Tensor product of Hopf bimodules over a group
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Abstract

We describe the monoidal structure of the category of Hopf bimod-
ules of a finite group and we derive a surjective ring map from the
Grothendieck ring of the category of Hopf bimodules to the center of
the integral group ring. We consider analogous results for the multi-
plicative structure of the Hochschild cohomology.

1 Introduction

Hopf bimodules are natural representations of a Hopf algebra H, they form
an abelian category B(H) provided with a tensor product, their definition
is given below. M. Rosso proved in [15] that B(H) is equivalent —as a
monoidal category— to the category of modules over the Drinfeld double
of H, therefore B(H) is a braided category (see [2, 7, 9, 11]). M. Rosso
and S.L. Woronowicz ([14, 17]) has considered those structures in relation
to differential calculus on quantum groups; Hopf bimodules over a group
algebra provides the classification of quantum structures on path algebras
obtained in [4].

The main purpose of this paper is to describe the tensor product of Hopf
bimodules over an arbitrary group GG with coeflicients in a ring k, which are
k-projective and finitely generated. Alternatively, if G is finite the result
concerns Hopf bimodules without restrictions on their k-structure. Notice
that the computation of the monoidal structure of Hopf bimodules is perhaps
related with the work of Wassermann concerning the computation of Conne’s
fusion for SU(2), see [16] and [10].

The quoted structure result is performed by constructing an explicit mo-
noidal category in terms of conjugacy classes and representations of the cen-
tralizers provided with a tensor product defined in terms of induced modules.
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We prove that the resulting category is equivalent —as a monoidal category—
to the one formed by the Hopf bimodules. As a consequence, we obtain
that the Grothendieck ring of Hopf bimodules surjects on the center of the
integral group ring.

This results are related with the study of the Hochschild cohomology
algebra of a group algebra. Indeed, we recall that the algebra structure of
the later is unknown and that a link between the tensor product of Hopf
bimodules and the cup product of Hochschild cocycles seems to exist; in
the abelian group case, such a relation is clear since both structures are
graduations over the group of products of more usual structures (respectively
left modules and usual cocycles), see [5]. We consider this point at the last
section.

We know from [4] that the category of £G-Hopf bimodules is equivalent
—just as an abelian category— to the product of categories of usual mod-
ules [[oec mod kZg where C is the set of conjugacy classes and Z¢ is the
centralizer of one of the elements of C' € C. Objects of this product are pos-
sibly infinite families of right modules over the centralizers. W.D. Nichols
([13]) has initiated this classification for a finite abelian group and a field of
characteristic not dividing the order of G. D. Dijkgraaf, V. Pasquier and P.
Roche in [8] considered the case of a finite group with complex coefficients
and modules over the Drinfeld double of the group algebra, using Lusztig’s
results ([12]) for studying its semisimplicity.

We begin this paper with an account of Hopf bimodules and their monoi-
dal structure, including the proof of the additive structure result obtained
in [4] presented here in a simplified version. This enables us to obtain the
complete multiplicative structure Theorem in section 3.

2 Hopf bimodules

A Hopf bimodule B over a Hopf algebra H is an H-bimodule which is si-
multaneously an H-bicomodule; moreover, it is required that the structure
maps 8;, : B — H® B and ég : B - B ® H are H-bimodule maps for the
H-bimodule structure of the tensor products obtained through the comulti-
plication of H. For more details concerning this definition, see for instance
[5].

The tensor product of Hopf bimodules B and B’ is the bimodule B&y B’
equipped with the bicomodule structure given by the maps

BoyB' %" (HeB)op(HoB') ' HoyHoBogB' ™' HoBoyB'



BouB' "R (BoH)on(B'oH) ' BopB'oHoyH '*$™ BoyB' o H

where 7 is the flip map and m is the multiplication map of H. There is
no difficulty to check that 1g7gl is a well defined H-bimodule map, both
compositions gives H-bimodule maps and define an Hopf bimodule structure
on the bimodule B @5 B’.

Theorem 2.1 ([4]) Let k be a ring and G be a group. The category B(kG)
of kG-Hopf bimodules is equivalent to [[ee mod kZc .

Proof : Let M = (Mc)pge be a possibly infinite family of right £7,,(¢-
modules, where 7,y is the centralizer of a chosen element u(C) in each
conjugacy class C'. Let VM be the kG-bimodule [[oee #G ® MCT(Z;C where
the right structure of MCT(Z;C is the induced one —recall that MCT(Z;C:
Mc @z, kG- and the left structure is the trivial one. The k-module kG is
provided with the regular left and right actions and each tensor product is
equipped with the resulting diagonal left and right actions.

Concernig the bicomodule structure, it is useful to know that any Hopf
bimodule is bigraded by G : we have B = @, ,cq YB” where YB” is the
isotypic cocomponent of type (y,z), i.e.

VB ={be B | ér(b)=y®@b and dr(b) =b® z}.

A proof of this lemma is provided in [4], notice however that if G is finite the

result is straightforward since (kG)* is a split semisimple basic algebra and

results about kG-bicomodules are duals of results about (kG)*-bimodules.
The isotypic cocomponents of VM are defined as follows

2 ® Mg @ K = “K7uOKy pp)

where K is a left class of ZH(C)\G. It is easely checked that this data provides
V M with a Hopf bimodule structure.

The reverse functor W associates to a Hopf bimodule B the collection of
isotypic cocomponents {“(C)BI}O o Notice that “(“)B! is a right kZ, 0y
module through “conjugation” ofeactions: b.z = z7'bz. Indeed, the right
actions takes “CO)B! to U9)?B* and the left action returns it to # “@)zB!,
Since z € Zy(c), the latter is exactly u(C)BY ag required.

Remark 2.2 Let By (kG) be the full subcategory of B(kG) of Hopf bimod-
ules with underlying k-module projective and finitely generated, and let
X cecmody kZc be the category of finite families of right k£Zc-modules which
are k-projective and finitely generated. The functors of the preceeding proof
restrict to equivalences between these sub-categories.



3 Monoidal structure

We define first the monoidal category M (kG) mentionned in the introduc-
tion for £ a commutative ring and G any group. Objects are formal finite
sums ) cec [Mc]C where Mg is a right module over the centralizer Z, (¢
of a chosen element u(C') of each conjugacy class C, such that the underly-
ing k-structure of My is projective and finitely generated. Morphisms and
direct sums are the natural ones.

In order to define the monoidal structure of M(kG), recall that M1% is
the induced module M ®pz kG of a right kZ-module M where 7 is a sub-
group of a group G. The tensor product is defined on elementary objects,

MA@ [NIB =Y [X{5]C
cec

where XE,B is a sub kZ,(c)-module of (MT%(A) ® NTCZ;M(B)) J’Zu(c)' Let

ESp={(K,L) € Zyu\G x Zyp)\G | K~'u(A)KL™'u(B)L = u(C)},

we define
Xip= P MoK @ N®L.
(K,L)EES g

Notice that EgB is actually preserved by right multiplication by ele-
ments of G. We are able to extend this product to the full category since
objects are finite formal sums. It is not clear a priori that this product is
associative, once the next Theorem will be proved the associativity derives
since the tensor product of Hopf bimodules is clearely associative.

Theorem 3.1 Let k be a ring and G be any group. The categories By (kG)
and M(kG) are equivalent through functors which preserves tensor products.

Proof : We refer to the proof of the previous Theorem 2.1 for notations and
definitions. Let I and I’ be Hopf bimodules constructed via the functor V'
by means of elementary objects [M]A and [N]B, and consider their tensor
product I@xe I' =V ([M]A) @ke V ([N]B). We need to prove that W of
this tensor product is the announced object of Bi(kG), in other words we
have to show that ‘

NIewe ) = X5

as right k7, (c)-modules, for each C' € C.
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First we collect the following easy equality:
dIc ki xallm‘b — chc:zt ki aIIb C dra (I Qra I/)Cl’b .
In particular this means that a normalization can be performed as follows:

I Qe I' = EB TV @ I
Zvy7I6G

and the isotypic cocomponent ¥(I @i I')" is given in this normalization by
PByomr YI* @1 “I''. Hence

U(C)<] Qpc ]')1 — @ yrl Q% epit
zy=u(C)
Now we have [ = V ([M]A) = kG @ MTCZ;H(A), and by definition of the

isotypic cocomponents
- ® M ® I( — zIx"—lu(C)KIz

for each z € G and K € Zu(A)\G. Consequently the isotypic cocomponents
of type I are of the form K “OIKT! for all K € Zy(a)\G and we derive

u(c)(] R ]/)1 _ EB K= u(A)K 1 O L7'w(B)Lpn _
(K,L)eEgyB

P (1eMeoK)® (1eNL).
(K,.L)EE] 4

The identification with the described k-module XEB is now clear. To
end the proof it is enough to record that the right action of Zy(cy on this
direct sum coincides with the one described on XACB. Indeed, the action
is given by “conjugation” of the actions (c.f. the proof of 2.1) and the left
structure on the right induced modules is the trivial one.

We consider now the Grothendieck ring KoBj(kG) of the category of k-
projective and finitely generated Hopf bimodules over kG, namely the free
abelian group on the set of isomorphism classes of objects of By (kG) divided
by the subgroup generated by the relations Y — Y’ — Y associated to each
split exact sequence 0 — Y’ =Y — Y"” — 0 of the category. In case the



category is a Krull-Schmidt one, this quotient is free with basis the set of
isomorphism classes of indecomposable objects. If k is a field, the monoi-
dal structure of the category induces a product on the Grothendieck group
which provides a ring structure with unit (notice that the Hopf algebra is
the unit object for the tensor product of Hopf bimodules).

Corollary 3.2 Let k be a field and G a group. There is a ring surjection
¢ KoB(kG) — Z(kG)
where Z(kG) is the center of the group algebra ZG.

Proof : Recall first that Z(Z@) is free with basis {5}066 where C is
the sum in ZG of all the elements of the conjugacy class C. The structure
constants of this ring are non negative integers given by AB = Y _cec engU.
It is elementary to prove that e  is the cardinal of the set EY 5 considered
before. 7

Next we identify KoB(kG) and KoM (kG) through the functors V' and
W and we define

) (Z [M¢] C) = Y dimg [Mc] C.

cecC cecC

This gives a ring homomorphism since from one side

6 ([M]A @ [N]B) = ¢ (Z [XXB} C) = Y dimpX§5C =
CeC Ccec
> dimpMdimy N |EG 5| C
ceC

and from the other side we have

6 ((M]A4) ¢ (IN1B) = (dimyMA) (dimiNB) = dimMdimeN " e, C.
cec

Each basis element C of Z(Z() is reached through ¢, using the elementary
object having the trivial representation of the centralizer of C' as coefficient

of C.

Remark 3.3 A suitable version of the preceding surjection probably still
exists from the Grothendieck ring of Hopf bimodules over a finite dimen-
sional Hopf algebra H to the center of H.



4 Hochschild cohomology

The behavior of the cup product for the Hochschild cohomology classes of
a finite group is probably similar to the behavior of tensor product of Hopf
bimodules as described in Theorem 3.1. Indeed, we have at first that the
underground additive structures agrees through analogous descriptions with
respect to centralizers of conjugacy classes, since it is well known that

HH*(kG,kG) = @ H*(Zc, k)
cec

where H H* denotes Hochschild cohomology and H* usual group cohomology
see for instance [3] or [1] and compare with Theorem 2.1. Moreover in [5]
we have obtained that for a finite abelian group the similarity holds since
there is an algebra isomorphism between H H*(kG, kG) and kG @ H*(G k),
while for Hopf bimodules the category Bi(kG) is equivalent to [mod kGG
: for abelian finite groups both multiplicative structures —cup product in
Hochschild cohomology and tensor product of Hopf bimodules— are obtained
by grading over GG simpler multiplicative structures (cup product in usual
cohomology and tensor product of usual representations).

In order to state a precise conjecture for the Hochschild cohomology
algebra of a finite group, it is necessary to understand differently the modules
XXB of the preceding section, I am indebted to J. Thévenaz for pointing
out the following

Lemma 4.1 Let G be a finite group and let k be a ring. Let A and B be
conjugacy classes and let a and b be chosen elements in A and B. Let M
and N be right kZ, and kZy-modules, and let C' be a conjugacy class with
chosen element ¢. The kZq-module

X{p= D WMok o NaL c (M aN1§ )l
(K,L)EES 4

is isomorphic to

K L, Ze
P (MMzgaz ©N J’Zé‘ﬂZbL)TZ({*'anL
ES,B/ZC

Recall that EXB ={(K,L) € Z\G x Z\G | K7'aKL7'bL = ¢} and

that Z¢ acts on the right on this set. The latter direct sum is obtained by
chosing one element in each orbit of EE,B under this action. The module
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MX denotes the same underlying k-module than M, equipped with the right
action of ZX = K='Z,K = Zg-1,x defined by (K~'aK) M = am.

Proof : The module XXB decomposes along the orbits of the action
of Z¢& on EE,B' Each resulting piece corresponds to the criteria of being
and induced module —see for instance [6]- since its direct summands are
transitively permuted by Z¢ and the stabilizer of (K, L) is ZK N Zé:.

We construct now an algebra based on the usual cohomology algebras of
the centralizers of conjugacy classes in a very similar way we have defined
the category M (kG).

Let M(kG) = @cec H* (Zucy, k) C, that is M(kG) is the k-module
of formal linear combinations of conjugacy classes with coefficients in the
respective cohomology group (recall that u is a choice of an element in each
conjugacy class). Let mA and nB be elementary elements in M(kG), with
m € H*(Z,, k) and n € H*(Zy, k). The product mA -nB = Y ez} zC is
defined by

. ZK -~ ZL
o= Y IndZe (Res - mi — Res’s L)

ZKnzL ZKAZE zinzk "
ES plZc

where m” and n” denotes elements corresponding to m and n in H*(ZX k)
and H*(Zé:, k) obtained through conjugation, Ind and Res are the induction
and restriction maps defined in cohomology, and — is the cup product in
the corresponding cohomology algebra.

Conjecture : The Hochschild cohomology algebra H H*(kG, kG) is iso-
morphic to M(kG).
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