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1 Introduction

Let M be a compact complex manifold, © = 0ps its structure sheaf,
Q7 = Qf, the sheaf of germs of local holomorphic p-forms on M, and
HP(M) = H9(M, Q") the Dolbeault cohomology spaces. If G is a complex
Lie group acting holomorphically on M, then GG has a natural representation
on HP(M). Since M is compact, the spaces H??(M) are finite-dimensional
and, as one can easily show, the representations of G on H??(M) are holo-
morphic (see e.g. [1], § 4.1). For M Kéahler we have the Hodge decomposition

H"(M,C)= € H""(M). (1)
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If G is connected then G acts trivially on H" (M, C) by the homotopy argu-
ment. Thus (1) shows that H”?(M) is a trivial G-module for all p, . How-
ever, for an arbitrary M this is in general not the case. Namely, I".Lescure
[10] constructed recently examples of non-trivial actions on H'(M, ©). In his
first example, dimM = 4 and M is acted on by SL(2, C) in such a way that all
orbits have dimension 2. This action induces a non-trivial representation of
SL(2,C) on H'(M,O). In his second example, M is a homogeneous manifold
of the form M = G/T', where (G is a connected solvable complex Lie group
of dimension 3, I' a cocompact discrete subgroup in &, and the G-action
on H'(M, ) is again non-trivial. A natural question arising from these two
examples is the following one. Assume that GG is a connected semisimple
complex Lie group or, more generally, a reductive linear algebraic group
over C. Let I' C G be a cocompact discrete subgroup. Is it then possible
that the induced G-action on H'(G/T', ) is non-trivial? The answer turns
out to be negative. Moreover, we have the following result.



Theorem 1 Let G be a connected reductive linear algebraic group over C,
g the Lie algebra of G, I' C G a cocompact discrete subgroup. Then there is
an isomorphism of G-modules

HPHG/T) = HY(T, €) @ A"(a), (2)

where G acts trivially on HY(I',C) and the action on AP (g) is induced by the
adjoint representation on g. In particular, H>?(G/T) is a trivial G-module.

As a consequence, we obtain Raghunathan’s vanishing theorem for one-
dimensional cohomology, see Section 3. We also generalize Theorem 1 (for
p = 0) to arbitrary compact complex homogeneous manifolds of reductive
linear algebraic groups.

Theorem 2 ILet G be as in Theorem 1, H C G a closed complex Lie
subgroup, and assume that G/H is compact. Let H® C H be the connected
component of the identity element, P the normalizer of H® in G. There exists
a connected reductive algebraic subgroup G* C P, such that P = G*-H° and
G* N H is discrete. The G-action on H(G/H, 0) is trivial and

HY(G/H,0)~ H(T*,0),

where [* = G*N H.

The author would like to thank Jiirgen Rohlfs and J6érg Winkelmann for
useful discussions.

2 Preliminaries

This section contains some known results, which will be used later on. Let
g be a real Lie algebra, U(g) the universal enveloping algebra of the com-
plexification g, = g® C, and Z(g) the center of U(g). We identify g, with its
image in U(g) and denote by U™ (g) the ideal in U(g) generated by g,.. Let
X — X' be the principal anti-automorphism of U(g) defined by X! = —X
for X € g.. Let X — X be the complex conjugation in g, with respect to g,
extended canonically to U(g). Note that Z(g) is invariant under these two
mappings.

A U(g)-module M is said to be a module with infinitesimal character x,,
if Xv = x,,(X)vforall X € Z(g),v € M, where x,, : Z(g) - Cis a
homomorphism of algebras over C with a unit. By a trivial infinitesimal



character we mean the homomorphism Z(g) — C, whose kernel coincides
with Z(g) N U™ (g). One example of a U(g)-module with infinitesimal char-
acter is given by an irreducible representation g — gl(V), where V is a
finite-dimensional complex vector space. This representation extends to a
representation of U(g) on V and, by Schur’s lemma, Z(g) acts on V by
scalar operators. Another example comes from the theory of unitary repre-
sentations. Namely, let G be a real Lie group with Lie algebra g and let H
be a topologically irreducible unitary G-module. Then the subspace of dif-
ferentiable vectors H* C H is a U(g)-module with infinitesimal character
(see e.g. [9], §11.3). In this case we write y, instead of x,. . Since H is
unitary, we have

X (X) = x5 (X7). (3)

In what follows we are interested in the special case, when G is itself a
complex Lie group. Then g also has a complex structure, i.e., there is a
linear mapping J : g — g, such that [JX,Y] = J[X,Y] and J? = —Id. The
complexification g, decomposes into the sum of two ideals,

gc = 01 D g2,

where

g ={X—iJX | Xeg}, m={X+iJX|X €g).

Fix a maximal compact subgroup K C GG and let ¢ C g be the corresponding
Lie subalgebra. Recall that a connected complex Lie group G has a structure
of a reductive linear algebraic group if and only if g =t & J¢t.

Lemma 1 Let G be a connected complex Lie group, V an irreducible holo-
morphic finite-dimensional G-module, and H a topologically irreducible uni-
tary G-module. If x, = X, , then both infinitesimal characters are trivial.
Moreover, if G is linear algebraic and reductive then V = C and G acts
trivially on V.

Proof We have U(g) = Uy @ Uy and Z(g) = 71 @ Z3, where U; is the
universal enveloping algebra of g;, Z; the center of U;, i = 1, 2. The complex
conjugation X +— X interchanges the subalgebras Z; @1 and 1® Z,, whereas
the map X — X' leaves them stable. Since V is a holomorphic G-module,
(JX)v = iXv for X € g,v € V. Therefore y,, is trivial on 1 ® Z;. But
Xy = Xg and (3) shows that x,, is also trivial on Z; & 1.

Assume now that G is linear algebraic and reductive. Choosing an appro-
priate G-invariant non-degenerate symmetric bilinear form on g, we get a



Casimir element of the form
J J

where {X;} is a basis of ¢. Let (-, -) denote a K-invariant Hermitian inner
product in V. Then

0= X, (C)(,0) = (Co,0) =23 (Xj0, Xjo)  (vEV),

J

and so we obtain that V is a trivial ¢-module. Since G is connected, G acts
trivially on V. O

Lemma 2 Let G be a connected reductive linear algebraic group, V a non-
trivial irreducible holomorphic finite-dimensional G-module, and H a topo-
logically irreducible unitary G-module. Then

H*(g,t, H* @ V) = {0}.

Proof A vanishing theorem in [4], Ch. 1, § 4.1, tells us that H*(g, ¢, H*®V)
may be non-trivial only if x,. = x,, where V* is the dual to the G-module
V. In view of Lemma 1 this is in fact impossible. O

Lemma 3 ILet G and V be as in Lemma 2 and let I’ C G be a discrete
cocompact subgroup. Then H*(I', V) = {0}.

Proof The cohomology of a discrete group I' can be expressed in terms of
relative Lie algebra cohomology (see [12], [13] and [4], Ch. 7, § 2.7). Namely,

H*(,V) ~ H*(g,8, C*(G/TY®@ V) = H*(g,t, (L*(G/T))* @ V).

Let G be the set of equivalence classes of topologically irreducible unitary
representations of G. For each 7 € G choose a representative H,. Then
L*(G/T) decomposes into a discrete Hilbert direct sum of H, with some
finite multiplicities m(w, ') (see [6], Ch. 1, § 2.3). An argument using the
finiteness of dim H*(I', V) shows that H*(I', V') decomposes into an algebraic
direct sum of the corresponding Lie algebra cohomology spaces, namely

H*(D, V) ~&__ m(r,[)H g, 6, HX @ V)

(see [4], Ch. 7, §3.2). The result follows from Lemma 2. O



3 Parallelizable manifolds

For the proof of Theorem 1 we shall need a spectral sequence, which was
constructed by A.Grothendieck in a more general context (see [7]).

Let (X,0x) be a reduced complex space, L a group acting on X by biholo-
morphic automorphisms, and § a sheaf of O x-modules. Recall that 8 is called
a L-sheaf if L acts on 8§ in such a way, that this action commutes with the
projection map 8§ — X and is compatible with the natural L-action on Ox.
As usual, we denote by 8(U) the space of sections of 8 over U C X and write
l:8(U) — 8(-U) for the isomorphism induced by [ € L. In our situation
L will be a direct product of the form L = G x I', where I' is a discrete
group acting on X properly discontinuously and freely. Let Y = X/T" be the
quotient considered with the natural complex structure and let 8" be the
sheaf of invariant elements of §, i.e.,

sST(U)={ses(x"HU)) |v-s=s forall veTI}
for U C Y. Then G acts on Y in a natural way and 8" is a G-sheaf of

Oy -modules.

We now apply Theorem 2.4.1 of [7] to the sequence
cEo e

where C is the category of L-sheaves of Ox-modules, C’ the category of L-
modules, C” the category of G-modules, ®(8) = §(.X) the functor of global
sections, and (V) = VI the functor of T-invariants.

This gives us the following result (cf. [7], Ch. 5, § 5.3, Cor. 3):
(*) for any L-sheaf of Ox-modules 8 there exists a spectral sequence of G-
modules converging to H*(Y, 8"), whose second term is given by

EDY = HP(T', HY(X, 8)),

with the G-action arising from the induced G-action on the coefficient group.

Proof of Theorem 1 Let GG be a connected reductive linear algebraic group,
I' C G a cocompact discrete subgroup. We apply (*) to X = G with G
acting on the left and ' on the right. For 8§ := QF and ¢ > 0 we have
H?(G,8) = {0}, because GG is a Stein manifold. Therefore the spectral se-
quence degenerates and Fy = Fo. Since I' is discrete, 8T = Qf;, where



M =Y = G/I'. Therefore we obtain an isomorphism of G-modules
H™ (M, Q) = H"(I', Q(G)), (4)
where I" acts on QP(G) by the right translations. The G-action on the group
cohomology of I' arises from the left G-action on QP(G).
Each holomorphic form on G is a linear combination of right invariant holo-
morphic forms with holomorphic coefficients. As a (G' x G)-module,
QF(G) ~ 0(G) @ AP(g7) ~ O(G) @ A"(g),

where G X G acts on O((G) by the left and right translations and the action
on AP(g) is adjoint on the first factor and trivial on the second one. Thus

H™(I',QP(G)) ~ H'(I',0(G)) @ AP (g), (5)
where I" acts on O(G) by the right translations and G by the left ones. Now,
O(G) is a completion of the algebraic direct sum

O reg (G) =Dy (V* @ V)?

where V' ranges over irreducible holomorphic G-modules, each summand
V*®@ V is (G x G)-stable, and the left (resp. right) translations act on the
first (resp. second) factor. Since H"(I', O((7)) is finite-dimensional, we have

H'(T,0(G)) =@, H'(I,V*®@V)=a, V*@ H"(,V)= H"(I,C),

where the last equality follows from Lemma 3. Substituting this in (5) and
using (4), we obtain (2). O

Corollary 1 (M.S.Raghunathan [14]) Let G be a connected semisimple
complex Lie group having no epimorphism onto PSL(2,C). Let ' C G be a
cocompact discrete subgroup. Then H'(G/T,QP) = {0}.

Proof 1f G is a connected semisimple real Lie group with finite center, no
compact factor and no factor of rank one, then a theorem of Y.Matsushima
yields HY(I',C) = {0} for any discrete cocompact subgroup I' C G (see
[11] and [4], Ch. 7, §4.4). In particular, H'(I',C) = {0} when G is a com-
plex semisimple Lie group without three-dimensional factors. Therefore the
vanishing of H'(G/T, QP) follows from (2). O
Let {Ey,dr} (k = 1,2,...) be the Hodge-Frolicher spectral sequence of a
complex manifold M. Recall that £} = H??(M) and that

H"(M,C)= € EL.
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In the setting of Theorem 1 one can use (2) in order to understand the
Hodge-Frolicher spectral sequence of M = G/I'. The following corollary,
generalizing a result of J.Winkelmann, is an example.

Corollary 2 (cf. [16], Part B, §§10,11) Let G = SL(2,0), I' C G a cocompact
discrete subgroup, and M = G/U'. Then

E1= B} = HOT,C), ET={0) (p#0.3),

and, consequently, dy = 0. Moreover, d, = 0 for all k > 2. Let | =
dim HY(T',C). Then dim H?*(T',C) =, dim H*(T,C) = 1, and HY(I',C) =
{0} for ¢ > 3. The manifold M has the following Betti numbers:

bo=bs=1, by=by=by=bs=1 by=2.

Proof The spaces F}, are bigraded G-modules, the differentials dy commute
with G-action. Since A%(g) ~ g, there are only two types of irreducible G-
modules occuring in F;. Namely, Ell’q, Ef’q are multiples of the adjoint
G-module and E?’q, Ef’q are trivial G-modules. Since all other terms of Fj
are zero, dy equals 0 on E?’q and Ef”q. Since the G-action on F, is trivial, dy
defines an isomorphism between Ell’q and Elg’q. From this we get the above
expression for F5?, and it follows that dy = 0. Furthermore, we observe that

di, = 0 for k& > 4.

Let [; = dim H*([',C). It is an immediate consequence of Theorem 1 that
l; =0 for ¢ > 3. In the spectral sequence of the regular covering

G-G/II'=M

the second term is equal to H*(I',C) ® H*(K, C), where K = SU(2). Since
HY(K,C) = {0} for i # 0,3, it follows that this spectral sequence degener-
ates. Thus H*(M,C) = H*(I',C) ® H*(K,C) as vector spaces and, conse-
quently, b; = [; for 1 = 0,1,2, b3 =I3+ 1 and b; = l;,_3 for i = 4,5, 6. Since
b; = be_; by the Poincaré duality, this yields Iy = l{, I3 = [y, and we obtain
the above values of b;.

We still have to prove that ds = 0 in the Hodge-Frolicher spectral sequence.
This reduces to dy” = 0 and dy® = 0. Assuming ds” # 0, we get by =
dim E%? < dim Eg’Q = dim ES’Z = [, contradictory to what we have seen
above. Similarly, if d3° # 0 then by = dim E%' < dim Ey' = dim Ey' =1,

again a contradiction. O



4 Homogeneous manifolds of general type

We employ the notation introduced in Section 1. In particular, GG is a con-
nected reductive linear algebraic group, H C G is a closed complex Lie
subgroup such that G/H is compact, and P is the normalizer of H® in G.
The proof of Theorem 2 is based on the following well-known facts:

(i) P is a parabolic subgroup in G (see [15], [3]);

(i) H contains the unipotent radical U = Up of P (see [8]);

(iii) HP(G/P,0) ={0} for p > 0 (cf. [5] or [2]).

We shall also need an elementary lemma.

Lemma 4 Let T be an algebraic torus and let 7 C T be a closed complex
Lie subgroup. There exists a subtorus A C T such that T = A-Z and ANZ
is discrete.

Proof We identify T with (C*)" and denote by m : C" — (C*)" the univer-
sal covering map, given by 7(z1,...,2.) = (exp 2wizy,...,exp 27wiz,). The
connected component of 77!(Z) is a complex subspace in C". Denote this
subspace by W and let [ := dim W = dim Z. There exist r — [ vectors
U1y..., U1 € Z", such that

C=Cvi @®...5Cuo_; dW.
Then
A=7(Cn &...8 Cu._)
is a subtorus in T. Clearly, T = A - Z and AN Z is discrete. O

Proof of Theorem 2 We start by proving the existence of a connected re-
ductive algebraic subgroup G* C P such that P = G*- H° and G* N H is
discrete. Let L be a reductive Levi subgroup of P and write

L=T-T] S.,
=i

where T is an algebraic torus and S,, ¢ € I, are simple factors. It follows
from (ii) that H® is of the form

H=7-([] S0,

=y



where J C [ and Z is a connected closed complex Lie subgroup in 7. By
Lemma 4 we can find a subtorus A C T such that T = A-Z and AN Z is
discrete. Letting

G=A-I] S,

ceI—J

we get a subgroup with the desired properties.

Consider the Tits fibration
X:=G/H—-G/P=Y

with typical fiber F':= P/H. In the corresponding Leray spectral sequence
for Ox we have
ED? = HP(Y,R9),

where R? is the ¢-th direct image of Ox. This is a locally free sheaf on Y
associated to the homogeneous vector bundle defined by the holomorphic
representation

P — GL(H(F,0F)).
The fiber F can be written in the Klein form
F=G"/T", T"=G"NH,

and the representation of G* on H?(F,Op) is trivial by Theorem 1. Since
P =G*-H°and H® is normal in P, the same is true for the representation
of P on HY(F,0F). Thus R? is isomorphic to some power of the structure
sheaf Oy and, consequently, F3? = {0} for p > 0 by (iii). Hence

HY(X,0x) ~ E% ~ EJ" = HO(Y,RY),

where all isomorphisms are isomorphisms of G-modules. Since P acts triv-
ially on H?(F,O), the induced G-action on H°(Y,R?) is also trivial. There-
fore G acts trivially on H?(X, Ox) and

H(X,0x) = HY(Y,0y) @ H(F,0p) ~ H'(I*,0)

by Theorem 1. O
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