Group actions on the Dolbeault cohomology of homogeneous manifolds

Dmitri Akhiezer

1 Introduction

Let M be a compact complex manifold, $\mathfrak{O} = \mathfrak{O}_M$ its structure sheaf, $\Omega^p = \Omega^p_M$ the sheaf of germs of local holomorphic p-forms on M, and $H^{p,q}(M) = H^q(M,\Omega^p)$ the Dolbeault cohomology spaces. If G is a complex Lie group acting holomorphically on M, then G has a natural representation on $H^{p,q}(M)$. Since M is compact, the spaces $H^{p,q}(M)$ are finite-dimensional and, as one can easily show, the representations of G on $H^{p,q}(M)$ are holomorphic (see e.g. [1], § 4.1). For M Kähler we have the Hodge decomposition

$$H^{r}(M,\mathbb{C}) = \bigoplus_{p+q=r} H^{p,q}(M). \tag{1}$$

If G is connected then G acts trivially on $H^r(M,\mathbb{C})$ by the homotopy argument. Thus (1) shows that $H^{p,q}(M)$ is a trivial G-module for all p,q. However, for an arbitrary M this is in general not the case. Namely, F.Lescure [10] constructed recently examples of non-trivial actions on $H^1(M, \mathbb{O})$. In his first example, $\dim M = 4$ and M is acted on by $\mathrm{SL}(2,\mathbb{C})$ in such a way that all orbits have dimension 2. This action induces a non-trivial representation of $\mathrm{SL}(2,\mathbb{C})$ on $H^1(M,\mathbb{O})$. In his second example, M is a homogeneous manifold of the form $M = G/\Gamma$, where G is a connected solvable complex Lie group of dimension 3, Γ a cocompact discrete subgroup in G, and the G-action on $H^1(M,\mathbb{O})$ is again non-trivial. A natural question arising from these two examples is the following one. Assume that G is a connected semisimple complex Lie group or, more generally, a reductive linear algebraic group over \mathbb{C} . Let $\Gamma \subset G$ be a cocompact discrete subgroup. Is it then possible that the induced G-action on $H^1(G/\Gamma,\mathbb{O})$ is non-trivial? The answer turns out to be negative. Moreover, we have the following result.

Theorem 1 Let G be a connected reductive linear algebraic group over \mathbb{C} , \mathfrak{g} the Lie algebra of G, $\Gamma \subset G$ a cocompact discrete subgroup. Then there is an isomorphism of G-modules

$$H^{p,q}(G/\Gamma) \simeq H^q(\Gamma, \mathbb{C}) \otimes \wedge^p(\mathfrak{g}),$$
 (2)

where G acts trivially on $H^q(\Gamma, \mathbb{C})$ and the action on $\wedge^p(\mathfrak{g})$ is induced by the adjoint representation on \mathfrak{g} . In particular, $H^{0,q}(G/\Gamma)$ is a trivial G-module.

As a consequence, we obtain Raghunathan's vanishing theorem for onedimensional cohomology, see Section 3. We also generalize Theorem 1 (for p=0) to arbitrary compact complex homogeneous manifolds of reductive linear algebraic groups.

Theorem 2 Let G be as in Theorem 1, $H \subset G$ a closed complex Lie subgroup, and assume that G/H is compact. Let $H^{\circ} \subset H$ be the connected component of the identity element, P the normalizer of H° in G. There exists a connected reductive algebraic subgroup $G^{\star} \subset P$, such that $P = G^{\star} \cdot H^{\circ}$ and $G^{\star} \cap H$ is discrete. The G-action on $H^{q}(G/H, 0)$ is trivial and

$$H^q(G/H, \mathfrak{O}) \simeq H^q(\Gamma^*, \mathbb{C}),$$

where $\Gamma^* = G^* \cap H$.

The author would like to thank Jürgen Rohlfs and Jörg Winkelmann for useful discussions.

2 Preliminaries

This section contains some known results, which will be used later on. Let \mathfrak{g} be a real Lie algebra, $U(\mathfrak{g})$ the universal enveloping algebra of the complexification $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes \mathbb{C}$, and $Z(\mathfrak{g})$ the center of $U(\mathfrak{g})$. We identify $\mathfrak{g}_{\mathbb{C}}$ with its image in $U(\mathfrak{g})$ and denote by $U^+(\mathfrak{g})$ the ideal in $U(\mathfrak{g})$ generated by $\mathfrak{g}_{\mathbb{C}}$. Let $X \mapsto X^t$ be the principal anti-automorphism of $U(\mathfrak{g})$ defined by $X^t = -X$ for $X \in \mathfrak{g}_{\mathbb{C}}$. Let $X \mapsto \bar{X}$ be the complex conjugation in $\mathfrak{g}_{\mathbb{C}}$ with respect to \mathfrak{g} , extended canonically to $U(\mathfrak{g})$. Note that $Z(\mathfrak{g})$ is invariant under these two mappings.

A $U(\mathfrak{g})$ -module M is said to be a module with infinitesimal character χ_M if $Xv=\chi_M(X)v$ for all $X\in Z(\mathfrak{g}),v\in M$, where $\chi_M:Z(\mathfrak{g})\to\mathbb{C}$ is a homomorphism of algebras over \mathbb{C} with a unit. By a trivial infinitesimal

character we mean the homomorphism $Z(\mathfrak{g}) \to \mathbb{C}$, whose kernel coincides with $Z(\mathfrak{g}) \cap U^+(\mathfrak{g})$. One example of a $U(\mathfrak{g})$ -module with infinitesimal character is given by an irreducible representation $\mathfrak{g} \to \mathfrak{gl}(V)$, where V is a finite-dimensional complex vector space. This representation extends to a representation of $U(\mathfrak{g})$ on V and, by Schur's lemma, $Z(\mathfrak{g})$ acts on V by scalar operators. Another example comes from the theory of unitary representations. Namely, let G be a real Lie group with Lie algebra \mathfrak{g} and let H be a topologically irreducible unitary G-module. Then the subspace of differentiable vectors $H^\infty \subset H$ is a $U(\mathfrak{g})$ -module with infinitesimal character (see e.g. [9], §11.3). In this case we write χ_H instead of χ_{H^∞} . Since H is unitary, we have

$$\chi_{H}(X) = \overline{\chi_{H}(\bar{X}^{t})}.$$
 (3)

In what follows we are interested in the special case, when G is itself a complex Lie group. Then \mathfrak{g} also has a complex structure, i.e., there is a linear mapping $J:\mathfrak{g}\to\mathfrak{g}$, such that [JX,Y]=J[X,Y] and $J^2=-\mathrm{Id}$. The complexification $\mathfrak{g}_{\mathfrak{g}}$ decomposes into the sum of two ideals,

$$\mathfrak{g}_{\scriptscriptstyle \mathbb{C}}=\mathfrak{g}_1\oplus\mathfrak{g}_2,$$

where

$$\mathfrak{g}_1 = \{X - iJX \mid X \in \mathfrak{g}\}, \quad \mathfrak{g}_2 = \{X + iJX \mid X \in \mathfrak{g}\}.$$

Fix a maximal compact subgroup $K \subset G$ and let $\mathfrak{k} \subset \mathfrak{g}$ be the corresponding Lie subalgebra. Recall that a connected complex Lie group G has a structure of a reductive linear algebraic group if and only if $\mathfrak{g} = \mathfrak{k} \oplus J\mathfrak{k}$.

Lemma 1 Let G be a connected complex Lie group, V an irreducible holomorphic finite-dimensional G-module, and H a topologically irreducible unitary G-module. If $\chi_H = \chi_V$, then both infinitesimal characters are trivial. Moreover, if G is linear algebraic and reductive then $V = \mathbb{C}$ and G acts trivially on V.

Proof We have $U(\mathfrak{g})=U_1\otimes U_2$ and $Z(\mathfrak{g})=Z_1\otimes Z_2$, where U_i is the universal enveloping algebra of \mathfrak{g}_i, Z_i the center of $U_i, i=1,2$. The complex conjugation $X\mapsto \bar{X}$ interchanges the subalgebras $Z_1\otimes 1$ and $1\otimes Z_2$, whereas the map $X\mapsto X^t$ leaves them stable. Since V is a holomorphic G-module, (JX)v=iXv for $X\in\mathfrak{g}, v\in V$. Therefore χ_v is trivial on $1\otimes Z_2$. But $\chi_v=\chi_H$, and (3) shows that χ_v is also trivial on $Z_1\otimes 1$.

Assume now that G is linear algebraic and reductive. Choosing an appropriate G-invariant non-degenerate symmetric bilinear form on \mathfrak{g} , we get a

Casimir element of the form

$$C = -\sum_{j} X_{j}^{2} + \sum_{j} (JX_{j})^{2},$$

where $\{X_j\}$ is a basis of \mathfrak{k} . Let (\cdot, \cdot) denote a K-invariant Hermitian inner product in V. Then

$$0=\chi_{_{V}}(C)(v,v)=(Cv,v)=2\sum_{j}(X_{j}v,X_{j}v) \qquad (v\in V),$$

and so we obtain that V is a trivial \mathfrak{k} -module. Since G is connected, G acts trivially on V.

Lemma 2 Let G be a connected reductive linear algebraic group, V a non-trivial irreducible holomorphic finite-dimensional G-module, and H a topologically irreducible unitary G-module. Then

$$H^*(\mathfrak{g},\mathfrak{k},H^\infty\otimes V)=\{0\}.$$

Proof A vanishing theorem in [4], Ch. 1, § 4.1, tells us that $H^*(\mathfrak{g}, \mathfrak{k}, H^{\infty} \otimes V)$ may be non-trivial only if $\chi_{V^*} = \chi_H$, where V^* is the dual to the G-module V. In view of Lemma 1 this is in fact impossible.

Lemma 3 Let G and V be as in Lemma 2 and let $\Gamma \subset G$ be a discrete cocompact subgroup. Then $H^*(\Gamma, V) = \{0\}$.

Proof The cohomology of a discrete group Γ can be expressed in terms of relative Lie algebra cohomology (see [12], [13] and [4], Ch. 7, § 2.7). Namely,

$$H^*(\Gamma,V) \simeq H^*(\mathfrak{g},\mathfrak{k},C^\infty(G/\Gamma) \otimes V) = H^*(\mathfrak{g},\mathfrak{k},(L^2(G/\Gamma))^\infty \otimes V).$$

Let \hat{G} be the set of equivalence classes of topologically irreducible unitary representations of G. For each $\pi \in \hat{G}$ choose a representative H_{π} . Then $L^2(G/\Gamma)$ decomposes into a discrete Hilbert direct sum of H_{π} with some finite multiplicities $m(\pi,\Gamma)$ (see [6], Ch. 1, § 2.3). An argument using the finiteness of dim $H^*(\Gamma,V)$ shows that $H^*(\Gamma,V)$ decomposes into an algebraic direct sum of the corresponding Lie algebra cohomology spaces, namely

$$H^*(\Gamma,V) \simeq \oplus_{\pi \in \mathring{G}} m(\pi,\Gamma) H^*(\mathfrak{g},\mathfrak{k},H_\pi^\infty \otimes V)$$

(see [4], Ch. 7, $\S 3.2$). The result follows from Lemma 2. \square

3 Parallelizable manifolds

For the proof of Theorem 1 we shall need a spectral sequence, which was constructed by A.Grothendieck in a more general context (see [7]).

Let (X, \mathcal{O}_X) be a reduced complex space, L a group acting on X by biholomorphic automorphisms, and S a sheaf of \mathcal{O}_X -modules. Recall that S is called a L-sheaf if L acts on S in such a way, that this action commutes with the projection map $S \to X$ and is compatible with the natural L-action on \mathcal{O}_X . As usual, we denote by S(U) the space of sections of S over $U \subset X$ and write $l: S(U) \to S(l \cdot U)$ for the isomorphism induced by $l \in L$. In our situation L will be a direct product of the form $L = G \times \Gamma$, where Γ is a discrete group acting on X properly discontinuously and freely. Let $Y = X/\Gamma$ be the quotient considered with the natural complex structure and let S^{Γ} be the sheaf of invariant elements of S, i.e.,

$$\mathfrak{S}^{\Gamma}(U) = \{ s \in \mathfrak{S}(\pi^{-1}(U)) \mid \gamma \cdot s = s \text{ for all } \gamma \in \Gamma \}$$

for $U\subset Y.$ Then G acts on Y in a natural way and S^Γ is a G-sheaf of \mathfrak{O}_Y -modules.

We now apply Theorem 2.4.1 of [7] to the sequence

$$C \stackrel{\Phi}{\to} C' \stackrel{\Psi}{\to} C''$$

where C is the category of L-sheaves of \mathcal{O}_X -modules, C' the category of L-modules, C'' the category of G-modules, $\Phi(\mathcal{S}) = \mathcal{S}(X)$ the functor of global sections, and $\Psi(V) = V^{\Gamma}$ the functor of Γ -invariants.

This gives us the following result (cf. [7], Ch. 5, § 5.3, Cor. 3):

(*) for any L-sheaf of \mathfrak{O}_X -modules \mathfrak{S} there exists a spectral sequence of G-modules converging to $H^*(Y,\mathfrak{S}^{\Gamma})$, whose second term is given by

$$E_2^{p,q} = H^p(\Gamma, H^q(X, \mathbb{S})),$$

with the G-action arising from the induced G-action on the coefficient group.

Proof of Theorem 1 Let G be a connected reductive linear algebraic group, $\Gamma \subset G$ a cocompact discrete subgroup. We apply (*) to X = G with G acting on the left and Γ on the right. For $\mathcal{S} := \Omega_G^p$ and q > 0 we have $H^q(G, \mathcal{S}) = \{0\}$, because G is a Stein manifold. Therefore the spectral sequence degenerates and $E_2 = E_{\infty}$. Since Γ is discrete, $\mathcal{S}^{\Gamma} = \Omega_M^p$, where

 $M = Y = G/\Gamma$. Therefore we obtain an isomorphism of G-modules

$$H^r(M, \Omega_M^p) \simeq H^r(\Gamma, \Omega^p(G)),$$
 (4)

where Γ acts on $\Omega^p(G)$ by the right translations. The G-action on the group cohomology of Γ arises from the left G-action on $\Omega^p(G)$.

Each holomorphic form on G is a linear combination of right invariant holomorphic forms with holomorphic coefficients. As a $(G \times G)$ -module,

$$\Omega^p(G) \simeq \mathfrak{O}(G) \otimes \wedge^p(\mathfrak{g}^*) \simeq \mathfrak{O}(G) \otimes \wedge^p(\mathfrak{g}),$$

where $G \times G$ acts on $\mathfrak{O}(G)$ by the left and right translations and the action on $\wedge^p(\mathfrak{g})$ is adjoint on the first factor and trivial on the second one. Thus

$$H^r(\Gamma, \Omega^p(G)) \simeq H^r(\Gamma, \mathfrak{O}(G)) \otimes \wedge^p(\mathfrak{g}),$$
 (5)

where Γ acts on O(G) by the right translations and G by the left ones. Now, O(G) is a completion of the algebraic direct sum

$$0_{reg}(G) = \bigoplus_{V} (V^* \otimes V),$$

where V ranges over irreducible holomorphic G-modules, each summand $V^* \otimes V$ is $(G \times G)$ -stable, and the left (resp. right) translations act on the first (resp. second) factor. Since $H^r(\Gamma, \mathfrak{O}(G))$ is finite-dimensional, we have

$$H^r(\Gamma, \mathfrak{O}(G)) = \bigoplus_V H^r(\Gamma, V^* \otimes V) = \bigoplus_V V^* \otimes H^r(\Gamma, V) = H^r(\Gamma, \mathbb{C}),$$

where the last equality follows from Lemma 3. Substituting this in (5) and using (4), we obtain (2).

Corollary 1 (M.S.Raghunathan [14]) Let G be a connected semisimple complex Lie group having no epimorphism onto $\operatorname{PSL}(2,\mathbb{C})$. Let $\Gamma \subset G$ be a cocompact discrete subgroup. Then $H^1(G/\Gamma,\Omega^p)=\{0\}$.

Proof If G is a connected semisimple real Lie group with finite center, no compact factor and no factor of rank one, then a theorem of Y.Matsushima yields $H^1(\Gamma, \mathbb{C}) = \{0\}$ for any discrete cocompact subgroup $\Gamma \subset G$ (see [11] and [4], Ch. 7, §4.4). In particular, $H^1(\Gamma, \mathbb{C}) = \{0\}$ when G is a complex semisimple Lie group without three-dimensional factors. Therefore the vanishing of $H^1(G/\Gamma, \Omega^p)$ follows from (2).

Let $\{E_k, d_k\}$ (k = 1, 2, ...) be the Hodge-Frölicher spectral sequence of a complex manifold M. Recall that $E_1^{p,q} = H^{p,q}(M)$ and that

$$H^r(M,\mathbb{C}) = \bigoplus_{p+q=r} E^{p,q}_{\infty}.$$

In the setting of Theorem 1 one can use (2) in order to understand the Hodge-Frölicher spectral sequence of $M = G/\Gamma$. The following corollary, generalizing a result of J.Winkelmann, is an example.

Corollary 2 (cf. [16], Part B, §§10,11) Let $G = SL(2, \mathbb{C})$, $\Gamma \subset G$ a cocompact discrete subgroup, and $M = G/\Gamma$. Then

$$E_2^{0,q} = E_2^{3,q} = H^q(\Gamma, \mathbb{C}), \qquad E_2^{p,q} = \{0\} \quad (p \neq 0, 3),$$

and, consequently, $d_2 = 0$. Moreover, $d_k = 0$ for all $k \geq 2$. Let $l = \dim H^1(\Gamma, \mathbb{C})$. Then $\dim H^2(\Gamma, \mathbb{C}) = l$, $\dim H^3(\Gamma, \mathbb{C}) = 1$, and $H^q(\Gamma, \mathbb{C}) = \{0\}$ for q > 3. The manifold M has the following Betti numbers:

$$b_0 = b_6 = 1$$
, $b_1 = b_2 = b_4 = b_5 = l$, $b_3 = 2$.

Proof The spaces E_k are bigraded G-modules, the differentials d_k commute with G-action. Since $\wedge^2(\mathfrak{g}) \simeq \mathfrak{g}$, there are only two types of irreducible G-modules occurring in E_1 . Namely, $E_1^{1,q}$, $E_1^{2,q}$ are multiples of the adjoint G-module and $E_1^{0,q}$, $E_1^{3,q}$ are trivial G-modules. Since all other terms of E_1 are zero, d_1 equals 0 on $E_1^{0,q}$ and $E_1^{3,q}$. Since the G-action on E_{∞} is trivial, d_1 defines an isomorphism between $E_1^{1,q}$ and $E_1^{2,q}$. From this we get the above expression for $E_2^{p,q}$, and it follows that $d_2 = 0$. Furthermore, we observe that $d_k = 0$ for $k \geq 4$.

Let $l_i = \dim H^i(\Gamma, \mathbb{C})$. It is an immediate consequence of Theorem 1 that $l_i = 0$ for i > 3. In the spectral sequence of the regular covering

$$G \to G/\Gamma = M$$

the second term is equal to $H^*(\Gamma, \mathbb{C}) \otimes H^*(K, \mathbb{C})$, where $K = \mathrm{SU}(2)$. Since $H^i(K, \mathbb{C}) = \{0\}$ for $i \neq 0, 3$, it follows that this spectral sequence degenerates. Thus $H^*(M, \mathbb{C}) = H^*(\Gamma, \mathbb{C}) \otimes H^*(K, \mathbb{C})$ as vector spaces and, consequently, $b_i = l_i$ for $i = 0, 1, 2, b_3 = l_3 + 1$ and $b_i = l_{i-3}$ for i = 4, 5, 6. Since $b_i = b_{6-i}$ by the Poincaré duality, this yields $l_2 = l_1, l_3 = l_0$, and we obtain the above values of b_i .

We still have to prove that $d_3=0$ in the Hodge-Frölicher spectral sequence. This reduces to $d_3^{0,2}=0$ and $d_3^{0,3}=0$. Assuming $d_3^{0,2}\neq 0$, we get $b_2=\dim E_\infty^{0,2}<\dim E_3^{0,2}=\dim E_2^{0,2}=l$, contradictory to what we have seen above. Similarly, if $d_3^{0,3}\neq 0$ then $b_4=\dim E_\infty^{3,1}<\dim E_3^{3,1}=\dim E_2^{3,1}=l$, again a contradiction.

4 Homogeneous manifolds of general type

We employ the notation introduced in Section 1. In particular, G is a connected reductive linear algebraic group, $H \subset G$ is a closed complex Lie subgroup such that G/H is compact, and P is the normalizer of H° in G. The proof of Theorem 2 is based on the following well-known facts:

- (i) P is a parabolic subgroup in G (see [15], [3]);
- (ii) H contains the unipotent radical $U = U_P$ of P (see [8]);
- (iii) $H^p(G/P, 0) = \{0\}$ for p > 0 (cf. [5] or [2]).

We shall also need an elementary lemma.

Lemma 4 Let T be an algebraic torus and let $Z \subset T$ be a closed complex Lie subgroup. There exists a subtorus $A \subset T$ such that $T = A \cdot Z$ and $A \cap Z$ is discrete.

Proof We identify T with $(\mathbb{C}^*)^r$ and denote by $\pi: \mathbb{C}^r \to (\mathbb{C}^*)^r$ the universal covering map, given by $\pi(z_1,\ldots,z_r)=(\exp 2\pi i z_1,\ldots,\exp 2\pi i z_r)$. The connected component of $\pi^{-1}(Z)$ is a complex subspace in \mathbb{C}^r . Denote this subspace by W and let $l:=\dim W=\dim Z$. There exist r-l vectors $v_1,\ldots,v_{r-l}\in\mathbb{Z}^r$, such that

$$\mathbb{C}^r = \mathbb{C}v_1 \oplus \ldots \oplus \mathbb{C}v_{r-l} \oplus W.$$

Then

$$A := \pi(\mathbb{C}v_1 \oplus \ldots \oplus \mathbb{C}v_{r-l})$$

is a subtorus in T. Clearly, $T = A \cdot Z$ and $A \cap Z$ is discrete.

Proof of Theorem 2 We start by proving the existence of a connected reductive algebraic subgroup $G^* \subset P$ such that $P = G^* \cdot H^\circ$ and $G^* \cap H$ is discrete. Let L be a reductive Levi subgroup of P and write

$$L = T \cdot \prod_{\iota \in I} S_{\iota},$$

where T is an algebraic torus and S_{ι} , $\iota \in I$, are simple factors. It follows from (ii) that H° is of the form

$$H^{\circ} = Z \cdot (\prod_{\iota \in J} S_{\iota}) \cdot U,$$

where $J \subset I$ and Z is a connected closed complex Lie subgroup in T. By Lemma 4 we can find a subtorus $A \subset T$ such that $T = A \cdot Z$ and $A \cap Z$ is discrete. Letting

$$G^{\star} := A \cdot \prod_{\iota \in I - J} S_{\iota},$$

we get a subgroup with the desired properties.

Consider the Tits fibration

$$X := G/H \rightarrow G/P =: Y$$

with typical fiber F := P/H. In the corresponding Leray spectral sequence for \mathcal{O}_X we have

$$E_2^{p,q} = H^p(Y, \mathcal{R}^q),$$

where \mathcal{R}^q is the q-th direct image of \mathcal{O}_X . This is a locally free sheaf on Y associated to the homogeneous vector bundle defined by the holomorphic representation

$$P \longrightarrow \mathrm{GL}(H^q(F, \mathfrak{O}_F)).$$

The fiber F can be written in the Klein form

$$F = G^*/\Gamma^*, \quad \Gamma^* = G^* \cap H,$$

and the representation of G^* on $H^q(F, \mathfrak{O}_F)$ is trivial by Theorem 1. Since $P = G^* \cdot H^\circ$ and H° is normal in P, the same is true for the representation of P on $H^q(F, \mathfrak{O}_F)$. Thus \mathcal{R}^q is isomorphic to some power of the structure sheaf \mathfrak{O}_Y and, consequently, $E_2^{p,q} = \{0\}$ for p > 0 by (iii). Hence

$$H^q(X, \mathfrak{O}_X) \simeq E^{0,q}_{\infty} \simeq E^{0,q}_2 = H^0(Y, \mathfrak{R}^q),$$

where all isomorphisms are isomorphisms of G-modules. Since P acts trivially on $H^q(F, \mathfrak{O}_F)$, the induced G-action on $H^0(Y, \mathfrak{R}^q)$ is also trivial. Therefore G acts trivially on $H^q(X, \mathfrak{O}_X)$ and

$$H^q(X, \mathfrak{O}_X) \simeq H^0(Y, \mathfrak{O}_Y) \otimes H^q(F, \mathfrak{O}_F) \simeq H^q(\Gamma^*, \mathbb{C})$$

by Theorem 1.

References

- [1] D.N.Akhiezer, Lie group actions in complex analysis, Aspects of Mathematics, Vieweg, 1995.
- A.Borel, F.Hirzebruch, Characteristic classes and homogeneous spaces,
 Amer. J. of Math. 80 (1958), 458 538; 81 (1959), 315 382; 82 (1960),
 491 504.
- [3] A.Borel, R.Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145 (1962), 429 439.
- [4] A.Borel, N.Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton Univ. Press and Univ. Tokyo Press, 1980.
- [5] R.Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203 248.
- [6] I.M.Gelfand, M.I.Graev, I.I.Piatetski-Shapiro, Representation theory and automorphic functions, Nauka, Moscow, 1966 (Russian); English translation: Saunders, Philadelphia, 1969.
- [7] A.Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J., 2nd series, vol. 9 (1957), 119 221.
- [8] J.-I. Hano, On compact complex coset spaces of reductive Lie groups, Proc. Amer. Math. Soc. 15 (1969), 159 163.
- [9] A.A.Kirillov, Elements of the theory of representations, Nauka, Moscow, 1972 (Russian); English translation: Springer, 1976.
- [10] F.Lescure, Action non triviale sur le premier groupe de cohomologie de Dolbeault, C.R.Acad.Sci.Paris, t.316, Série I, 823 825, 1993.
- [11] Y.Matsushima, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka Math. J. 14 (1962), 1 20.
- [12] Y.Matsushima, S.Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric spaces, Annals of Math. (2) 78 (1963), 365 416.

- [13] Y.Matsushima, S.Murakami, On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. of Math. 2 (1965), 1 35.
- [14] M.S.Raghunathan, Vanishing theorems for cohomology groups associated to discrete subgroups of semisimple Lie groups, Osaka J. of Math. 3 (1966), 243 256.
- [15] J.Tits, Espaces homogènes complexes compacts, Comment. Math. Helv. 37 (1962), 111 120.
- [16] J.Winkelmann, Complex analytic geometry of complex parallelizable manifolds, Habilitationsschrift, Bochum, 1994.

INSTITUT FOURIER URA 188 du CNRS BP 74 38402 ST Martin d'Hères Cedex (France)