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by Alain BERNARD and Stuart J. SIDNEY

A . — A variety of normed function spaces, including the space ( 0( ) ) of
continuous functions on the compact Hausdorff space ) that are locally constant on a dense
open subset of ) , are shown to be ultrabornological.

1. Introduction. — Our main objective is to prove that various uniformly

normed, but not (in general) complete, spaces of continuous functions are ultra-

bornological. Our particular interest is in the space * 0( + ) of continuous functions

on the compact Hausdorff space + that are locally constant on a (varying with the

function) dense open subset of + .

The path leading us to this point has its origin in a study by one of us [1] of func-

tions that operate on function spaces. The essential features of [1], Lemma 12, were later

isolated in the following result [2], Theorem 1: if a nonconstant continuous function ,
on an interval [ -/.10 ] operates from 2 ( + ) to a linear subspace * of 2 ( + ) in the sense that
,�3'4�5�* whenever 4�5�2 ( + ) and 4 ( + ) 6 [ -�.10 ], then * , endowed with the supre-
mum norm, is a barreled normed linear space. In particular, it follows that * 0( + ) is bar-

reled (and point-separating) if + has a dense open locally connected subset, for then any

,75�* 0([ -�.10 ]) operates from 2 ( + ) to * 0( + ). By a very different argument, it is shown
in [7], Theorem 2, that * 0( + ) is barreled whenever + is metrizable. This argument can

be adapted to apply to all + , even those for which * 0( + ) is not point-separating. * 0( + )

is point-separating if + is metrizable ([6], [7]), but M. E. Rudin and W. Rudin have con-

structed an + , not a singleton, for which * 0( + ) reduces to the constant functions [6].

Recently the point-separation results on * 0( + ) have been elaborated and extended by

J. Hart and K. Kunen [5], who also study a variety of other aspects of the spaces * 0( + )

and some of their close relatives.

It turns out that the spaces * 0( + ), and many other spaces to which the method

of [7] applies, are in fact ultrabornological, which implies that they are barreled. For

+ = [ -�.10 ], this follows from Theorem 2.4 of the beautiful and fundamental paper [4] by
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A. Gilioli, who used a powerful method based on a family of projections ���������	� [ 
�� � ] to

treat a large number of spaces of vector-valued functions, including both some spaces

of continuous functions and some spaces of integrable functions. Independently, a sim-

ilar projection method was developed in [3] by S. Dı́az, A. Fernández, M. Florencio and

P. J. Paúl, who used their method to treat many additional spaces. We heartily recom-

mend the papers [4] and [3] to those interested in ultrabornological function spaces.

Our approach is more topological than those in [4] and [3]. All three papers rely

on some form of localization : if things go wrong, there must be a point at or near which

they go wrong. Gilioli’s approach is especially well suited to spaces of functions defined

on intervals ; in this setting, his method succeeds in pretty much any situation in which

ours does, as well as in many to which ours does not apply. The approach of Dı́az et
al. works particularly well on rather general spaces of integrable functions. Our method

yields good results for spaces of continuous functions on general compact Hausdorff

spaces.

This paper is organized in the following way. In the next section we review various

notions from the theory of topological vector spaces, and introduce the spaces * 0( + )

formally. The heart of the paper is section 3, in which it is proven that if + is metrizable

then * 0( + ) is ultrabornological. This proof shows very clearly how our method works.

Sections 4 and 5 extend this result to a variety of other spaces, including * 0( + ) when +
is not metrizable.

While our normed spaces will consist of scalar-valued functions, it will be clear

that the results and proofs extend to spaces of vector-valued functions with values in
a normed space. Similarly, it will be clear that Theorem 4.1 will remain valid if * has

any norm that dominates the supremum norm and the 
�� have norms dominating the

norm inherited from * ; in fact, a version of the theorem in which * is a Hausdorff locally

convex topological vector space can be proven.

The second-named author wishes to express his thanks to l’Institut Fourier, Uni-

versité de Grenoble I, for its hospitality during spring 1995, when much of this work was

accomplished.

2. Some definitions and terminology. — We recall here some definitions and

facts. By an LCS we shall understand a Hausdorff locally convex topological vector space.

A closed absorbent absolutely convex subset of an LCS * is called a barrel in * ; * is

said to be barreled if every barrel in * is a neighborhood of 0 in * . Banach spaces, or

more generally LCSs which are of the second category in themselves, provide standard

examples of barreled spaces.

Let * be an LCS and let � ( 
�� .���� ) ������� be an indexed family of ordered pairs

( 
 � .�� � ) in which for each � , 
 � is an LCS and � � is a linear mapping of 
 � into * .

* is the locally convex inductive limit of the family � ( 
 � .�� � ) � ����� if the sets of the form
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�
( ��� � � ����� ) := conv

���
����� � � ( � � ) � (“conv” denotes convex hull), where for each � , � �

is an absolutely convex neighborhood of 0 in 
 � , constitute a base at 0 for the topol-

ogy of * . This amounts to requiring that each � � be continuous and that each
�

( ��� � � )

be a neighborhood of 0 in * , and implies that the union of the � � ( 
�� ) spans * ; the lo-

cally convex inductive limit topology on * is the finest locally convex topology on * that

makes all the � � continuous.

The LCS * is ultrabornological if it is the locally convex inductive limit of a fam-

ily � ( 
�� .���� ) ������� in which each 
 � is a Banach space. If in this definition we replace

“Banach space” by “normed linear space,” then * is said to be bornological. Bornolog-

ical LCSs are precisely those from which every linear mapping into another LCS that

takes bounded sets into bounded sets is necessarily continuous; every metrizable LCS

is bornological, and every complete bornological LCS is ultrabornological. It is easy to

check that an ultrabornological LCS must be barreled.

If an LCS * is the locally convex inductive limit of a family � ( 
�� .�� � ) ������� of LCSs

and mappings, and if � is a linear mapping from * into some LCS, then � is continuous

if and only if every mapping � 3 � � is continuous. We shall use this fact in the proof of

Corollary 3.2. In the metrizable case this fact has a converse which we will not need: if *
is a metrizable LCS and � ( 
 � .�� � ) � is a family of LCSs 
 � and linear mappings � � : 
 �	�
* such that any linear mapping � from * into an LCS is continuous iff every � 3 � � is

continuous, then * is the locally convex inductive limit of � ( 
 � .�� � ) � .

If + is a compact Hausdorff space, 2 ( + ) denotes the uniformly normed Banach

algebra of continuous scalar-valued functions on + (the scalars may be real or complex),
and 
 ( + ) is its dual space, the space of regular scalar-valued Borel measures on + in

the total variation norm. If 4�5�2 ( + ), �
� denotes the union of all open subsets of +
on which 4 is constant; thus 4 is locally constant, but not necessarily constant, on � � .

Let * 0( + ) := � 475 2 ( + ) : ��� is dense in + � , a self-adjoint subalgebra of 2 ( + ). If

-���0 , 4�5
2 ([ -�. 0 ]) belongs to * 0([ -/.10 ]) precisely if [ -�. 0 ] contains a Cantor set on each

of whose complementary intervals 4 is constant.

3. The basic proof, and * 0( + ) for metrizable + . — The basic argument we use

is best seen, shorn of technical complications, in the proof that * 0( + ) is ultrabornolog-

ical if + is metrizable. It is similar in spirit to a “sliding hump” argument used in [7].

Here we present this proof and a corollary, and later we will describe the modifications

involved in extending it to other situations.

T .. — If + is a metrizable compact space,then * 0( + ), endowed with
the supremum norm, is ultrabornological.

Proof. — Consider a family � of nonempty open subsets of + such that � ( � ) :=
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� � � : � 5 � � is dense in + ; � will denote the set of all such families. For � 5�� let

*�� := � 475 2 ( + ) : 4 is constant on each � 5 ��� , and let ��� denote the inclusion

mapping from *�� into * = * 0( + ). *�� is a uniformly closed subalgrebra of 2 ( + ), so is a

Banach space in the supremum norm, and � � is trivially linear and continuous. (For cer-

tain �
5�� , for instance � = � + � , *�� may reduce to the constant functions; as a general

rule, * � does not contain all the functions in 2 ( + ) that are locally constant on � ( � ).)

We shall show that * is the locally convex inductive limit of the family � ( *	� .
��� ) ��� ��
 .

This amounts to proving:

(3.1.1) If ��� � � � ��
 is a family of strictly positive real numbers and if � � := � 4 5�* � :�
4
� ����� � , then

�
=
�

( ����� ��� ��
 ) is a neighborhood of 0 in * .

We argue by contradiction. Suppose that for some family ��� � � ,
�

is not a neighborhood

of 0 in * . Call a nonempty open subset � of + bad for
�

if for every ��� 0 there is 4 5 *
with closed support supp( 4 ) contained in � such that

�
4
� ��� but 4��5 � . We claim that

(3.1.2) + must contain a point � such that every open neighborhood of � is bad for
�

.

For if (3.1.2) fails then + may be covered by finitely many nonempty open sets � 1 .������1.��! 
none of which is bad for

�
. Thus for each " = 1 .������ .
# there is ��$%� 0 such that

if 4 5 * satisfies supp( 4 ) 6&� $ and
�
4
� �'� $ , it follows that 4 5 �

. Let � :=

#)( 1 inf ��� 1 .������1.*�� � . * contains nonnegative real-valued functions + 1 .������1.,+- such that .
/

=1
+ $10 1 and supp(+ $ ) 62� $ , so if 4 5�* and

�
4
� �3� then #4+ $ 4 5 � for every " ,

hence 4 = #)( 1
 .
$ =1
#4+�$ 4�5 � by convexity, contrary to our assumption that

�
is not a

neighborhood of 0. Thus (3.1.2) is proven.

Fix � as in (3.1.2). Let ( �  ) 5 =0 be a sequence of open neighborhoods of � that

shrinks to �6� � and is such that � 0 = + and �	 (the closure of �! ) is contained in �! ( 1

for #87 1. Each �! is bad for
�

, so there is 44 �5 * such that supp( 44 ) 69�! ,
�
44 � �

2 (  and 4  �5 � . Let � 0 denote the family of open sets � such that, for some #:7 0,� 6;�  =< �  +1 and the functions 4 0 .������1. 4  all are constant on � . Then � 0 5>� and

all the 44 belong to *�� 0 . If # is so large that 2 (  �?��� 0 , then 44 �5@��� 0 6
�

, giving the

desired contradiction. Thus (3.1.1) holds, and the theorem is proved.

The family � ( *�� .6��� ) ��� ��
 used in the above proof is essentially forced on us. For

suppose * 0( + ) is the locally convex inductive limit of some family � ( 
�� .�� � ) ������� of

Banach spaces and mappings. Let � � / � be a countable base for the topology of + with� /�A= B . If ��51C is fixed, then a simple category argument shows that for each nonempty

open set D there is at least one E for which � / 6FD and ��� ( 
�� ) 6 � 4 5 * 0( + ) : � / 6����� ; thus there is a set of integers G � such that � � := � � / : E�5�G � ��51� and � � ( 
 � ) 6
* ��H . Note that a deceptive candidate for the 
 � might be the spaces 
)I := � 4 5 2 ( + ) :����J � � for dense open subsets � of + , with � I the inclusion mapping; however, in

general 
 I is not uniformly closed (though it is if + is locally connected, since then 
 I
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consists of those continuous functions on + that are constant on the (necessarily open)

components of � ).

The case + = [ -/.10 ] of Theorem 3.1 also follows from [4], as we mentioned earlier.

This case has an interesting corollary, which can also be proven directly by the method

of either [7] or the above proof; the corollary is essentially the dual form of the theorem

for + = [ -�.10 ], and inasmuch as it can be shown that the dual form actually implies the

original version in some generality, the theorem for + = [ -�. 0 ] can in fact be deduced

from the corollary.

C .. — Let -	��0 . Suppose that for every Cantor set � contained in
[ -�. 0 ] there is given a measure ����5 
 ( � ) so that the following compatibility condition
holds:

Whenever � 1 and � 2 are Cantor sets contained in [ -�. 0 ] and 4�5�2 ([ -�. 0 ]) is con-
stant on each interval of [ -�. 0 ] < � 1 and on each interval of [ -/.10 ] < � 2, it follows
that ��4������ 1 = ��4	����� 2 .

Then there is a unique measure � 5 
 ([ -�. 0 ]) such that, for every Cantor set � con-
tained in [ -�. 0 ] and every 4 5 2 ([ -�.10 ]) that is constant on each interval of [ -�.10 ] < � ,


4������ =



4���� �

Proof. — By a Cantor set we mean a nonempty totally disconnected metrizable

compact space having no isolated points. If � is a Cantor set contained in [ -/.10 ], denote

by � ( � ) the set of intervals (or components) that make up [ -�. 0 ] < � . In the notation
of the proof of Theorem 3.1, � ( � ) 5 � , and the * � that do not reduce to the constant

functions are just the * � ( � ). Thus a linear functional on * 0([ -�.10 ]) is continuous if and

only if its restriction to each * � ( � ) is continuous.

Because * 0([ -/.10 ]) is the union of the * � ( � ) and *�� ( � 1) + *�� ( � 2) 6�*�� ( � 1 � � 2 ), the

compatibility hypothesis shows that a linear functional � may be defined consistently on

* 0([ -/.10 ]) by the rule

� ( 4 ) =



4���� � if 4 5 * � ( � ) �

Trivially the restriction of � to each * � ( � ) is continuous, so � is continuous on * 0([ -�. 0 ]),

whence there is � 5 
 ([ -�. 0 ]) such that ��4���� = � ( 4 ) for every 475 * 0([ -�.10 ]). This

� is unique because, by the Stone-Weierstrass theorem, * 0([ -�. 0 ]) is uniformly dense in

2 ([ -�.10 ]).

In contrast to the uniqueness of � , many different � � 5 
 ( � ) give the same

functional on *�� ( � ), except for trivial cases. Of course, the corollary remains true if [ -�. 0 ]
is replaced by other one-dimensional spaces, such as circles.
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4. Other function spaces on metrizable + . — Isolating the features of * 0( + )

which were crucial to the proof of Theorem 3.1, we obtain

T .. — Let + be a first countable compact Hausdorff space, let * be
a linear subspace of 2 ( + ) endowed with the supremum norm, and let ��
 � � � ��� be a
family of linear subspaces of * , also endowed with the supremum norm. Suppose the
following two conditions hold:

(4.1.1) To each finite open cover �-� 1 .������1. �  � of + we may associate a positive real
number 2 such that whenever 4 5 * there are 4 1 .������1. 4  in * satisfying

supp( 4 $ ) 6 ��$ and
�
4 $ ��� 2 � 4 � for each " 5 � 1 .������1.6# � , and

 .
$ =1
4-$ = 4 .

(4.1.2) Whenever ( �  ) 5 =0 is a sequence of open subsets of + such that �  69�  ( 1 for

# 7 1 and
5�
 =0
�  reduces to a single point, and 4� �5 * satisfies supp( 4� ) 6F�  

for every #:7 0, it follows that there is �75�C such that 4  5 
�� for infinitely
many integers #�7 0.

Then * is the locally convex inductive limit of the family � ( 
 � .�� � ) � ����� where � � :


 � � * is the inclusion mapping. In particular, if in addition all the 
 � are uniformly
closed, then * is ultrabornological.

This theorem applies in particular to metrizable + . (4.1.1) is often satisfied be-

cause * is a subalgebra of 2 ( + ) that contains partitions of unity such as � + 1 .������ .,+- �
in the proof of Theorem 3.1 (but see example 4.3). Note that if

�� ��� 4 ( 1( � 0 � ) = B – in

particularif * contains the constant functions – then (4.1.1) implies that * separates the
points of + .

We now exhibit several examples.

E .. Sets of constancy of full measure. — If + is a compact Hausdorff

space and ��5 
 ( + ) is a positive nonatomic measure, set *	� := � 4�5 2 ( + ) : � ( + <� � ) = 0 � and * �0 ( + ) := *
����* 0( + ).

L. — *
� separates the points of + , and * �0 ( + ) separates the same pairs
of points of + as does * 0( + ).

Proof. — Let � and 
 be distinct points of + , and let 4�5�2 ( + ) [resp. * 0( + )] be

such that 4 ( + ) 6 (0 . 1) and 4 (� ) � 4 ( 
 ). Let
�

:= � 4 (� ) .14 ( 
 ) � � ���&5 [0 . 1] : � ( 4 ( 1( ����� )) � 0 � .

a finite or countable subset of (0 . 1). We now construct a Cantor set � =
5�
 =0

�  in [0 . 1]

as follows. Take � 0 = [0 . 1] and � 1 = [0 .�� ]
�

[ � . 1] where 4 (� ) � � ��� � 4 ( + )
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and ���&. ��� � � = B . We will arrange that each �  be the union of 2  pairwise disjoint

non degenerate closed intervals of length � 2 (  +1 whose endpoints are not in
�

, and

that � 0 J � 1 J � 2 J ����� . To accomplish this, if # 7 1 and � 0 .������1. �  have been

constructed, build �  +1 by removing from each of the 2  intervals [ -/.10 ] comprising �  
an open subinterval ( � . � ) chosen so that - � � � ( - + 0 ) � 2 � � � 0 , � � . ��� � � = B ,

and � ( 4 ( 1(( � . � ))) 7 2 ( 1 � ( 4 ( 1([ -�.10 ])), possible because by induction � ( 4 ( 1( � -�. 0 � )) =

0. The Cantor set so constructed satisfies � ( 4 ( 1( � )) = 0. Now take a nondecreasing

continuous real-valued function , on [0 . 1] such that , is strictly increasing on � and is

constant on each interval of [0 . 1] < � . Then � := � 3 4 belongs to *	� [resp. * �0 ( + )] and

� (� ) ��� ( 
 ). The lemma is proved.

Theorem 4.1 now applies to show that if + is metrizable then *	� and * �0 ( + ),
endowed with the supremum norm, are ultrabornological. For the family ��
�� ������� we

take, as in the proof of Theorem 3.1, the family � * � ��� ��
 where this time a member � of

� is a family of nonempty open subsets of + such that � ( + < � ( � )) = 0 and in addition,

in the case of * �0 ( + ), � ( � ) is dense in + .

E .. Piecewise affine functions. — Most of the spaces in this example

can also be handled using Theorem 2.4 of [4], as can *	� and * �0 ( + ) when + = [ -�.10 ].
Fix real numbers - � 0 and a family � of nowhere dense closed subsets of [ -�. 0 ]

that satisfies: � is closed under finite unions; the union of all the members of � is dense in

[ -�. 0 ]; and whenever ( � $ ) is a sequence in � for which
�
$ � $ =

� �
$ � $ � � �6� � for some

point ��5 [ -�. 0 ], it follows that
�
$ � $ 5�� . Possible choices for � include: all nowhere

dense closed subsets of [ -�. 0 ]; all at most countable closed subsets of [ -/.10 ]; all Cantor

sets in [ -/.10 ]; or all nowhere dense closed subsets of [ -�. 0 ] that are null for a fixed positive

nonatomic � 5 
 ([ -�.10 ]). Then the space *
	� of all 4�5 2 ([ -�.10 ]) for which there exists

� 5�� such that 4 is affine on each interval of [ -/.10 ] < � , endowed with the supremum
norm, is ultrabornological. For the family ��
�� � we take the family � * � � � � 	 where * �
consists of those 4�5�2 ([ -�. 0 ]) that are affine on each interval in [ -�. 0 ] < � .

Note that * 	� is not closed under multiplication, so condition (4.1.1) requires a

direct verification, which in turn requires the density in [ -�. 0 ] of the union of the sets

in � .

E .. Holomorphic functions. — Let + be a compact subset of C � with

dense interior, for some positive integer � . If 4 5 2 ( + ), D � will denote the largest open

subset of + on which 4 is holomorphic (thus the scalar field is C). *�
 ( + ) consists of

those 4 for which D � is dense in + , and if �
5 
 ( + ) is a positive nonatomic measure,

* �
 ( + ) := *
� � *�
 ( + ). Both *�
 ( + ) and * �
 ( + ) are modules over their subspace

* �0 ( + ), making a “partition of unity” argument for (4.1.1) easy. If for the family ��
 � � we

take � *�� ��� ��
 where a member � of � is a dense open subset of + (and � ( + < � ) = 0 in

8



the case of * �
 ( + )), and if * � := � 4�5 2 ( + ) : ��6%D � � , it follows readily that * 
 ( + )

and * �
 ( + ) are ultrabornological.

The examples treated in this and the preceding section are all normed linear

spaces of the first category, except for the trivial cases when + is finite in Theorem

3.1 or Example 4.2. For if � � / � consists of the nonempty non-singleton members of a

countable base for the topology of + (or, in Example 4.4, of the interior of + ) then *
is the union of its proper closed linear subspaces 
 / where 
 / consists of those 4
5�*
that are: constant on � / if * is as in Theorem 3.1 or Example 4.2; affine on � / if * is

as in Example 4.3; or holomorphic on � / if * is as in Example 4.4. On the other hand,

being barreled, * is not the union of an increasing sequence of its proper closed linear

subspaces.

5. The non-metrizable situation. — Two new obstacles arise routinely when we

attempt to study spaces such as * 0( + ) when + is not metrizable. First, the function

space * may fail to separate the points of + . This can often be overcome by passing from

+ to
�
+ , the quotient space obtained from + by collapsing to a point each equivalence

class for the equivalence relation ����� if 4 ( � ) = 4 ( � ) for all 4 5�* ; if ��5�+ � �
+

is the quotient map and, for
� 6 * ,

��
:= � ˜4 5�2 (

�
+ ) : ˜4�3�� 5 � � , then ˜4
	� ˜4�3��

is an isomorphism of
�
* onto * , and under appropriate circumstances (4.1.1) will hold

for
�
* on

�
+ . Second, + (or after the above identification procedure,

�
+ ) may not be first

countable. Then to get an appropriate version of (4.1.2) it often suffices to replace the

requirement that
5�
 =0
�! reduce to a single point, by the more modest requirement that

all the 44 be constant on this set.

Rather than attempt to formulate a general result that will deal with these obsta-

cles, we shall show through examples of interest to us how the methods outlined in the
previous paragraphwork in practice. As in the metrizable setting, * 0( + ) will provide the

prototype.

T .. — If + is a compact Hausdorff space then * 0( + ), endowed with
the supremum norm, is ultrabornological.

Proof. — Let * = * 0( + ). We follow the proof of Theorem 3.1. Let � , * � , � � , � � ,

��� ,
�

be as in that proof. We use the identification procedure to pass to
�
+ and

�
* (N.B.:

the new sets of constancy need not be open in
�
+ ), and now (3.1.2) becomes true: there

is a point ˜� 5
�
+ such that every open neighborhood of ˜� is “bad” for

��
=
�

( �
�
� � � ).

We now take extra care in selecting the sequences (
�
�! ) 5 =0 of open neighborhoods of ˜�

and ( ˜4  ) 5 =0 of functions in
�
* . Let

�
� 0 =

�
+ , and let ˜4 0 5

�
* satisfy

�
˜4 0
� � 1 and ˜4 0 �5��

. If #�7 1 and
�
� 0 .������1.

�
�  ( 1 and ˜4 0 .������1. ˜4  ( 1 have been selected, let

�
�! be an open

neighborhood of ˜� so small that (
�
�  ) (�6

�
�! ( 1 and � ˜4 $�
 ˜4 $ ( ˜� ) � � 2 (  on

�
�! for " =
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0 .������ .
# 
 1, then let ˜4  5
�
* satisfy supp( ˜4  ) 6

�
�  ,

�
˜4  � � 2 (  , and ˜4  �5

��
. Let

�! := � ( 1(
�
�! ) and 44 := ˜44 3 � 5 * . Then the �! and the 44 satisfy the same conditions

as in the proof of Theorem 3.1, except that � :=
5�
 =0
�  =

5�
 =0
�  may not reduce to a

point. However, all the 4� are constant on � , so if � has nonempty interior we simply
make this interior an additional member of the family � 0 5�� .

E .. Sets of constancy of full measure. — � , *	� and * �0 ( + ) are as in

Example 4.2, but + is no longer required to be metrizable. As we follow the models of

Theorem 5.1 and Example 4.2 two difficulties may arise, and the second one may not be

surmountable in the case of * �0 ( + ).

First, the boundary of �  ,
� �  = �  =< �  , may not be � -null. With extra care in

the construction of the
�
�  , this problem can be avoided. Specifically, once

�
� 0 .������1.

�
�! ( 1

and ˜4 0 .������1. ˜4  ( 1 have been selected, choose an open neighborhood ��� of ˜� so that

� � 6
�
�  ( 1 and � ˜4-$ 
 ˜4 $ ( ˜� ) � � 2 (  for " = 0 .������1.
# 
 1, then take a continuous

function � :
�
+ � [0 . 1] such that � ( ˜� ) = 0 and � 0 1 on

�
+ < ��� , choose ��5 (0 . 1) so

that � ( � ( 1( � ( 1( ����� ))) = 0, and let
�
�  := � ( 1([0 . � )).

The second difficulty is that if � =
5�
 =0
�! , it may be that � (

� � ) A= 0. This can be

addressed to some extent in the construction of the
�
�  by arranging that

lim �� 5
� ( � ( 1(

�
�! )) = � (( � ( 1( � ˜� � )), that is, � ( � ) = � ( ��( 1( � ˜� � )). Because * � separates the

points of + (lemma in Example 4.2), this gives � ( � ) = 0 in this case; thus * � is always
ultrabornological. However, the proof breaks down for * �0 ( + ) if, for some ˜��5

�
+ , the

boundary of �4( 1( � ˜� � ) is not � -null. Thus at this writing we can only assert that * �0 ( + ) is
ultrabornological provided the positive nonatomic measure � is null on the boundary in
+ of every equivalence class for the equivalence relation � � � if 4 ( � ) = 4 ( � ) for every
4 5�* 0( + ).

E .. Countable-valued functions. — Let � be an uncountable set, and

let *	� ( � ) denote the space of bounded functions on � that have finite or countable

range. Then * � ( � ) is ultrabornological. In fact, if + denotes the Stone-Čech compacti-
fication of the discrete space � , then * � ( � ) becomes identified with a uniformly dense

self-adjoint subalgebra * of 2 ( + ). Let � denote the family of all partitions of � into at

most countably many disjoint nonempty subsets,and for ��5�� let *	� := � 4 5 2 ( + ) : 4
is constant on each �75 � � , as in the proof of Theorem 3.1. The proof continues without

difficulty.
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