . . , xr and relations R1, . . . , Rs. Let α : Γ → G be an
epimorphism to an abelian group G. Let q̃α : Λ → Λα be the the associated
quotient map. Suppose the Alexander matrix M(R1, . . . , Rs) is given by [fi,j].
Then the map δ2,α is given by M(℘)α = [q̃α(fi,j)].

Proof. Let σ1, . . . , σs be the s disks generating the 2-cells C2(Σ2). For each
i = 1, . . . , s and g ∈ G, let gσi denote the lift of σi at gP . By Lemma 2.4.2,
the boundary ∂σi maps to D(Ri) in C1(Lr). Thus, the boundary of gσi equals
gD(Ri), and for g1, . . . , gs ∈ Λα,

δα,2(
s∑

i=1

giσi) =
s∑

i=1

giD(Ri).

This is the same as the application of M(℘)α on the s-tuple (g1, . . . , gs).

We now give a formula for the first Betti number b1(Xα) in terms of the
Alexander stratification in the case where G is finite.

Tensor the top row in diagram (1) by
�

. Then Λα is a finite dimensional
vector space (isomorphic to

�
G) and the action of G diagonalizes to get

Λα = ⊕
ρ∈ĜΛα,ρ,

where g ∈ G acts on Λα,ρ by multiplication by ρ(g).
The top row of diagram (1) becomes

⊕
ρ∈ĜΛs

α,ρ

δα,2−→⊕
ρ∈Ĝ Λr

α,ρ

δα,1−→⊕
ρ∈Ĝ Λα,ρ

ε−→ �
.

The map δα,2 considered as a matrix M(℘)α, as in Lemma 2.4.3, decomposes
into blocks

M(℘)α = ⊕
ρ∈ĜM(℘)α(ρ),
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where, if M(℘)α = [fi,j], then M(℘)α(ρ) = [fi,j(ρ)]. We thus have the
following formula for the rank of M(℘)α:

rank(M(℘)α) =
∑

ρ∈Ĝ
rank(M(℘)α(ρ)). (3)

Recall that the Alexander stratification Vi(Γ) was defined in the beginning
of section 2 to be the zero set in Γ̂ of the (r − i) × (r − i) ideals of M(℘).
For any ρ ∈ Ĝ, M(℘)α(ρ) = M(℘)(α̂(ρ)) = M(R1, . . . , Rs)(q̂α(ρ)), since
α̃(f)(ρ) = f(α̂(ρ)) and q̃α(f)(ρ) = f(q̂α(ρ)).

We thus have the following Lemma.

Lemma. 2.4.3 For ρ ∈ Ĝ, α̂(ρ) ∈ Vi(Γ) if and only if rank(M(℘)α(ρ)) <
r − i.

For each i = 0, . . . , r − 1, let χVi(Γ) be the indicator function for Vi(Γ).

Then, for ρ ∈ Ĝ, we have

rank(M(℘)α(ρ)) = r −
r−1∑

i=0

χ
Vi(Γ̂)

(α̂(ρ)). (4)

Lemma. 2.4.4 For the special character 1̂,

rank(M(℘)α(1̂)) = r − b1(X)

and rank(M(℘)α(1̂)) = r if and only if Γ̂ = {1̂} and Γ has no nontrivial
abelian quotients.

Proof. The group G acts trivially on Λα,̂1. Thus, in the commutative dia-
gram

Λs
α,̂1

M(℘)α (̂1)−→ Λr
α,̂1

δα (̂1)−→ Λα,̂1y
y

y

(
�

)s
δ2−→ (

�
)r

δ1−→ �

the vertical arrows are isomorphisms.
We thus have

rank(M(℘)α(1̂)) = rank(δ2)

= r − b1(X).
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Proposition 6 Let Γ be a finitely presented group and let α : Γ→ G be an
epimorphism where G is a finite abelian group. Let Γ̂ ⊃ V0(Γ) ⊃ V1(Γ) ⊃ . . .
be the Alexander stratification for Γ. Let α̂ : Ĝ ↪→ Γ̂ be the inclusion map
induced by α. Then

b1(Xα) = b1(X) +
r−1∑

i=1

|Vi(Γ) ∩ α̂(Ĝ \ 1̂)|.

Proof. Starting with formula (2) and Lemma 2.4.3, we have

b1(Xα) = (r − 1)|G|+ 1− rank(M(℘)α)

= r − rank(M(℘)α(1̂)) +
∑

ρ∈Ĝ\̂1
(r − 1)− rank(M(℘)α(ρ)).

By Lemma 2.4.5, the left hand summand equals b1(X) and by (4) the right
hand side can be written in terms of the indicator functions which leads us
to the conclusion we are after:

b1(Xα) = b1(X) +
∑

ρ∈Ĝ\̂1

r−1∑

i=1

χ
Vi(Γ̂)

(α̂(ρ))

= b1(X) +
r−1∑

i=1

|Vi(Γ ∩ (α̂(Ĝ \ 1̂))|.

Example. We illustrate the exposition in this section by using the well
known case of the trefoil knot in the three sphere S3:

One presentation of the fundamental group of the complement is Γ = 〈x, y :
xyxy−1x−1y−1〉. Then Σ1 is a bouquet of two circles and F = π1(Σ1)
has two generators x, y one for each positive loop around the circles. The
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maximal abelian covering of Σ1 is the lattice L2. Now take the relation
R = xyxy−1x−1y−1 ∈ F . The lift of R at the origin of the lattice is drawn in
the figure below.

Note that the order in which the path segments are taken does not matter in
computing the 1-chain. One can verify that D(R) is the 1-chain defined by

(1− tx + txty)〈x〉+ (−txt−1
y + tx − t2x)〈y〉.

Thus, the Alexander matrix for the relation R is

M(R) =

[
1− tx + txty
−txt−1

y + tx − t2x

]
.

We will now show how to find DΓ(R) and M(℘). Note that Γab
∼= �

and x and y both map to the same generator which we’ll call t. Thus, ΛΓ is
the quotient of Λ =

�
[t±1
x , t±1

y ] by the ideal generated by tx − ty and we can
identify ΛΓ with

�
[t±1] by mapping both tx and ty to t. The image of DΓ(R)

is (1− t + t2,−1 + t− t2) and the Alexander matrix for this presentation ℘
of Γ is

M(℘) =

[
1− t+ t2

−1 + t− t2
]
.

The Alexander stratification of Γ is thus given by

V0(Γ) = Γ̂ =
� ∗;

V1(Γ) = V (1− t+ t2);
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Vi(Γ) = ∅ for i ≥ 2.

Note that the torsion points on V1(Γ) are the two primitive 6th roots of unity
exp (±2π/6).

Now let α : Γ→ G be any epimorphism to an abelian group. Then since
Γab

∼= � , G must be a cyclic group of order n for some n. This means the

image of α̂ : Ĝ → � ∗ is the set of n-th roots of unity in
� ∗. Let Xα be the

n-cyclic unbranched covering of the complement of the trefoil corresponding
to the map α. Then by Proposition 4, we have

b1(Xα) =

{
3 if 6|n
1 otherwise.

2.5 Properties of Alexander Stratifications

Let Γ be a finitely presented group with presentation ℘ given by Γ = 〈x1, . . . , xr :
R1, . . . , Rs〉. Hereafter in this paper, we will denote ℘ by the pair ℘(F,R),
where F is the free group on generators x1, . . . , xr and R is the set of ele-
ments {R1, . . . , Rs} in F . Let D : F → Λr be the Fox derivative, where Λ be
the ring of complex Laurent polynomials in r variables.

Let D(R) = 〈D(R1), . . .D(Rs)〉 be the ideal generated by Fox derivatives
of R1, . . . , Rs in Λr. For each ρ ∈ F̂ , let D(R)(ρ) be the subspace of

� r

spanned by D(R1)(ρ), . . . ,D(Rs)(ρ). Then we have

Vi(Γ) = {ρ ∈ Γ̂ | dimD(R)(ρ) < r − i}.
Let α : Γ → Γ′ be a group homomorphism where Γ and Γ′ have presen-

tations ℘(F,R) and ℘(F ′,R′), respectively. Then α extends (not necessarily
uniquely) to a homomorphism α : F → F ′. Let α̃ : Λ → Λ′ be the map on
the ring of Laurent polynomials induced by the map αab : Fab → F ′ab.

Lemma. 2.5.1 For (f1, . . . , fr) ∈ Λr, let

ψα(f1, . . . , fr) =
r∑

i=1

α̃(fi)D(α(xi)).

Then the diagram
Λr ψα−→ (Λ′)r

↑ D ↑ D

F
α−→ F ′

commutes.
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Proof. For each ρ ∈ Γ′,

ψα(f1, . . . , fr)(ρ) =
r∑

i=1

α̃(fi)(ρ)

=
r∑

i=1

fi(α̂(ρ))D(α(xi))(ρ).

LetAα be the matrix with entries in ΛΓ′ having columns D(α(x1)), . . . ,D(α(xr)).
We have thus shown

ψα(D(R))(ρ) = Aα(ρ)(D(R)(α̂(ρ))). (5)

Proposition 7 Suppose α : Γ→ Γ′ is an epimorphism. Then

α̂(Vi(Γ
′)) ⊂ Vi(Γ).

Proof. For some free group F = 〈x1, . . . , xr〉, we can find relations R ⊂
R′ ⊂ F such that Γ andΓ′ are presented by ℘(F,R) and ℘(F,R′). Taking
α : F → F to be the identity map, Aα = Aα(ρ) is the identity matrix for
every ρ.

Thus (5) gives the inequality

dim(D(R)(α̂(ρ))) = dim(ψα(D(R))(ρ)) ≤ dim(D(R′)(ρ)).

If ρ ∈ Vi(Γ
′) then dimD(R′)(ρ) < r − i, so dimD(R)(α̂(ρ)) < r − i and

α̂(ρ) ∈ Vi(Γ).

For any group G, define Vi(G) = Ĝ for i < 0.

Proposition 8 Suppose α : Γ ↪→ Γ′ be an endomorphism. Then there is an
s ∈ � + such that

α̂(Vi(Γ
′)) ⊂ Vi−s(Γ)

for all i = 0, 1, 2, . . ..
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Proof. Suppose Γ has presentation ℘(F,R), where F = 〈x1, . . . , xr〉. Then
we can find r′ > r so that for F ′ = 〈x1, . . . , xr, xr+1, . . . , xr′〉 and relations
R′ = R ∪ S ⊂ F ′ so that Γ′ has presentation ℘(F ′,R′). In this case no
element of S is a consequence of R and no word in 〈x1, . . . , xr〉 which is not
a consequence of R is a consequence of R∪ S.

Let α : F → F ′ be the inclusion map. Then α induces the map α. For
any ρ ∈ Γ̂′, Aα(ρ) :

� r → � r′ is the inclusion in the first r coordinates and

Aα(ρ)(D(R))(α̂(ρ)) = D(R)(ρ)
⊂ D(R)(ρ) +DS(ρ)
= D(R′)(ρ).

Thus,
dimD(R)(α̂(ρ)) ≤ dimD(R′)(ρ) for all ρ ∈ Γ̂′

and we have
α̂(Vi(Γ

′)) ⊂ Vi−s(Γ).

where s = r′ − r.

Note that Propositions 5 and 6 also apply to the jumping loci Wi(Γ).

Remark. If α : F → F ′ is an endomorphism on free groups, then α̂ :
F̂ ′ → F̂ is surjective, since any homomorphism α(F ) → � ∗ extends to a
homomorphism F ′ → � ∗. Suppose Γ and Γ′ are presented by ℘(F,R) and
℘(F ′,R′), respectively and α induces an endomorphism Γ → Γ′. Then the
restriction of α̂ to Γ̂′ ⊂ F̂ ′, need not be surjective. For example, consider the
groups

Γ = 〈x, y〉
Γ′ = 〈x, y, z | zxz−1 = y〉.

Then the inclusion map α : 〈x, y〉 ↪→ 〈x, y, z〉 induces an endomorphism Γ
into Γ′, but α̂ is not surjective, since, for example (1,−1) ∈ Γ̂ is not the
image of any element of Γ̂′.
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3 Examples

An algebraic subset P ⊂ (
� ∗)r of the affine torus, is called a rational plane

if it is a connected subgroup or a translation of a connected subgroup by
a unitary character (character whose components have norm one) in (

� ∗)r.
Any rational plane P ⊂ (

� ∗)r is the zero set of a binomial ideal in the ring of
Laurent polynomials Λ. These are ideals generated by elements of the form
cm − 1, where m is a monomial in Λ and c is a complex constant (in this
case of norm one).

By Proposition 1, the torsion points of any algebraic subset V ⊂ (
� ∗)r

is the set of torsion points on some finite union of rational planes contained
in V . As in the introduction to this paper, let P denote the set of groups
isomorphic to the fundamental group of a smooth complex projective variety.
We know, from Theorem 2, that the Alexander strata are finite unions of
rational planes.

In this section, we will study particular examples of finitely presented
groups and study the rational planes contained in their Alexander stratifica-
tions. For the case of one relator groups, discussed in section 3.4., we obtain
a new obstruction on groups in P .

3.1 Free groups and curve groups

Free groups and curve groups both have very simple Alexander stratifications;
and all their strata are rational planes, as we show in this section. Thus, if Γ
is a finitely presented group, by Proposition 5, epimorphisms Γ→ Γ′, where
Γ′ is either a free group or a curve group give rational planes sitting inside
the strata Vi(Γ).

Since the free group has no relations, if Fr is free of rank r, then

Vi(Fr) =

{
F̂r if i < r;
∅ if i ≥ r.

(6)

Thus, each nontrivial stratum is isomorphic to the r-dimensional affine torus
(

� ∗)r. For the jumping loci for the group cohomology (or cohomology of local
systems), we have

Wi(Fr) =





F̂r if i < r;
{1̂} if i = r;
∅ if i > r.

(7)
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If Γg = π1(Cg) is the fundamental group of a smooth complex projective
curve (or Riemann surface) of genus g, then Γg has presentation ℘(F2g, {Rg}),
where Rg = [x1, xg+1] . . . [xg, x2g]. The Fox derivative of Rg is given by

D(Rg) =
g∑

i=1

(ti − 1)〈xi〉+
2g∑

i=g+1

(1− ti)〈xi〉.

Thus, we have

dimD({Rg})(ρ) =

{
1 if ρ 6= 1̂;
0 if ρ = 1̂.

This implies

Vi(Γg) =





Γ̂g ∼= (
� ∗)2g if i < 2g − 1;

{1̂} if i = 2g − 1;
∅ if i > 2g − 1.

and for the jumping loci

Wi(Γg) =





Γ̂g ∼= (
� ∗)2g if i < 2g − 1;

{1̂} if 2g − 1 ≤ i ≤ 2g;
∅ if i > 2g.

3.2 Free products

Suppose Γ is isomorphic to the free product Γ1 ∗ Γ2, where Γ1 and Γ2

are finitely presented groups Γ1 and Γ with presentations ℘(F1,R1) and
℘(F2,R2), respectively. SupposeR1 = {R1, . . . , Rs1} andR2 = {S1, . . . , Ss2}.
Then, setting F = F1 ∗ F2, Γ has the finite presentation ℘(F,R) where
R = {R1, . . . , Rs1 , S1, . . . , Ss2}.

The character group F̂ splits into the cross product F̂ = F̂1 × F̂2. Thus,
each ρ ∈ Γ̂ can be written as ρ = (ρ1, ρ2), where ρ1 ∈ F̂1 and ρ2 ∈ F̂2.
The vector space D(R)(ρ) splits into a direct sum D(R)(ρ) = D(R1)(ρ1) ⊕
D(R2)(ρ2) so we have

dimD(R)(ρ) = dimD(R1)(ρ1) + dimD(R2)(ρ2).

We have thus shown
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Proposition 9 If Γ = Γ1 ∗ Γ2, then

Vi(Γ) =
∑

i1+i2=i

Vi1(Γ1)⊕ Vi2(Γ2).

Remark. It has been shown (see [Ar2]) that the free product of two non-
trivial groups can’t lie in P . It would be interesting to see if Fox calculus
could be applied to the problem of which amalgamated products of nontrivial
groups can lie in P .

3.3 Abelian products

In this section we deal with groups Γ which are finite abelian products of
finitely presented groups.

Lemma. 3.3.1 Let Γ be the free abelian product of free groups F1× . . .×Fk
of ranks r1, . . . , rk, respectively. Let qi : Γ → Fi be the projections. Let
r = r1 + . . .+ rk and let m = max{r1, . . . , rk}. Then

Vi(Γ) =





⋃
i<rj q̂j(F̂j) if i < m;

{1̂} if m ≤ i < r;
∅ if i ≥ r.

Proof. From (6), we know that

Vi(Fj) =

{
F̂j for i < rj;
∅ for i ≥ rj.

By Proposition 5, the surjective maps qj : Γ→ Fj give inclusions

q̂j(F̂j) ⊂ Vi(Γ)

for all j such that i < rj. This gives the inclusion

⋃

i<rj

q̂j(F̂j) ⊂ Vi(Γ)

for all i < m.
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Let xi,1, . . . , xi,ri be the generators for Fi, for i = 1, . . . , k. Let F =
F1 ∗ . . . ∗ Fk. For i, j = 1, . . . , k, i < j, ` = 1, . . . , ri and m = 1, . . . , rj, let
Ri,`,j,m = [xi,`, xj, � ]. Let

R = { Ri,`,j,m : i 6= j }.

Then ℘(F,R) is a presentation for Γ. Let Λ be the Laurent polynomials in
the generators ti,`, i = 1, . . . , k, ` = 1, . . . , ri and associate this to the ring of
functions on F̂ = Γ̂ by sending xi,` to ti,`.

Note that, since Fab = Γab, the Fox derivatives D and DΓ are the same.
We have

D(Ri,`,j,m) = (1− tj,m)〈xi,`〉+ (ti,` − 1)〈xj,m〉.
It immediately follows that M(1̂) is the zero matrix, so 1̂ ∈ Vi(Γ) for i < r
and 1̂ 6∈ Vi(Γ) for i ≥ r.

Now consider ρ ∈ F̂ = Γ̂ with ρ 6= 1̂. We will show that if ρ ∈ q̂i(Fi) then
ρ ∈ Vn(Γ) for n < ri and ρ 6∈ Vn(Γ) for n ≥ ri. If ρ 6∈ q̂i(Fi) for any i, then
we’ll show that ρ ∈ V0(Γ) \ V1(Γ).

Let ρi,`, i = 1, . . . , k and ` = 1, . . . , ri, be the component of ρ cor-
responding to the generator ti,` in Λ. For each i = 1, . . . , k, let si =
r1 + . . .+ r̂i + . . .+ rk.

Take ρ ∈ q̂i(Fi). We know from Proposition 5 that ρ ∈ Vn(Γ) for n < ri.
Also, ρj,m = 1, for all j = 1, . . . , î, . . . , k. Assume ρ 6= 1̂. Then ρi,` 6= 1 for
some `. Consider the si × si minor of M(℘)(ρ) with rows corresponding to
the generators 〈xj,m〉 where j = 1, . . . , î, . . . , k and columns corresponding to
generators Ri,`,j,m, where j = 1, . . . , î, . . . , k and m = 1, . . . , rj. This is the
si × si matrix

(1− ρi,`)Isi
where Isi is the si × si identity matrix. Thus, rank M(ρ) ≥ si. This means
that ρ 6∈ Vn(Γ) for n ≥ (r − si) = ri.

Now take ρ 6∈ q̂i(Fi) for any i. Then, for some i and j with i 6= j, and some
` and m, we have ρi,` 6= 1 and ρj,m 6= 1. Consider the minor of M(℘)(ρ) with
rows corresponding to all generators except xi,`, and rows corresponding to
relations Ri,`,j′,m′ , where j′ = 1, . . . , î, . . . , k and m′ = 1, . . . , rj, and Ri,`′,j,m,

where `′ = 1, . . . , ˆ̀, . . . , ri. This is the r − 1× r − 1 matrix

[
(1− ρi,`)Isi 0
0 (1− ρj,m)Iri−1

]
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which has rank r− 1. Since ρ 6= 1̂ this is the maximum possible rank. Thus,
ρ ∈ V0(Γ) \ V1(Γ).

Corollary 10 Let Γ be the abelian product of finitely presented groups

Γ = Γ1 × . . .× Γk

with r1, . . . , rk generators, respectively. Let

P = F1 × . . .× Fk

where each Fj is the free group of rank rj. Then

Vi(Γ) ⊂ Vi(P )

for each i and, in particular,

Vi(Γ) ⊂ {1̂}

if max{r1, . . . , rk} ≤ i.

3.4 One relator groups

In [Ar2], Arapura gives properties that a one relator group with more than
two generators must satisfy in order to lie in P .

Proposition 11 (Arapura, Green-Lazarsfeld, Gromov) If

Γ = 〈 x1, x2, . . . , xn | R 〉

lies in P, with n > 2, then

(1) n is even;

(2) each xi occurs at least once in the word R and R lies in the commutator
subgroup [Γ,Γ] of Γ;

(3) Γ surjects onto Γg with g = n/2.
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Let F be the free group on generators x1, . . . , x2g and let Rg be the word
in F given by

Rg = [x1, xg+1][x2, xg+2] . . . [xg, x2g].

Then Γg = π1(Cg) has presentation ℘(F, {Rg}).
Many examples of one relator groups which satisfy the conditions stated

in Proposition 9 but which cannot be a group in P can be constructed using
the following proposition.

Proposition 12 Let

Γ = 〈x1, . . . , x2g | R(x1, . . . , xn)〉

be a one relator group where

R = u1R
ε1
g u
−1
1 u2R

ε2
g u
−1
2 . . . ukR

εk
g u
−1
k

for some words u1, . . . , uk in F , εi = ±1. Then

τ =
k∑

i=1

εiq̃(ab(ui))

must be a constant times the power of a binomial in ΛΓ.

Proof. The Fox derivative of R is given by D(R) = τD(Rg). Thus

Vi(Γ) =





(
� ∗)2g if i = 1, . . . , 2g − 2
V (τ) ∪ {1̂} if i = 2g − 1
∅ otherwise.

Since, by Theorem 2, these must all be finite unions of rational planes in
particular V (τ) must be. But V (τ) is a hypersurface, so V (τ) is a rational
plane only if τ is a constant multiple of a power of a binomial element in ΛΓ.
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Example. Consider the group

Γ = 〈 x1, . . . , x2g | R 〉.
where

R = x1Rgx
−1
1 x2Rgx

−1
2 . . . x2gRgx

−1
2g .

Then DΓ(R) = (t1+. . .+t2g)DΓ(Rg). If g > 1, τ = t1+. . .+t2g is not a power
of a binomial, so Γ does not satisfy the condition of Proposition 10 and is
not isomorphic to the fundamental group of any compact Kähler manifold.

By Proposition 1, we know that the torsion points on Vi(Γ) must lie
on rational planes. Let us consider, in particular, the torsion points on
V (t1 + t2 + t3 + t4). If (t1, t2, t3, t4) ∈ (

� ∗)4 satisfies
{
tnii = 1 for some ni ∈ � +

t1 + t2 + t3 + t4 = 0,

then for some permutation (i1, i2, i3, i4) of (1, 2, 3, 4), we have ti1 + ti2 = 0
and ti3 + ti4 = 0. Thus,

Tor(V (t1 + t2 + t3 + t4)) = Tor(P1 ∪ P2 ∪ P3),

where P1, P2, P3 ⊂ V (t1 + t2 + t3 + t4) are defined by

P1 = V (t1 + t2) ∩ V (t3 + t4)
P2 = V (t1 + t3) ∩ V (t2 + t4)
P3 = V (t1 + t4) ∩ V (t2 + t3).

These rational planes have codimension one in V (t1 + t2 + t3 + t4).
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