VASSILIEV INVARIANTS | : BRAID GROUPS
AND RATIONAL HOMOTOPY THEORY

by Louis FUNAR

CHAPTER 0

Introduction

This paper is the first one in a series of papers on Vassiliev invariants and we are dealing here
only with braid groups. The present article is a fairly detailed account starting with Chen’s theory of
iterated integrals and Kontsevich’s approach for the universal Vassiliev invariant. We get the geometric
construction of Malcev’s completion (over Q@) of a discrete group in order to apply it for the case of pure

braid groups P,. Our first main ingredient in reconstructing Vassiliev invariants is the canonical arrow
P, —U(P,®Q)

which we further identify with the universal Vassiliev invariant for pure braids. This is certainly trans-
parent, even if never explicitly stated, in previous work of Stanford [St], Bar-Natan [BN2], Cartier [Car]
and Kohno [Kohnol].

The extension of this morphism to the whole braid group B, cannot be a homomorphism. The
reason is that B, has not a cohomology group large enough (to inject into its completion). This is
equivalent to saying that only multiplicative Vassiliev invariants do not suffice to classify braids, as was
the case with the pure braids. We notice however that we can build up a representation of B, related
to Vassiliev invariants using the formulas of Drinfeld (see [Drin]) as is done in [Piu]. Anyway we may

extend the previous morphism to a map
B, —V({n)=U(P,2Q)x S,
whose failure to be a morphism might be explicitly computed in terms of Drinfeld associator.

We shall only discuss some points about regularizing singular integrals following L.e and Murakami
in order to explain the multiplication law. A detailed construction will be given in the second paper in

this series.

In this setting the chord diagram algebras will be a sort of Malcev completions for the semi-group
of knots, revealing the rational homotopic nature of Vassiliev invariants. The same conclusions were
obtained by Kassel and Turaev in [KT].

The only novelty in this paper, mainly expository, is just the emphasing of this relationship which
will be exploited further. We already notice that Malcev’s completion has an universality property: any
multiplicative universal Vassiliev (for pure braids) taking values in a graded algebra A, factors through
P, ® Q. This is the case for the graded algebra AP, from [BN2] of chinese character diagrams. This
means that up to an automorphism of P, ® (Q any universal invariant of pure braids has in its expansion

only horizontal and Lie polynomial chord diagrams, supporting the conjecture of Bar-Natan [BN2].

Acknowledgements. — 1 would like to thanks Valentin Poénaru, Stefan Papadima, Gregor Mas-

baum for the stimulating discussions we had on Vassiliev invariants. The participants of the topology
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CHAPTER 1

Review of Chen's theory

1. Setup.

(1.0) Let X be aconnected C*°-manifold having H,(X) and 71 X finite generated. Chen ([Chenl])

constructed a series of simply-connected nilpotent Lie groups
Gr) —G(r-1)— - —G(1)
and a sequence of locally flat connections on X which lead to holonomy homomorphisms
m(X) —G(r), r>1.

If 71 X is torsion free nilpotent then G(r) stabilizes for large r and the corresponding holonomy homomor-
phism sends w1 X isomorphically into G(r) as an uniform discrete subgroup so that G(r) may be identified

with Malcev’s completion of w1 X.

(1.1) Tf the De Rham complex A*(X) of X is equipped with a direct sum decomposition of the
type
AP(X) = HP @ dAP~! @ AP

such that HP consists in closed p-forms and AP contains no non-zero closed p-form then the locally
flat connections mentioned above are uniquely determined. For a compact Riemann manifold there is a

canonical decomposition of this type, namely the Hodge decomposition.

(1.2) TLet V be the graded vector space with
Vi = Hp41(X; k), k being a fixed field,

and T(V) be the completion of the tensor algebra on V. Then every direct sum decomposition as above

gives rise to a canonical differential mapping
8:T(V)—T(V)

having the degree -1, and a canonical T(V)-valued formal power series connection w which is a twisting
cochain i.e.

0w+ K(w) =0

where K denotes the curvature of the connection. The holonomy homomorphism is a chain map from

the smooth chain complex C,(QX), of the loop space QX, to T(V), which induces an isomorphism
H.(QX;k) ~ H (T(V))
in the case where X is l-connected. In the non simply-connected case there is an induced morphism

= not

km X = Ho(QX; k) — Ho(T(V)) "2 u.
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U by the s-th power of its augmentation ideal.

THEOREM 1. — The following sequences
0— I —kmX —U; —0

O—>ﬂjs—>k7r1X—>U—>O

s

are exact sequences for any s > 1.

Remark 2. — Let G(r) ={g;9-1¢ j&} where J¢ is the augmentation ideal of kG and let G,
denotes the lower central series of the group G (defined by Go = G, Gr41 = [G,,G]). Then a general
result states that

G, C Gy for any r
hence G /G,y is torsion free nilpotent. It is true that
(76 =0 ifand only if ()G, =0

or, equivalently G is residually torsion free nilpotent. As a consequence.

COROLLARY 3. — Ifm X is residually torsion free nilpotent then the map km X — U is injective.

2. Some definitions and technicalities.

(2.0) TLet Vi be a graded vector space, X1, X, ... be a basis for V, so that X1,..., X, form a basis
for Vo, Xm41, ..., Xm4e form a basis for Vi, etc. Let T(V) be the completion of the graded tensor algebra
on Vi; regard X1, Xs,... as non-commutative variables and write X;, X;, --- X; for X;, @ X;, ®---® X, .

Then every element ofT(V) is a formal power series a = ag+> | ¢; X;+)  a;; X; X;+- - -. The augmentation
i %)
map 1s
T(V) —k, ar— ag

SO

J ={a;a;,..;, =0 if s<r}.

We topologize T(V) using the system of neighborhoods {J7; r = 1,2, ...} of 0 so that T/(V) is Hausdorff.

A derivation 8 of T(V) is a linear endomorphism of degree -1 satisfying the usual Leibniz rule
A(uv) = (Qu)v + (—1)9“udy

and also
Jd s continuous and 3T(V) cJ.

(2.1) We come back to the case when Vi is the graded homology vector space of a C'**-manifold
X. Consider the endomorphism J : A*X — A*X of the De Rham complex, given by

Jw = (—1)98%qy,

Let us denote by TA(X)(V)) the algebra of T(V)-valued forms on X.
A formal connection on X is an element w € TA(X)(V)

w= ZinVi +Ewinin +--
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Wi,..5, 1s a form on X of degree 14 deg X;, + - -+ deg X;, .
The curvature of the connection w is defined as
Kw)=dw—JwAwE€ TA(X)(V)

where

dw = Z dw; X; + E dw;; X; X5+ -+
Jw = ijiXi + ijinin +---
Suppose a decomposition as in (1.1) is fixed:
A*(X)=H*@dA* 1o A™
Choose a basis X1X5,... of Vi = H,y1(X;k) and the forms w; in A*(X) so that their cohomology

classes [w;] in H*(X) are representing a dual basis of X; in H.(X). We can furthermore choose w; in
H* C A*(X). Then the element

B = Z w;iX; € Tax)(V)

is independent on the choices of bases we have done, being uniquely determined by the decomposition.

THEOREM 4. — There exists uniquely a formal connection
w= sz’Xi +Zwinin + -
and a derivation & of T(V) such that
(1) the initial term Y w; X; is (3.
(2) Wij, Wik, . . . belong to A*.
(3) Ow + K(w) = 0 (the flatness of w).

Remark 5. — The cup-product on H*(X) determines the first stage of 0 in the following way:
assume that [Jw; A w;] =) cfj [wg]. Then

0Xx IEC?}-XZ'XJ'—I—~H

(2.2) Observe that T(Vy) = T(V)o is an (ungraded) algebra and
jo = j ﬁ T(V)O
Let AV be the closure of the ideal generated by Vi C T(V)o. Then N' = d(T(V);) since dVp = 0 and we

have

U= Hy(T(V),0) =T(Vo)/N.
The augmentation ideal of U, Jzy = Jo/N . Then the algebras
U =U)T5H

are finite dimensional. Set v, : T(Vy) — U, for the natural projections, Naxy = A (X)@N C TA(X)(V),
vp : Taxy(V) — A*(X) @ U, for the natural extension of v,. Let L(V') be the graded free Lie algebra
generated by X1, X»,...and L(V) its topological closure in T'(V'), and La(x)(V) the space of L(V)-valued
forms on X. Lets define

Ju, = v, (L(Vo)) CU,.

Since Jyy, is nilpotent it follows that g, C Ju, is a nilpotent Lie algebra hence G(r) = expg, is a
simply-connected Lie group. This is the tower of Lie groups from (1.0).
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X; + JZ, and G(1) is the abelian Lie group {1+ Y. a; X; + J¢; a; € k}.

CHAPTER 2

Review of Vassiliev invariants

1. Combinatorics.

(1.0) Any k-valued invariant V of oriented knots in S? (or, more generally in a 3-manifold M?)
can be extended canonically to be an invariant of immersed circles in S which have only ordinary double

points using the following resolution of a local singularity
V() =v () -v ()
As usually such a skein relation means that X . X or X are parts of bigger graphs which are identical

outside a small sphere, inside of which they look as in the figures.

(1.1) TLet m € Z4. An invariant V of oriented knots is called an invariant of type m (or a Vassiliev

invariant of degree m) if V' vanishes on singular knots that have more than m double points:

v [ o) 2o
—_—

>m
The k-space of Vassiliev invariants V is the space of invariants of finite degree and has a natural filtration

by the degree V.

(1.2) A chord diagram is an oriented circle with finitely many chords marked on it regarded up
to orientation preserving diffeomorphisms of the circle. Denote by D the collection of all chord diagrams
graded by the number of chords.

Now a k-weight system of degree m is a function
W:D,, —k
which fulfills :

(1) Tfd € Dy, has an isolated chord (which does not intersect the other chords of d) then
W(d) = 0.

(2) Whenever four diagrams dy, da, ds, d4 differ only as shown in the figure below, their weights

satisfy the 4T-relation
W(d1) W(ds)
d d d,

1 3

@ :

— W(ds) = W(ds) —
d2

Let W, denotes the graded space of weight systems, and gr*V = (V. /V.41) be the graded k-space

of Vassiliev invariants obtained from its natural filtration.
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X=X-X

enables us to consider Ji(N) the ideal generated by the images of singular knots having fewer than k

by N. The recursive use of the formula

self-crossings, under repeated use of the desingularisation. Then J.(N) is an ascending filtration whose

graded space gr* N = (T« (N))/Tet1(N))« is isomorphic with gr*V.

(1.4) The main theorem in Vassiliev theory is ([BN1], [Konts], [Vass], [Bir-Lin], [V]). ables us to
consider Jx(N) the ideal generated by the images of singular knots having fewer than k self-crossings,

under repeated use of the desingularisation. Then Ji(AN) is an ascending filtration whose graded space

gr*N = (T(N))/ Teg1(N))« is isomorphic with gr*V.

(1.4) The main theorem in Vassiliev theory is ([BN1], [Konts], [Vass], [Bir-Lin]).

THEOREM 1. — We have an isomorphism of graded k-spaces
W* ~ gr*y
fork =R.

Actually this result was improved at k = Q by Le-Murakami ([Le-Mu]). The main feature of
Vassiliev invariants over R is that via Theorem 1 they are algorithmically computable using the so-called
actuality tables (see [Bir], [Big-Lin]).

2. The algebra of diagrams.

(2.0) Set D = kD for the k-space spanned by chord diagrams and
A = D /k(4T-relations)
the k-algebra of diagrams, and set for the algebra of reduced diagrams A",
A" = A/(d having isolated chords).

It is clear that the weight system are actually functionals on A".

(2.1) The multiplication of two diagrams in D is obtained by connected sum of diagrams in two
points not lying on any chord. The ambiguity is cancelled when passing to the quotient A and gives rise
to a multiplication 4 x A4 — A.

We have a co-multiplication A : 4 — A ® A by
Ad)=> dod

where d’ is obtained from d by deleting some chords, d’ by deleting the chords of d’ and the sum being

taken over all possibilities.

Remark that a natural multiplication and co-multiplication may be defined in a similar vein for

N.
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1t. In fact

THEOREM 2. — (A, -, A) is a commutative and co-commutative Hopf algebra over k.

Therefore by the structure of Hopf algebras we know that 4 is the symmetric algebra generated
by the primitive elements of A:

A=5(P(A)), PA={eeA; Afa)=a®1+1®a}.

If A* is the dual Hopf algebra and P’(.4*) is the set of primitive elements of degree greater than 1 then

we can identify the k-space of weight systems as
W S(P/(A")).

Notice that the above 1somorphism is a graded isomorphism, and for k = R using Theorem 1, the weight
systems in P’/(A*) correspond to Vassiliev invariants which are additive under the operation of taking

connected sum of knots.

(2.3) A computer search gave for the number d,, of primitive elements in degree n the values (see
[BN1]):
di=1, do=1, ds=1, das=2, ds =3, de =5, drv =8, dg=12.

We set Py x for the Hilbert series of A, which is

oo

Pax(t) = JJ(1+1%)

i=1

because A is a polynomial algebra.
3. Kontsevich’s universal invariant.

(3.0) We outline below the construction of the isomorphism of Theorem 1. The easy part is to

start with a Vassiliev invariant of degree m, say V and to derive a weight system.

Let d € D,, be a chord diagram. an embedding of in R3 is an immersion iz : S’ — R3 whose

singularities are ordinary double points and satisfies:
ig(a) = iq(b) iff a = b or else a and b are the endpoints of a chord in d.

There exists an unique regular homotopy class of such immersions for a fixed chord diagram hence any
two embeddings 74 and ig are connected by a sequence of flips in which an over-crossing X changes

into an under-crossing.

(3.1) Example:
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w(d) = V(ig), for d € Dp,, V € V.
A flip does not change the value of V(i4) since
V(iq) — V(i4) = V ( a singular knot with m + 1 double points) = 0,
so V(iq) is well-defined. Tt remains to see that w is actually a weight system.

Firstly we have

V(L)) =0
because and are isotopic, which implies that w(d) = 0 if d contains an

1solated chord.

Further consider Kg and K7 be two knots with m — 1 double points which are identical outside a

small sphere, inside which they look as in figure below:

z X

X /

Ky

We can pass from Ky to K; in two ways: by moving the strand z to cross z and then y, or to cross y
firstly and further z. But each time z cross z or y we can compute the change in V(Kj) using the values
of V on knots with n double points. The two ways to get V(K1) — V(Ky) must give the same answer

hence we derive a four term relation on w which is exactly (47).

(3.3) The inverse homomorphism W — V is provided by using the Knizhnik-Zamolodchikov

equation and is due to Kontsevich. It gives a sort of universal link invariant taking values in W.

(3.4) Recall that Chen [Chen2] gives an effective method to compute the holonomy of a flat
connection € on a C'°*°-manifold X, taking values in a topological algebra A over k, with unit 1. The

parallel transport along the smooth curve v : I — X is the map
ha(y): T — A, T=][0,1]

which satisfies

ha(0) = 1, %hn(t) — Q((W)halt), tel

if such a function exists and 1t 1s unique.

If Q is flat then this holonomy map hq(7) is invariant under homotopies of 4 which preserve its
endpoints, and it can be calculated by means of iterated path integrals as:

m=1Y0<t1<t2< <ty <1

where y*Q(t1) A+ A" Q(ty) is a top form on the simplex A,,.
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and w;; € A'(X,,) defined by
Wij =

Let DXZ be the collection of all diagrams made by n ordered downward pointing arrows and arcs

connecting them (with eventually 3-valent cyclically orientations around vertices):

and set

AEKZ — K (DKZ) /(STU-relations)

where the STU relations are

This definition is reminiscent to the identification of A with the algebra of 3-valent diagrams A
where the 47T-relation is replaced by the STU-relation, due to Kontsevich and Bar-Natan. We refer to
[BN1] for more details. Remark only that AX% has a multiplication by putting diagrams one above the
other.

Set

Qij:l l Jil J € Af”

? J
and form the formal Knizhnik-Zamolodchikov connection on X,
Q, = Z Qijwij € Al (Xn) ® .A,IL(Z
1<i<j<n

Then the STU-relation gives the flatness of Q,,.

(3.6) The connection €, has a simple generalization to the case when the underlying algebra is
Aﬁg generated by diagrams having 2n arrows whose n arrows point upward and whose remaining n

arrows point downward. Then one defines
Qnp = Z 5157w € Afﬁ ® Al(Xn)
i<j
h o 1 if the i*" arrow points downward
where s; = . .
—1 otherwise
In general we can specify the signature of arrows as € : {1,...,2n} = {£1} and identifying Agg

with a specific AX7 (¢).
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projection on R is a Morse function. Consider the series
o

1 " dz — dz!
Z(I() = — / (—1)#P‘LDP el NP L
mZ::O 2™ St <o <tm<t 2. /z\l i — 2 .

max P pairing {(z:,2})}

where
(1) the projection of K on R is [tmin, tmaxl;
(2) a pairing P is a choice of unordered pairs (z;, z), 1 < i < m for which (z;,%;) and (z],;) are

distinct points of K;

(3) #P | is the number of points in the pairing P where the orientation of K points downward
with respect to the projection on R;

4) ¢ is A" for k = C;

(5) Dp is the diagram associated to the m pairs of points in S*.

We defer to [BN1] for a complete proof that 7, (K) is well-defined and invariant ot homotopies which

preserve the number of critical points. Let the symbol oco states for the embedding

and notice that Z(oco) = 0+ (higher order terms) hence Z(c0) is invertible in A7. For K an embedded

Morse knot with ¢ critical points we set
Z(K) = Z(x0)' "3 Z(K) € AL
which is an isotopy invariant, called the universal Kontsevich invariant. It is simply to check that 7

provides the inverse morphism W* — gr*V. Observe that ¢ — —¢, z — z maps a knot into an equivalent
one while Q,, , — —ﬁn,m This proves that Z(K) € Ag.

CHAPTER 3

The Malcev completion of the group of pure braids

1. Configuration spaces.

(1.0) We come back to Chen’s theory from the first chapter. We want to carry out this general

theory in the specific case of configuration spaces. It is known that
mX, = P,
is the group of pure braids in n strings. Tts cohomology ring was computed by Arnold ([Arnold]) and it
is
H™(Pp; 72) = (eij, 1<i<j<n, degei; = 1; eijejn = einejr + eijeis, 1<i<j<k<n).

Under the natural map H*(P,;Z) — H*(X,,C) = H}p(X,) the generators e;; correspond to the
I-forms w;; € A1(X,,).

From this description, or directly by using the fact that P, is an amalgamation of free groups

Fr_1 X Fp_9 X -+ X [F; we derive that the Hilbert polynomial is
Px,x(t) = (1+t)(1+2t)--- (14 (n — 1)t)
over any field k.

12
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where i, j5 € {1,...,n} satisfy
(1) is <js§
(2) {il,...,il}m{jl,...,j[}:0.

For a multi-index I € A, , we set er = €j,4,€i,4, - - €i,5,- 1t follows easily that {e;; I € A, ,} is a k-basis
for H*(X,,; 7). Our first task is to define a flat formal connection (w,d) on X,,.

We set then

W = Zw[ZI
I

. ¢ . . . .
where wr is the form A,_, w; ;, dual to ey, and Z; are formal non-commutative indeterminates with

degZI = |I| - 1.
PRrROPOSITION 1. — There exists an unique formal homological connection (w, 9).

Proof. — The quadratic formal connection is given by the cohomology cup-product. We have (see

Remark 5, chap. 1)
8Z1 = Z C}KZJZK

where [Jwy Awg] =3 X [wy] in H*(X,). Also we can write
Jw =Y (=)=t 7,
JwAw= Z(—1)|I|_1w1 ANwsZrZy
dw = Z dwiZ; = 0 since the forms wy are closed

&.u:ZwI ZC{KZJZK IZ(ZC{ wI) ZJZK

JK JKE \ I

_Z |J| 1wJ/\U)KZJZK.

The last equality follows from the very pleasant fact that c7¥% are determined for X,, directly at the form

level i.e.
Jwy Awg = EC&KU}[, I,J,K € UA”VZ'
‘
We derive
dr+ 0w — JwAw =0
hence the flatness of (7, 9). |

Remark this proposition is equivalent to the fact that the spaces X,, are formal (see [DGMS]).

(1.2) Now, with the notations of Chapter 1, the degree 0 component of T(V') is therefore a quotient
of k[[Z(;;), 1 <i < j < n]] (the double brackets states for the series in non-commutative variables), and
it remains to compute effectively 9 on Z(;;)(x¢) for obtaining Ho(7T(V),d). These computations are giving
in fact the Lie algebra of P, (see [Kohno2], [FR]) but we carry them out for the sake of completeness. Tt

1s immediate that

)g{(f)}f)} =0, if {i,5}n{k, £} =0

)}{(T s)} uv $TS uy
0} = iy 07k + 05505

C

C

{
{(
{
{(

v@ vﬁ

13
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07 vy = Zij Zne — ZweZiy if {0} 0 {k, €} =0
OZ (i jyik) = ZijZik + ZijZik — ZinZij — Zik Zij
O0Zi k)i k) = Zij Zik + ZikZjk — ZikZij — ZikZik-
Then the universal algebra U (n) = Ho(T(V),d) can be presented as
U(n) = W[y, 1<i<j<nll/[Zig, Zud = 0 it {i.3} 0 {k,€} = 0
(Zij + Zik, Zig) = 0 if 1<i<j<k<n
(Zik + Zij, Z;x] = 0.
Its augmentation ideal Jy(n) = (Zij; 1<i<j<n) C U(n).

(1.3) Remark that this algebra is well-understood object. Again we can use fairly general results
of Kohno, Falk & Randell, see also Berceanu ([Kohno2], [FR], [Ber]), or else to use the semi-direct product
decomposition of P, into free groups (and to use that at algebra level the semi-direct product transforms
into direct sum) to derive the Hilbert series of the graded algebra U (n) as

n—1 1
Pryny(t) = —.
Remark that the graduate structure on #/(n) is given by the degree of a polynomial in Z;;’s. This means
that we computed actually the series of gr*l(n) = @ju’"(n)/j&(tll).

Observe that Py(n)x does not depend on the characteristic of k. If we set U(n)z for the algebra
defined over Z we deduce (see [Ber]):

COROLLARY 2. — The algebra U(n)yz is torsion-free, or equivalently, the graduation gr* P, =
@D (Pn)ry/(Pn)(r41) Is torsion-free.

We have also a holonomy homomorphism

7 P, — U(n).

COROLLARY 3.
1) The holonomy 7 is injective.

2) Let consider
Zvr : Py —> U(n)r = U(n) /Tyt

Then ker Zv, = (Pn); = (Pn)(r), (see [FR2], [St]).

This follows directly from Chen’s work and the fact that P, is a residually torsion free nilpotent
group.

We can be more precise on the image of P, under Z. Let g(n) be the free Lie algebra on Z;
quotiened by the ideal defining U (n). We can view g(n) C U(n) and U (n) is identified this way with the
enveloping algebra of g(n). Then G(n) = exp g(n) C U(n) is the set

closure of {exp(z); =z € g(n)} CU(n)
endowed with the multiplication induced by Campbell-Hausdorff formula. Then, according to Chen P,

is an uniform discrete subgroup of the infinite dimensional formal Lie group G(n). Remark that we may
define analogously G(n), C U(n), which are nilpotent simply-connected Lie groups and G(n) = m
so it inherits a natural topology as a closed Lie group. When k = Q, g(n) is the Malcev Lie algebra of
P, (see [Kohno2]).
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(2.0) We can regard pure braids as isotopy classes of n strings in R? x [0, 1] having nowhere
horizontal tangent vectors and fixed endpoints. Therefore every invariant for braids V' can be uniquely
extended to singular braids (where several self-crossings which are ordinary double points are allowed)

by means of the skein relation we encountered in Chapter 2, namely

7Y AN /
v () =v(X)-v ().
where we supposed all strings are oriented downward for the moment. Let consider a similar theory as in

Chapter 2 for pure braids, so define V*(P,) the k-space of Vassiliev invariants of finite type, where V™

is spanned by those invariants vanishing on singular braids having more than m double points.

(2.1) There is a natural candidate for the analogue diagrams: we denote by D, = D(||||--|)
N—_——
the span of diagrams consisting in n arrows which are labeled 1, ..., n and points downward and several

horizontal arcs whose endpoints are on the arrows. We can multiply these diagrams by putting them one

above the other. Consider further the algebra
Tn = T(ll n l = Dn/k (relations (1) and (2))

where

so horizontal arcs having distinct sets of endpoints commute, and

nRsis

In a similar vein we can define the k-space of weight systems W*(P,) as functionals on D,, which pass

to the quotient 7, . Notice the natural grading on 7, is that given by the number of horizontal arcs.

PROPOSITION 4. — We have an isomorphism W*(P,) & gr*V*(P,).

It suffices to reread the proof of Theorem 1, chap. 2 to see that all constructions can be carried

out in this simpler setting.

(2.2) PrRoPOSITION 5. — We have an isomorphism of graded k-algebras

Proof. — 1t suffices to observe that the map
leeu(n)'—)lll J, €Tn
i J

15
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It remains to identify now the universal Kontsevich invariant in this setting. A comparison of the

considered flat connections gives:

COROLLARY 6.
1) The homomorphism 7 : P, — U(n) is the universal Kontsevich invariant for pure braids.

2) There is a 1:1 correspondence between multiplicative Vassiliev invariants (i.e. V(zy) = V(z)V (y)
and morphisms

f € Hom(P,, k)
satisfying the property:
f factors as P, Z—Vr) «72,{ /7&&1) — k.

It follows from 1.3 that

COROLLARY 7 (Stanford).
1) Even for k = Z multiplicative Vassiliev invariants classify pure braids.

2) V(z) = V(y) for all multiplicative Vassiliev invariants of degree m if and only ifzy~' € (Pa)(r)s

or, equivalently x = y in the quotient P,/(Py)(,) of the lower central series.

Observe that the invariant 7 (K) of Morse link behaves multiplicatively with respect to connected
sums. Let us be more precise: assume that in the interval [t — ¢,¢ + €] of values there are not critical
values. We tie the knot K by a plane R? x ¢

N 9%1 ym“
oY LT

and insert a box where the strands (up and bottom ones) are connected using some pure braid z. We

say that K was modified by . We have Vassiliev invariants for tangles (see [Le-Mu], [BN2]) and if we
denote Kt and K~ the two tangles in which K is splitted by R? x ¢ we have a multiplicativity

Z(K)=Z(K)Z(K-)
Z(K®) = Z(Ky)Z(2)Z(K_-)
where K7 is the new obtained knot. Notice that the various Z(K;_) lie in different algebras and

multiplication has sense when restricted on a quotient of both. Since we can write

o
)= Zn(K)
m=0
where Z,,(K) is the universal Vassiliev invariant of degree m, we see that

Z(x) =1+ Zmy1(2) + Zmga(x) + -+, if 2 € (Pa)(m)-

Therefore we obtain

COROLLARY 8 ([St]). — Assume we modified the knot K by some pure braid x € (Pp)(m)-

Therefore all Vassiliev invariants of degree less than m + 1 of K and K® coincide.

16
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P, x Py — Ppyk
obtained by simply putting the strands together. On the other hand we have also
Un) xU(k) — U(n+ k)
given by:
(Zij, Zuv) — Zij Zusn vin-

With regard to the isomorphism of Proposition 5 this amounts to put then vertical arrows on the right

of the n'® arrow of the first element.

Remember we have natural injections P, — U (n), P, — U (k) which are the universal Kontsevich-Vassiliev

invariants for pure braids.

ProPosITION 9 (Product formula). — We have a commutative diagram
Pn X Pk — Pn+k

l l

Un)oU(k) — Un+k)

Proof. — This follows immediately from the functoriality of Malcev completion and the easy fact

that the Malcev completion of the product of two groups is the product of their Malcev completions.

Let’s provide a simple geometric proof also. We seen that Z comes as a monodromy representation
of a flat bundle over configuration spaces. We have also X415 D Xn X Xg. If Qunik, Qn, Qi are the

corresponding flat connections we have
Qnik = Q ©Q + QL
where
n k
Ot = Z Z Qindlogz; — z4.
i=1l a=n+1

Let consider v : [0, 1] = X4 which is the composition of 1 : [0, 1] = X, and 73 : [0, 1] = Xj. We have

YV Qntr =71 15 + yQt.
Finally the r*! iterated integral of Chen reads

r

>/ () A -
0<tr <<t <1

/ Y Qi (B1) A AY Quyi(tr) =
0<t < <tp<1 £=0

AYT Q2 (te) / Y3k (t1) A - - Av5Qu(t—s) + (integrals containing v*Q*).
0<t1< <t s <1

We claim that each integral from above containing v*Q* vanishes.

In fact the local picture of 4 contains the strands i*" and s which are not braided. We deform 5

to 7. as in the picture below.

17



L4 UC Hablios UL aan 4 HHLIPLICS LUT LULal HIeslalld 15 L1L 5s4lllt ulluclh Lo UcliutiiidatiVil. All 1HlCsl4lld

containing s times y*Q% has its modulus ~ constant SL Taking £ approach 0 we find the constant

s

be 0. Notice that in the deformation . the tangent vectors point downward. This ends the proof of
Proposition 9. |

COROLLARY 10. — We can compute some values of 7 : P, — U(n) as:

Z(b7) = exp(Z; i41) € G(n) CU(n).

Proof. — Tt follows from the easy calculation of Z(b%) in U(2) and Proposi-
tion 9. |

3. Vassiliev invariants for braids.

(3.0) One can define the Vassiliev (or finite type) invariants for ordinary braids by requiring that
their extensions to singular braids vanish on singular braids having more than m+ 1 double points, where
m is the degree of the invariant. Since the pure braids are distinguished by finite type invariants it follows

by a straightforward argument that ordinary braids are also classified.

(3.1) However there is an important difference in the case of ordinary braids. The same approach
as in the previous section fails because B, has not a cohomology ring large enough hence the holonomy
morphism provided by Chen’s theory is not injective. This may be rephrased by saying that multiplicative

Vassiliev invariants do not classify ordinary braids.

(3.2) We shall use however the previous construction for defining a larger algebra V(B,) — which
we call the Vassiliev algebra for B, — as the crossed product U(n) x S,, where S, is the group of
permutations in n letters. The extension of the homomorphism Z : P, — U(n) is a mapping Z : B, —
V(Bp) whose failure to be a group representation may be described by a sort of 2-cocycle. This 2-cocycle

furnish not a representation of a group extension of B, but one of a groupoid extension.

(3.3) Remark first that .S, acts on X,, by permutations of the coordinates and 1 (X, /Sn) = Bn.

Unfortunately the universal flat connection Q is not S,-invariant.

On the other hand the S,-action in the homology of X, induces a S,,-action at the tensor algebra
T(H.(X,)) level. Specifically this action pass to the quotient & (n) and one may compute

Sn x FPU(n) — FPU(n)
(03 Zirjs Zinga -+ Zigi) = Zo(in)oin) Zotin)o(ia) *~* Dolip)oliy):
where F* is the graduation by degree of U (n). This provides ¢ (n) with a S,-module structure.
We define now the Vassiliev algebra
V(Bn) =U(n) x Sy.
Specifically as k-module V(B,) is U (n) @ k[S,]. The product is given by
(Zr,0) - (Z5,7) = (Z1 °(Z;),70)
for multi-indices 7 and J.

18
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y. The collection {P(z,y), =,y € X,} forms the fundamental groupoid of X,,, being endowed with a
multiplication map
P(z,y) x P(y,z) — P(z,2)

and a “taking the inverse” map
P(z,y) — Py, z).

The parallel transport induced by the flat connection Q furnish a series of mappings
Zyy : P(z,y) — U(n)
which is an anti-representation of the fundamental groupoid. This means that
Zys(u0) = Zgy(u)Zy,(v) if u € P(zx,y), veE P(y,z)
Zua(w™") Zoy () = Zoy(u) Zys (u™") = 1 € U(n).

It is clear that 7;, may be computed also by iterated integrals.

(3.5) We describe now the first variant to derive the universal Kontsevich-Vassiliev invariant

Z : B, = V(B,).

Consider z € X, be a fixed base point and (o, z) = “z denote the S,-action on X,,. We consider

the fundamental groupoid with the set of base points S, z, i.e.

G= U P(%z, "z).

0,TESR

Then G contains several copies of B,,. Recall that we have an exact sequence
0— P, — Bp =5 S, — 0.

Choose some u € B, and v some loop in X, /S, representing u based on S,z € X,,/S,. Then there
is an unique up to homotopy lift of v to a curve % in X, joining z and )z so defining an element
@ € P(z, “(W2). We define furthermore

Z(u) = (Z, «w,(u),o(u)) € V(B).

(3.6) We have natural morphisms B, x By — Bj,4j obtained by putting the strands together
and a morphism V(B,,) x V(Bg) — V(Bptk) extending the corresponding morphisms at the ¢ (n)-level.

ProposITION 11 (Product formula for B,). — We have a commutative diagram

B, x Bg — Btk

Zx7| |z

V(Bn) X V(Bk) — V(Bn+k)~

Proof. — The geometric proof in Proposition 9 works as well in this setting. ]

(3.7) For a complete description of Z we need to know its behavior with respect to the multipli-

cation in B,,. A first step towards this is provided by:

PROPOSITION 12. — Assume that o(u)o(v) = o(v)o(u). Then we have
Z(uv) = Z(u)Z(v).
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respective lifts in X, starting at z. Let 45 be the lift of 45 starting at )z, Therefore 5173 is a lift of

~v17y2 starting at z and we have

Z(uwv) = (Z. oo (G130), 0(0)o(w)) = (2. o2 (1), 0(0)) (Zot owm (39),0(v)).

Remark that we have an induced S,-action on the fundamental groupoid o : P(z,y) — P(°%, %y). From
the homotopy uniqueness of the lift we derive that o(u)y2 = v3 in P("(“)z U(“”)z) under the assumption
that o(u) and o(v) commutes with each other. This implies that Z(uv) = Z(u)Z(v) and we are done. m

In particular we recover that Z|p, is a group representation, whose image lies in a copy of U (n) in

V(Bn).
4. Braids and regularization of singular integrals.

(4.0) We wish to relate now Z(uv), Z(u) and Z(v) in the general case of not necessary commuting
o(u) and o(v). The strategy consists in pushing-off the base points through infinity. Equivalent state-
ments were obtained by Le and Murakami, Bar-Natan, Cartier (see [Le-Mu], [BN2], [Car]). We shall skip
over the details which will be considered in the second paper of this series. Our aim is to explain a subtle

point around the multiplicativity of iterated integrals and their regularizations.

(4.1) A point is said to be at infinity if it sits on C* \ X, = A,. This corresponds to a n-string
whose points become close to each other depending on the strata of A, where the limit sits. Incorporating
points at infinity would have the effect of replacing the various base points S,z by an unique base point
2o lying in {21 = 29 = -+ = z,} C C*. This of course implies the iterated integrals computing the

holonomy become singular and regularizations are needed. Such a singular curve has the shape pictured

\../
VAR

provided by an e-approximation (see the figure). Now the planar picture of the strings contains always

below and usual regularization are those

(regularizationtermin € )

some additional information: the j* string corresponds to the ;" coordinate z; € C. But the role of
singularities is just the interchange of two strings. This means that the trajectories in C* are like in the

picture bellow

A Al
V .
u v A
(zl ,22) (z2 ‘21) u €
A: real trgjectory B: what the regularized term computes

20
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and the curve corresponding

[>< >

< >£>

e &

in C* has the shape B. So that it is not at all clear (but true!) that the two limits A and B when
suitably renormalized should be the same; on the right hand side we may apply the multiplicativity of
the holonomy to get a closed formula for Z(uv) as Z(u)Z(A)Z(v) (properly renormalized).

(4.2) To overcome this difficulty it is suitably to work with compactifications of configuration
spaces. We recall that, with the notations of § 3, the general situation is summarized in the picture below

and so the endpoints of 7(*)5, and ~5

a(v)z

a(w) z
do not coincide. It is for this reason that z i1s pushed to infinity.

Compactifications of configuration spaces X, were considered by Fulton and Mac Pherson, Kontse-
vich and Axelrod and Singer in both algebraic geometric and differential geometric variants. We shall add
to X,, a boundary over the X C A,,. We are interested to the strata over the line {1 = -+ - = 2, } C Ay;
they correspond to binary trees with n labeled leaves. Any real analytic curve 4 : [0,1) — X, which
comes from v : [0,1] = C*, (1) € A,, has a proper lift 4 : [0,1] = X, ()?n is the compactification) so
that ‘y|[0’1) is v when int X,, is identified to X,. Notice that %(1) is not uniquely defined by (1) but
also information of how faster |z;;1 — z;| tend to zero is needed. As for example the curves «; pictured

have the endpoints %;(1) for their lifts in the two strata corresponding to the two binary trees of level 2.

v stratum
v v, (1)
1
€ €2 1 2 3
y2 y2 (1) Stratum
g2 € 1 2 3
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The regularization of the holonomy map is provided by residue theory since the flat connection
extends to X,, with regular singularities on the compactification divisors. Now it is easy to see that the
singular curves in X, may have distinct endpoints when lifted to X,,, according to the labeling of strings.

However we may pass from one stratum to the other using the intermediary curves A.

g2 €
I >
A
- .
£ g2

It is for this reason that Le and Murakami’s procedure gives the right answer, and the modified (renor-

malized) integrals provide a representation of their pre-¢g-tangle category.

This type of intermediary curves permit to change the binary trees by fusing moves F', and it is

easy to see that

a b ¢ a b ¢
fusing moves act transitively on the set of binary trees. A more interesting fact is that, once we pass
from the tree T to the tree S by a sequence of fusings and compute the holonomy (properly regularized),
the result does not depend upon the particular choice of the sequence of fusings we used but only on S
and T'. This is a consequence of the pentagon relation for fusing and is reminiscent to conformal field

theory (see [Drin], [BN2]). Tt follows from the flatness of the connection on X,,, and we notice that it is

basically the only data which permits to construct link invariants solely (see [BN2]).

(4.3) Finally the regularization of singular integrals is done in [Le-Mu] and is in some sense
canonical: let v : [0, 1) = X, be a real analytic curve, whose lift 4 has the endpoint %(1) in the stratum
corresponding to the labeled tree T'. We represent v as a n-string in C' x R.

< B e =l B

We read from the binary tree T the order in which neighbor points become closer to each other, say

€r(1)s -+ +»Er(n-1), Where 7 is a permutation of {1,2,...,n — 1}.

We set after [Le-Mu]

n—1

Z(T k

e(T) = H Ek( )
k=1

Z(T,k):%lm, > S 7y

0<p<in ix+1<q<ls
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¢ = max{p; p < kand 77 (p) < k} + 1,
l; =min{q; ¢>k+1and 77 1(¢) < k} — 1.

All the terms Z(T, k) are commuting with each other. Then the regularization term needed for Z(v) is
g(T): the limit thrrll Z(’y|[0 t])E(T) is finite, and we denote it by 7 (7).
— )

Now if both endpoints of v are at infinity then we have left and right regularization terms as
}iH(l) e ! (S)Z(’y| [t 1_t])5(T) according to the trees S, T associated to 4(0) and 4(1). These renormalizations
m . A—t] .
are further compatible to the A curves which we insert. The homogeneity of fusing moves permits to

compute 2()\) in terms solely of a particular A-curve. It is this way Drinfeld’s associator ¢ appears.

(4.4) We recall from [Drin] that the differential equation
A B
!
)= (24— 1
G(@) = (= +—)Gk), z€ (1)
where G is real analytic on 2z, whose coefficients are formal series in two non-

commutating variables A and B, has unique solutions (G1, G2 having prescribed asymptotics

Gi(z) ~ zA/?™ around z ~ 0,

Ga(z) ~ (1 - :C)B/zﬂ around z ~ 1.
Further ¢(A, B) is defined as the formal series G7'(2)G2(z), and is called Drinfeld’s associator. Tt
turns out that the simplest A-curve in 3 strings has the regularized holonomy ¢(Z12, Z13), just from the

definition. In fact the half monodromy, as a function on ¢ is a solution of the previous stated equation.

Now for a general fusing move F' like in the picture, the regularization is ¢( > Zpqs 2 Zpyq), where
PEDL
q€c

p€a
q€b

a, b, c are viewed as the sets of labels of leaves issued from the respective vertices.

(4.5) Now in order to find E(U), u € B, we need to fix tree Ty for the initial points. Each u
induces a change of the binary tree: in order to be more precise we assume that all the endpoints of the
braid drawn in C x IR lie on the two lines R x {0} and R x {1} so that only the |z; — z;41| are taking into
account. Then the tree Ty changes into a tree 77 = o(u)Tp, depending only on o(u) € S,,. Let ¢(u) be
the product of fusings we need to pass from Ty to o(u)7p. This may be explicitly computed from ¢ and

o(u), as a product of Drinfeld’s associators.

We may state now:

THEOREM 13 (Multiplication law). — The regularized invariant 7 has the following multiplica-

tion law
Z(uv) = Z(u)Z(v)(6([o(u), o(v)], 1)
where ¢ : S, — U(n) is the homomorphism defined above.

Notice we may derive similar relations with ¢ inserted between Z(U) and 2(1}) or before them.
5. Geometric interpretation for V(n).

(5.0) We have a similar result as in Proposition 5, for the algebras V(n). Consider the S,-

diagrams constructed like D(] |---|) but in a more general context:
n

(1) the vertical arrows can cross each other transversely, this time, and are numbered 1,2, ..., n;

(2) we have a finite set of horizontal chords whose endpoints are on the vertical arrows;
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n

other;

(4) the isotopy condition: one can move the vertical arrows by preserving the horizontal chord

endpoints like in the two moves describes bellow (and coming from the presentation of S,,)

RN

(5) the usual 47 relations as in Section 2.

Then the free k-module on S,-diagrams quotiened by the equivalence relations (4) and (5) form
the algebra of S,-diagrams T'S,, extending J,.

ProPosITION 14. — The map V(n) — T'S, given on generators by

i i
(Zij, 1) —

i i+1

(1, (#i+ 1) —

(where (i,i 4+ 1) stands for the transposition interchanging i and i + 1) is an isomorphism of graded

algebras.
Proof. — This map has an obvious inverse, and the 4T relations correspond to relations in U (n),
and isotopy moves to the relations in S, . |

APPENDIX

The product formula

We derive now a direct proof of the product formula of Proposition 9.

Let’s look first at b? € P, and consider the representing loop in X3 be that given in the picture

below.

3+k

3+k
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Ak) 121 ==1, z9=1, 23 =3+ kt, t€[0,1], k>0
B(k) : z1 = —exp(2wit), z2 = exp2wit, z3=3+k, t €][0,1]
Ck):z1==1,29=1, z3=3+k—kt, t€][0,1].

We compute the integrals corresponding to A(k), B(k), C(k) separately:

1 o 1 ;
exp(2mit) / exp(27it)
Z(B(k)) = exp(Z Z dt + 7
(B(k)) = exp(Z12) + 13/0 exp(2mit) + 3 + k + 223 o exp(2mit) —3—k
2

exp(2mit;
=+ Z I'HOII(Z12, Z13, Z23) / H p ) dty--- dtp,

0Lt <<ty <150 p(2mit;) + (3 + k)

dt

monomials mon,p
where the sum is made up on all non-commutative monomials in 715, Z13, Zs23, and £ > 1 is the number

of Z13’s and Zs3’s in the monomial. We don’t need explicit computations of all coefficients. It suffices to

see that the coefficient of such a monomial occuring in the sum is bounded as follows:

lcoefficient| < / ! ‘dt !
coeflicien — 1° < oo
0<tr <o <tp<1 exp(2mit;) £ (3 + k) (k + 2)p!
Next we may compute
4+ kt 2+ kt
Z(A(k)) =1 + Z13 log + Zg3 log
1
=+ HlOIl(Zlg, Z23) / kP ———dty - - - dt ,
monom%; mon,p 0<t1 <+ <tp<1 1;[ (ktj + 3) + 1 !

where the sum is taken over the monomials in two non-commutative variables of degree at least two.
Finally Z(C(k)) is the same sum as above but the coefficients of a degree p monomial is multiplied by

(—=1)P. Again we seek for upper bounds of these coefficients:
kP
|coefficient| < / —————dt; - - dt, < Qp(log(k + 2)),
0St1<“A<tpsl (]i'tp + 2)]9 P p( ( ))
for some polynomial ), depending on p.
Consequently the product
Z(b3) = Z(A(k))Z(B(k))Z(C(k)) = exp Z12 + mon(Z1a, Z13, Z23) coeff(mon),

and each coefficient is now
Qp(log(k +2))
k+2 '
On the other hand Z(b%) does not depend on the choice of k. So letting k goes to infinity gives Z(b?) =
exp Z12.

|coeff| <

Now the general case goes similarly. For a pure braid # € P, < P, 41 we push the (n 4 1) string

to infinity as above. Again
Z(A(k)) = IZcoeff (A, k) (monomials containing only Z; ,41)
Z(C(k)) = IZcoeﬁ (C, k) (monomials containing only Z; ,41)
Z(X(k)) = Z(x) + coeff (X, k) (new monomials in all Z;;, at least

one variable being some Z; ,41).

and we have estimations

[coeft (A, k)|, |coeff (C, k)| < Qp(logk),

|coeff (X, k)| < ,
Ol 7w
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Z(AR) X (RK)C(k)) — Z(2),

and the independence of the monodromy on the path yields the result for the inclusion P, — P,41.

Successive use of this prove the claim.
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