FUNDAMENTAL GROUP OF A CLASS
OF RATIONAL CUSPIDAL CURVES

E. ARTAL BARTOLO*

In [FZ], H. Flenner and M. Zaidenberg have found new examples of rational
cuspidal curves in P? := P?(C); some of them were found earlier in [tD]. They
have classified all such curves having at least three singularities, one of them of
multiplicity d — 2, where d is the degree of the curve. They have found also that
these curves are projectively rigid.

It is known that there is a close relationship between some analytic invariants of
the complement of the curve in the projective plane and the fundamental group of
this complement. This fundamental group is also interesting in order to know the
coverings of P? ramified along the curve. In this paper we are going to compute
the fundamental groups of the curves cited above, see Theorem in §1 below. As
a consequence we find an infinite class of groups which admit hyperbolic triangle
groups as quotients. We find also irreducible curves Cy,C; such that the pairs
(P2,Cy) and (P?, C3) are non-homeomorphic but 71 (P?\ C4) is a non-abelian group
isomorphic to 71 (P?\ C3), see Corollary 3.

The computation of the group of a curve of degree d with a singular point
of multiplicity d — 2 has been performed by A. Degtyarev in [D]; we present this
particular case in order to get an explicite proof and in order to make self-contained
our last statement.

Some group calculations have been made using GAP. I thanks Institut Fourier
for its kind hospitality and M. Zaidenberg and L. Haddak for helpful discussions.

In a subsequent paper with L. Haddak we will discuss the relationship between
the fundamental group of the complement of these curves and the fundamental
group of the 3-manifold obtained as the boundary of a regular neighbourhood of
the curve in the projective plane.

§1.- DEFINITIONS AND RESULTS

Definition. Let C' C P? be a projective plane curve. Following O. Zariski [Z] we
define the group of the curve as the fundamental group 71 (P?\ C) of its complement,
denoted G¢.
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Definition. Let C' C P? be an irreducible projective plane curve. We say that C
is a rational cuspidal curve if it is rational (i.e. its normalization is isomorphic to
P') and all its singularities are locally irreducible (i.e. it is homeomorphic to P').

Recall the classification of rational cuspidal curves having at least three singu-
larities, one of them of multiplicity d — 2, where d is the degree of the curve, see
[FZ] and also [tD] for some particular cases. For each (d, a,b) € Z* such that d > 3,
a>b>0anda+b=d—2, there is exactly one curve Cy 4 3, up to projective equiv-
alence, having three singular points Py, Ao, Bo; the germs (C, Py), (C, Ao), (C, By)
have exactly one Puiseux pair, (d — 1,d — 2),(2a + 1,2),(2b + 1, 2) respectively.

Example. The curve Cy ;1 is the tricuspidal quartic.
We state the main result of the paper:
Theorem. Let C' := Cq .4 be as above. Then, G¢ s the group

Gan = {c1,¢9: (cac) ! = 03_27 (cac1)"ca = c1(c2e1)™),
where n > 0 and 2n + 1 = ged(2a + 1,2b + 1). In particular, the group of Cqq
depends only on (d,n).

We emphasize some consequences of this theorem. Recall first that for p, q,r € Z,
p,q,r > 1, the group

. CoP g T _
Tpgr = lz,y,z: 2 =y =2" = zyz = 1|

has a representation as the group of orientation-preserving isometries which preserve

the tesselation of the 2-sphere (resp. euclidean plane, resp. hyperbolic plane) by
) T T W 1 1 1

triangles of angles —, —, —, where — + — 4+ — > 1 (resp. = 1, resp. < 1)

p q T rp q T
Corollary 1. Let C := Cq,4 and n be as above. The fundamental group Gc s
abelian if and only if n =0 (i.e. 2a+ 1 and 2b+ 1 are coprime).
If n =0, the group G¢ s cyclic of order d. If n > 0, G¢ is a central extension
of the triangle group T5 2n41,d4—2-

Corollary 2. Let C := Cg,4 and n be as above with n > 0.

(i) If(d,a,b) = (4,1,1), then the group G¢ is a non-abelian finite group of order 12,
admatting T5 2 3 as a quotient. If (d,a,b) = (7.4,1), then G¢ 1s also non-abelian
finite group of order 840, admitting Tb 35 as a quotient. Both are spherical
triangle groups.

(i) If (d,a,b) # (4,2,2),(7,4,1), then the group of the curve is a non-abelian infinite
group, admitting Th 2pny1,4—2 as a quotient.

The statement about Cy 1 1 appears already in [Z].

Next, we are going to apply the fact that the groups of these curves depend only
on (d,n).
Corollary 3. There exist curves Cy,Cy C P? such that Go, and Ge, are isomor-

phic and non-abelian, but (P?,Cy) and (P%,Cy) are not homeomorphic.

In fact, there is an infinite number of non-equivalent such pairs. Take for instance
Ci1 = Ci3,10,1 and Oy = Cy3,7,4, where n =1 in both cases.
We finish this section with two definitions:



Definition. Let X be a smooth projective surface and let D be a compact curve
such that all its irreducible components Dy, ..., D, are smooth and rational and the
singularities of D are only nodes. We will say that the ordered r-tuple (D1, ..., D;)
is a symmetric r-string if the dual graph of D is a linear tree ordered by D+, ..., D,
(iie. Di-Diz1 =1,1<i<r—1,and D;-D; =01if |t — j| > 1) and Dy - D1 =
D, D, =-1,D;-Dj = -2, 1< j < r (we remark that if (Dq,...,D,) is an

r-symmetric curve this is also the case for (D,,...,Dy)).
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Frgure 1.

Definition. Let X be a smooth projective manifold and let H, K C X be hyper-
surfaces. Let *+ € X \ (H U K). A meridian of H in the group = (X \ K, %) is the
homotopy class of a loop it defined as follows: take a point P € H which is smooth
in H U K; take a small disk A around P transverse to H and disjoint from K; fix
a point *' € JA and let m be the loop based at *” which turns once along 0A in
the positive direction. Choose any path ¢ from * to ' in X \ (H U K) such that
(NA ={«"}. Then y:=£-m-£~' (we note that two meridians of H are conjugate
if H is irreducible).

Figure 2.

§2.- CONSTRUCTION OF Cyq 4.3

In this section we are going to construct a birational map of P? which will give
a lot of information about C' := Cgq 4 .

Conventions. Let XY be smooth projective surfaces and let o: Y — X be the
blow-up of a point P € X.
(a) We will denote also by P the exceptional curve of o; we recall that P is a smooth
rational curve with (P - P)y = —1. Recall that by Castelnuovo’s criterion, the
contraction of a smooth rational curve of self-intersection —1 is a blow-down.

(b) Let C be an irreducible curve in X. Let m be the multiplicity of C' at P.
We denote also by C the proper transform of C' by o, i.e. the closure in Y of
o~ 1(C'\ {P}). We recall that (C-C)y =(C-C)x —m? and (C-P)y =m. In
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general, if C7,Cy C X are irreducible curves with multiplicities m; and m, at
P, respectively, then (Cy - Cy)y = (Cq - C2)x — mima.

(¢) If @ is any point of X different from P, then we denote also by @ its unique
preimage by o. Recall that the restriction of o to Y\ P is an analytic isomorphism

onto X \ {P}.

Construction of the curve.

Step 0. Consider the blow-up o¢: Xo — P? of P? at the point Py which is the cusp
of multiplicity d — 2 of C'. Denote by P; the unique intersection point of C' and Py
in Xg. It is clear that C' is smooth at P;; the curves C' and Py are tangent at Py
and have contact of order d — 2 there. We observe that Xy is a relatively minimal
rational ruled surface; the curve Py is the unique section with self-intersection —1.

Figure 3.

Let T be the tangent line of C' at Py; let L4 (resp. L) be the line detemrined
by Py and Ag (resp. Bg). Then, T' C Xj is the fiber of the rulling passing through
Py, Ly C Xp is the fiber passing through Ag and Ly C Xy is the fiber passing
through By.

Step 1. Consider the point Ag. We recall that C' has a singular point at Ay with
only one Puiseux pair (2a + 1,2). Recall the construction of the infinitely near
points of C' at Ag.

Let a1: X1 — Xy be the blow-up of Ag € Xy. By our convention, we denote the
exceptional curve Ag. Let Ay be the unique intersection point of C' and Ag in X;.

We may construct a sequence of blow-ups a;: X; — X;_1 such that the center
of a; is the unique intersection point A;,_; of C (i.e the strict transform of C' by
the map a; 0 --- 0 a;—1) and A;_, (i.e. the exceptional curve of a;—1). Denote

Q; = (1 O+ 0 Q4.
Then the unique intersection point of A;_; and C in X; is denoted by A;.
From the Puiseux pair of C at Ag we deduce that the germ (C, A;) C X; is of

multiplicity 2 if 7 < @ and it is a smooth germ if 1 > a. We know also that C' and
A,_1 are tangent at A, in X, and the contact order is 2.

Consider now the curve a;'(La) C X,; its irreducible components are L 4,
Ag,...,Aa_2,As_1. Tt is easy to show that (L4, Ao, ..., Aa—2, Ag—1) is a symmetric
(a + 1)-string.
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Frgure 4.
By Castelnuovo’s criterion we may contract L 4, Ag, ..., A;—2 and we get a map

a: X, — Yy such that:

- The surface Yy is a relatively minimal rational ruled surface.

- The curve P, is a section with self-intersection a — 1.

- The curve T is always the fiber through P; and Lp is the fiber through Bg.

- The curve A,_; is the fiber through A, and it is tangent to C' at this point with

contact order 2.

Step 2. Consider now the point Bg. We proceed as in step 1: we make blow-ups
Gi:Y; = Yy, 1 > 1, and we get the infinitely near points B; of C' at By; recall
that B; € Y; is the center of the blow-up 3,41, ¢ > 0. Denote 3; := 3y 0 --- 0 3;.

As above, the germ (C, B;) C Y; is of multiplicity 2 if ¢ < b and is a smooth germ
if 1+ > b. We know also that C' and By_y are tangent at By in Y}, and the contact
order is 2.

Consider further the curve Bb_l(LB) C Yy; its irreducible components are Lp,
Bo,...,By_2,By_1. As before, (Lp,Bq,...,By_2,By_1) is a symmetric (b + 1)-

string.

Figure 5.

We proceed as before: contracting Lp, Bg,...,By_2 we get a map 3: Yy, — Z;
such that:

- Z1 1s a ruled surface.



- The curve P, is a section with self-intersectiona +b—1=d — 3.
- The curve T is the fiber through P, and A,_ is the fiber through A,.

- The curve By_1 is the fiber through By and it is tangent to C at this point with
contact order 2.

Notice that C is smooth in Z;.

Step 3. We are going to proceed in a similar way near P;.

We make blow-ups v;: Z; = Z;_1, 1 > 2, and we get the infinitely near points P;
of C at Py; we recall that P; € Z; is the center of the blow-up 7,41, ¢ > 1. Denote
Yi =720 0.

From the Puiseux pair of C' at Py we deduce that the germ (C, P;) C Z; is smooth
if ¢ > 1. Tt is easily seen that if we regard C' and Py as curvesin Z;, 1 <1 < d — 2,
they intersect at P; with contact order d — 1 — . In the same way, C' and Py do not
itersect in Z4_1.

Consider now the curve ’yd__ll(T) C Zg—1; its irreducible components are T,

Pi,...,Py_3,Pq_3. Asbefore, (T, Py,...,Pi_3,Pi—2) is a symmetric (d — 1)-string.

Py-,

Figure 6.
Contracting T\, Py, ..., Py_3 we get a map v: Z4—1 — F such that:

- F is a relatively minimal rational ruled surface.
- The curve P, is a section with self-intersection —1.
- The curve By_; is the fiber through By and A,_; is the fiber through A,.
- The curve Py_5 is a fiber which intersects transversally C' at two points.
We remark also that C is smooth in F and does not intersect Py.
Step 4. Contracting Py we get a map : F — ﬁ%, where the image C of C in P? is

an irreducible conic, A,_1, By_1 and P;_5 are straight lines through Py. The first
two lines are tangent to C' and the last one is transversal.

Figure 7.



Note by the way that this construction shows the existence of the curve C' =
Ci.a5- The composition of all these maps gives a birational map P? --» P?, which
induces an analytic isomorphism

P2\ (CUTUL4ULp) = P>\ (CUP;_3UAg_y UBy_y).

§3.- PROOF OF THE THEOREM

The group of the curve CUP;j_2UA,_1UBy_q is easly computed by looking
at the real picture. We will use Zariski-Van Kampen method by projecting from
Py. 1t is better to explain the computations in the situation just before step 4. We
remark that the contraction of Py induces an analytic isomorphism

ﬁz\(éUPd_QUAa_lUBb_l)—)F\(CUPd_QUAa_lUBb_1UP0).

Figure 8.
Denote p: F — P! the projection of the ruled surface F such that p(4,—1) = 0,
p(Pi—2) =1 and p(By_1) = oo. The restriction
p: ]F\(CUPd_Q UAa_l UBb_lupo) —)(C\{O,l}

is a locally trivial fibration. Then, Zariski-Van Kampen is nothing else but the
homotopy exact sequence of pj.

F

Figure 9.

1
Step 1: the fiber. Fix F := p|_1(§) a generic fiber; it is isomorphic to the punctured

sphere P1\ {0, 1, co}; we suppose that oo is the intersection with Py, 1 is the upper
intersection with C' and 0 is the lower one. Choose a base point * € F' to be a
very big positive real number. We define a meridian ¢; as follows: take the shortest
path from # to 3/2 along the real line; turn once along the circle of radius 1/2 and



center 1 in the positive sense and come back to *. Define a meridian ¢y as follows:
take the shortest path from * to 3/2 along the real line; turn one-half along the
circle of radius 1/2 and center 1 in the half-plane Im z > 0 reaching 1/2; turn once
along the circle of radius 1/2 and center 0 in the positive sense and return to * by
the same way that you arrived to 1/2. We denote e a path which turns once along
the great circle through #* in the clockwise direction. These three loops generate
71 (F, %) and we get the first relation:

F : cacre = 1.

Step 2: the base. Fix a tubular neighbourhood V of Py in F; let M be its boundary
(it is homeomorphic to the 3-sphere because of self-intersection —1 of Fy). We may
choose a q: M — P, via the natural identification of P! with the section Pj.

Fix g(*) as base point in Py; we choose three meridians #,#,7 in Py around
0,1, 00 respectively, in the simplest way such that Zgt = 1. We lift these loops
in the natural way to loops in M based on * and we denote them z,t,y; we get
meridians around A,_q, Py_o, By_1, respectively. We remark that e is a positive
fiber of q. Applying the definition of the Euler class we get four relations:

By: ayt=e, By: [x,e]=1, Bs: [y,e]=1, By: [t,e]=1,

where [g,h] := ghg~'h~!. Tt is easily seen that B, is a consequence of the other
relations.

Step 8: the monodromy. It is just here where we use the real picture of the curve.
The singularities of the projection explain us the local behaviour of the monodromy
and the real part explains the global behaviour. More precisely, the braid mon-
odromy can be constructed from the real picture.

When we turn around A,_;, we get the braid:

>

™~
AN

e ) G
Figure 10.

Induced relations are:
Xz 7tz =cy, Ao: [z,c000] =1,

It is easily seen that A, is a consequence of F and B;. When we turn around Py_,
we get the trivial braid.



This implies the relations:
Ti: [ty =1, Ta: [t,er] = 1.

As before, T3 is a consequence of F, By and 7;. When we turn around Bj_q, we
get:
Vitylay=ca, Yo [y,caci] =1

As above, we do not need ). It is easily seen that we can also forget 7;. Thus, we
have:

T (P2\(CUTULAULR),*) = |1, ca,2,y,t, e : F,By,Ba, By, X1, V1]

Step 4: finding meridians. It is well-known, see [Z] and [F| lemma 4.18, that there
exists an epimorphism

T (P2\(CUTUL4ULg),+) — m(P?\ C);

its kernel is the normal subgroup generated by a meridian of 7', a meridian of L4
and a meridian of Lg. We must express them in terms of the above presentation.
The key point is to use the inverse path in §2 and the next lemma (its proof is
straightforward), see [F] lemma 7.17:

Lemma. Let X be a surface and D C X a curve. Let G := m (X \ D, *), where
« € X\ D.

Suppose that P 1s an ordinary double point of D. Fiz a base point ¥ € X \ D
close to P. Choose two meridians of D: take a path { from * to ' in X \ D;
take my as the positive boundary starting at ' of a small disk transverse to one
of the branches of D at P; take mo in the same way for the other branch. Define
pii=4L-m;- 071, =12 (note that [u1,p2] = 1).

Let 0: Y — X be the blowing at the point P; identify G = m (Y \ 0~ '(D)) and
recall that P is an irreducible component of o~'(D).

Then p = pyp2 1s a meridian of P.

If we apply this lemma d — 2 times to the inverse path of Step 3 in §2. we find
that cg_2t is a meridian of 7. Applying the lemma b times in Step 2, we find that
e’y is a meridian of Lg. Finally, e®z is a meridian of L 4. Denote:

Zy cg_2t:1, Zy: by=1, Z3: ez =1

Adding these relations to the previous ones, we get a presentation of my(P?\ C).
As the first simplification, we can forget By and Bs. Using relations Zy, Z; and Z3
we can eliminate generators z,y,t and we get:

d_2€d_1

7r1(IF’2 \C) = ‘0170276 tegcie =1,¢5 =1,e"cre" " = ¢y = ebcle_b‘ )

If we drop e, we find:
771(]?2\0) = ‘Cl,CQ : cg_2 = (02c1)d_1, (c2¢1)%ca = e1(c2e1)?, (02c1)bc2 = Cl(CQCl)b‘ )

Finally, if n > 0 and 2n + 1 = ged(2a 4+ 1,2b 4 1), we see that the last two relations
are equivalent to (czc1)"c2 = ¢1(c2¢1)", and the theorem follows. O
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§4.- PROOF OF COROLLARIES 1,2.3

Proof of Corollary 1. If n = 0, then ¢; = ¢2 and clearly the group in the question
is abelian and cyclic of order d.
If n >0, take 1 = (cz¢1)"c2 and y1 = c2¢q. We get

m(P?\ C) = ‘xlayl Dot =y ()T =y
Let u,v € Z be such that
20+ 1=u2n+1) and 26+ 1 =v(2n +1).

We have
2d—1)=(2a+1)+(2b+1) = (u+v)(2n+1).

Thus, v 4 v is even. Let w € Z be such that u + v = 2w; then d — 1 = w(2n + 1).
Hence, if 1 = 2%, we obtain

(yl—nxl)d—2 — ILLw.
Note that p is central. Let G be the quotient of our group by the relation w = 1.

If we put = 21, y = y; " and z = (zy)~ !, we find that G is T 2p41,4—2. O

Proof of Corollary 2. 1t is easily seen that there are only two cases where the group
is a spherical one. The first case was already calculated by Zariski. The second one
was found to be finite using GAP.

There is no case where the group is euclidean. It is known that the hyperbolic
triangle groups are infinite [CM], so we are done. 0O

Proof of Corollary 3. It is straightforward from the remark that (d,n) determines
the group G¢ and a,b determine the topological type of the singularities.

It is also possible to find not only pairs of curves but n-tuples of curves which
agree pairwise with the statement of the Corollary, for any n € N. O
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